Applied Mathematics, 2013, 4, 271-278

http://dx.doi.org/10.4236/am.2013.42041 Published Online February 2013 (http://www.scirp.org/journal/am)

o2% Scientific
#3% Research

Bifurcation Analysis of Homoclinic Flips at Principal
Eigenvalues Resonance’

Tiansi Zhang', Deming Zhu®
'College of Science, University of Shanghai for Science and Technology, Shanghai, China
2Department of Mathematics, East China Normal University, Shanghai, China
Email: zhangts1209@163.com

Received December 15, 2012; revised January 15, 2013; accepted January 22, 2013

ABSTRACT

One orbit flip and two inclination flips bifurcation is considered with resonant principal eigenvalues. We introduce a
local active coordinate system to establish bifurcation equation and obtain the conditions when the original homoclinic
orbit is kept or broken. We also prove the existence and the existence regions of double 1-periodic orbit bifurcation.
Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately, and are well lo-

cated.
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1. Introduction

Homoclinic bifurcations have been comprehensively in-
vestigated from the initial work of Silnikov in [1] who
gave a detailed study of a system which permits an orbit
homoclinic to a saddle-focus. After that many flips cases
attract researcher’s interests, including resonant eigen-
values case in [2], orbit flips in [3,4], inclination flips in
[5-7], and also resonant homoclinic flips in [8-11]. In
these cases homoclinic-doubling bifurcation has been ex-
pensively studied, which is a codimension-two transition
from an n-homoclinic to a 2n-homoclinic orbit. Some ap-
plications of these cases may be referred to a model for
electro-chemical oscillators, the FitzHugh-Nagumo nerve-
axon equations [12], a Shimitzu-Morioka equation for
convection instabilities [13], and a Hodgkin-Huxley mo-
del of thermally sensitive neurons [14], etc.

More recently, the flip of heterodimensional cycles or
accompanied by transcritical bifurcation is got attention,
see [15-17], the double and triple periodic orbit bifur-
cation are proved to exist, and also some coexistence
conditions for the homoclinic orbit and the periodic orbit.
But the research is not concerned with multiple flips.
While multiple cases may have more complicated bifur-
cation behaviors and even chaos, it is necessary to give a
deep study. This paper produces mainly a theoretical stu-
dy of homoclinic bifurcation with one orbit flip and two
inclination flips, which can take place at least in a four-
dimensional system. Compared with the above work
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mentioned, our problem has higher codimension with
resonant, and we get not only the existence of 1-periodic
orbit, 1-homoclinic orbit, and double periodic orbit, but
also the 2"-homoclinic orbit and their corresponding
bifurcation surfaces.

In the present context, we consider the following C'
system

2=1(z2)+9(z u), (1.1)
and its unperturbed system
2=1(z), (1.2)

where r>6, zeR*, ueR' 124,0<|y <1 f(0)=0,
9(0,4)=9(z,0)=0.

Hypothesis

We assume that system (1.2) has a homoclinic orbit
F={z=y(t):teR,y(+0)=0} toan equilibrium z=0,
which is hyperbolic and has two negative and two posi-
tive eigenvalues, denoted by 4,,4,,—p,,—p,, and addi-
tionally 4, >4, >0>-p >—-p,. Set W* (resp. W*)
and W" (resp. W™') the stable (resp. strong stable)
manifold and unstable (resp. strong unstable) manifold of
the equilibrium z =0, respectively. Now we further
make three assumptions:

(H1) (Resonance) A4 (u)=p,(u) for |u|<1, where

4(0)=4 and p,(0)=p;.
(H2) (Orbit flip) Define e’ = lim j(t)/](t)),
e;=£r2@7(t)/|7(t)|, then e' eTW" and e eTW*
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are unit eigenvectors corresponding to 4, and —p,
respectively, where TW" is the tangent space of the
corresponding manifold W" at the saddle z=0, and
the similar meaning for T,W*.

(H3) (Inclination flips) Denote by e, and e the
unit eigenvectors corresponding to A, and —p, re-
spectively, let

T oW*" — span {e;, e*} ast—+o0, T W*
— span{e‘,e*} ast— —oo,

The paper is organized as follows. In Section 2 we will
construct the Poincaré map by the method used in [18] to
get the associated successor function. In Section 3, we
first establish bifurcation equation. Then a delicate study
shows our main results about the existence of double
1-periodic orbit, 1-homoclinic orbit and also 2" -ho-
moclinic orbit. The last section gives a conclusion of the
work.

2. Two Normal Forms and Successor
Function

From the above hypotheses, the normal form theory
providesa C"* system as follows after four successive
C" to C™* transformationsin U (see [10,11,18])

X:[ﬂl(y)+a(y)xy+o(|xy|)]x
+O(u)[o(x2y)+o(v)]

y == (u)+b(u)xy+o(|xy) ]y
+O(v)[0(xy2)+0(y)]

U= 4, (u)+c(u)xy+o(|xy]) Ju+x"H, (x y,v),

V:[_pZ(ﬂ)er (ﬂ)XY+0(|Xy|)]V+ y*H, (X, y.u),

21)

with the assumption
(H4) H,(x,0,0)=0,H,(0,y,0)=0.
Indeed we have
X*H, (X, y,V) =aX
+a x> y*v +hot.,
y?H, (X, y,u)=by*"x" +b,y*"u"

2+ky | ko 2+k3, kg
y Vv

+a,X

+h,y**sxu" +hot.,

where
2+k, —ﬁ>max{&,2},i =1,3,5,
A A
k, > max{&,z},k4 > max{z—j“,l}
A P
and
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2
k, +k, 22 >max{—p2 ,—%},
P PP

241, >22 i=135,1,1,>0
A
and
|6+|7%>0’21(0):j1’27(0):2?'/01(0):pl

and
P2 (0)=pya(u),b(u).c(u)

and d( ,u) are parameters depending on « . Notice that
we have straightened the corresponding invariant mani-
folds. So it is possible to choose some moment T, such
that y(-T)={5,0,0,0} and »(T)={0,0,0,5}, where
o is small enough and

{06 y,u,v)z]XL] Y] |ul. v < 26} <U

Now we turn to consider the linear variational system
and its adjoint system

2=Df (y(1))z, (2.2)

2=~(Df (1)) (2.3)

First we introduce a lemma, see [10,11]

Lemma 2.1 There exists a fundamental solution ma-
trix Z(t)=(z(t),z,(t).z(t).z,(t)) of system (2.2)
satisfying

Wy Wy 0wy
2(T)- 0 0 0w

Wy 01w

w, 0 0 w,

0 0 w, O
Z(T): WlZ 0 W32 1

1 0 w, Of

0 1 w, 0

where
2, () (T W) N(TWe)
2, (t) =7 ()] (T)| € T, W T, W,

z,(t)e T oW 4

and z,(t) T, W*, and W,y Wy W,, #0, W, <0,

Remark 2.1 The matrix (Z* (t)) is a fundamental
solution matrix of system (2.3), denote by

D (1) = (6 (1), (1), (1), (1) = (2 (1)
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then
B ()< (T W) N(T W)

is bounded and tends to zero exponentially as [t| — -+
dueto (4 (t),z(t))=1 and z/(t) tends exponentially
to infinity.
Let
s(t) =y

I|l>

(t;j:z (t)N” 2.4

y()+z(t)n +z4(t)ny +2,(t)n,,
where N =(n,,0,n,,n,). We can well regard

(n.,0,n
(z,(t),2,(t),25(t),2,(t)) as a new local coordinate
sys- tem along r, and choose

So={z=5s(T):[x.|y].u.]v| < 25} < U,
S, ={z=5s(-T):|x,|y|:|ul.]v| < 26} cU
as the cross sections of I' at t=T and t=-T res-

pectively. Under the transformation of (2.4), system (1.1)
becomes

=g (t)g,(r(t),0)u+hot.,i=134.

A simple integrating of both sides from -T to T of
the above equation, we further achieve

n(T)=n(-T)+M,u+hot.,i=134, (2.5)

where
.

M= [ 4 (t)g,(r(t),0)dti=134

-T

are the Melnikov vectors (see [18]).
Lemma 2.2

M1=}¢f(t)g,,(7(t) (t),0)dt.

Actually a regular map is given by (2.5) as (see Figure
1(a))

o)t~ [ 4 (19, (7

F 1S, = Spi(n(=T),0,n,(=T),n, (-T))

o (1,(T). 00, (T).0y (7)),

But this map is established in the new coordinate
system, so we should look for the relationship between
two coordinate systems. Set

$(T) =0 (X YajoUzjoVa ) € oo
S(=T) = (Xojoa YojonrUnjiasVajn ) € Sy
and
Noj (T)=(M50.00my 2z 0),

N21+1(_T) = (n2j+l,l'0' Nyjas n2]+1,4)’
j=01,2--
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(b)
Figure 1. Transition maps. (a) F;: $1—Sy; (b) Fy: Sy—S;.

Take t=-T,T respectively in (2.4), we have
n2j,1 = u2j _W33W§11X2j’

Nyjs = W§11ij ; (2.6)

nZ] 4= y2] W12u2j + (W12W33 —Ws, )W;11X2j )

Nyjg = Wf4 Voju— W44W1;121W;§ Yo

N3 = Ugjg —WisWiy Vo

-1 -1 (2'7)
+ (W13W44W14 — W3 ) Wa2 Y2 j+1
-1
Nyiv1a = Wi Yo jiar
and
Xpju ® O,Vy; % 0. (2.8)

Next, we start to set up a singular map
FoiSe = Si50p (XOv YUvuo-Vo) = ql(xl1 Vi, Uy, Vy)

(see Figure 1(b)) induced by the solutions of system (2.1)
in the neighborhood U , for example

x(t)
t
=hltT=r) {xl + _[ a

T+7

p)e ATy y}ds+h.o.t.
_ ell(y)(t—T—T)Xl

J- e 2/11 u)(s-T-7) Xle S:I—)yods-‘rh.o-t-,

T+r

where 7 is the time going from Qg €S, t0 g €5,.
Denote the Silnikov time s =e ) | then there is

X 2 X(T) =54 +0(x(y,s* Ins).
Similarly, there are

An)

Y= y(T +z‘) —gAl) Yo -|-O(X1ygs2 In S),

/12(!') Mﬂ
Uy =u(T)=5""u +0| xy,us** Ins |, (2.9)

po(n) poln) 4
=Vv(T +7) =5, +0| Y8 ™™ Ins|.
With Equations (2.6)-(2.9), Equation (2.5) well defines
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the Poincaré map F =F, oF,,
/72(#) pl(#

—wlseAlu) Lo A(u
Ny =Wy, 08 W44W14 W2 S

y0 +M,u+hot.,
p2(n) L100)

_ -1 ¢a A(u) -1 ~1o A(u)
Ny = Uy — W5 W, 6S + (W13W44W14 Wos ) WypS Yo

+M,u+hot.,

Pl(ﬂ)

1 A(p
Ny =Wy,S

y0+M u+hot.

The above fact enables one to achieve the associated
successor function G(s,u;,Y,)=(G,,G;,G,)=F(0q,)—0,
as follows:

—W,, W, W,,S Al y0+M u+hot,

p2(#)
G, = U, — W, w55 A1)

-1
—Wj, oS (2 10)
Pl(/‘)

l 2a( ;1
+ (W13W44W14 W43 ) W42

Yo+ M, +hot.,

Ar) (1)
G, = wWiis "y, —y, +w,s 4y,

+(W32 _W12W33)W§1155 +M,u+hot.

3. Main Results

To begin the bifurcation study, G,=0 and G, =0
first give
U, =W, 85— M,u+hot,

Yo = (Wa, —WayW,, )W 55+ M, 0+ hot..

Substitute them into G, =0, we get
F (5, ,U) = —W, W, W, M, us
-1
~W3y Wy (W14W31W42 ) 0 52
P2 2,4 (31)
+FWegWy, OS + W, 08 A — iy 5s ™
2
+Myus?® + M, +hot. =0,
this is the bifurcation equation. Here we have omitted the

parameter 4 in A (u) and p,(x), and replaced the
exponent p,/4 by one owing to (H1) for concision.

Set Q=(s,u.Y,).G6=0(G,.G;,G,)/oQ , we find
that, when w,, =0,
Wy, Wy, S 0 0
detG |=o ~W;l6 1 0|=0.

=0
(Wsz W33W12)W315 0 -

The implicit function theorem reveals that G =0 has

Copyright © 2013 SciRes.

a unique solution
st(/z),ul =U1(/l)xy(> =Yo (ﬂ)

satisfying s(0)=0,u,(0)=0,y,(0)=0. So system (1.1)
has a unique periodic orbit as s>0 or a unique ho-
moclinic orbit as s=0, and they do not coexist. Fur-
thermore, F(s,u)=0 has explicitly a sufficiently
small positive solution s=-5"wgzw, M, +hot. if
Wy, W,,M, 22 < 0. On the other hand, it has a solution
s=0 when geH"2{u:Mu+hot =0}, sowe have

Theorem 3.1 Suppose that M, =0 and w, =0
hold, then system (1.1) has at most one 1-periodic orbit
or one 1-homoclinic orbit in the neighborhood of T.
Moreover an 1-periodic orbit exists (resp. does not exist)
as u in the region defined by w,w,;M, <0 (resp.
>0) and an 1-homoclinic orbit exists as < H*, but
they do not coexist.

In the following stage, we try to look for bifurcations
according to the case 24, >4, > p, for w, =0.

To begin with we divide (3.1) into two parts:

P(s, 1) 2 Wy,W,;6 M, s — W, 6 "M+ hot.,

P2 A

Q(s,u)2s™ +w,5 M us™ +hot.

Therefore F (s, 1) =w,8(Q(s, 1)~ P(s, 1)), where

W =P(s,u) isalineand W =Q(s,«) is a curve with
Q(0,#)=0 according to the variable s.

Theorem 3.2 Suppose that Rank(M;,M,)=2,24 >
Ay > Py Woo =0,W,,M,2>0 and w,w,M,u>0, sys-
tem (1.1) then has a unique double 1-periodic orbit near
I', and two (resp. not any) l-periodic orbits near I'
when u lies on the side of SN' which points to the
direction —(sgnw, )M, (resp. in the opposite direction
of SN'). The corresponding double 1-periodic orbit bi-
furcation surface SN* is

P2

)
W, M, = ﬂl AWasMatt 1275 o
/11 P25W42

with the normal vector M, at x=0.
Proof Consider equations P (s, «)=Q(s, u),
P'(s,)=Q'(s, ) and P"(s,u)=Q"(s,u), thatis,
P2 %
W, W, WM 1S — My = W, 85 +M,us™ +hot.,

P24
101 P
Wy Wy Wo Myt = pp A Wy, 68 ™

%2

+L,A M, us™  +hot., (3.2)
P2_,
07&!’2(!’2_/11)W17415S/11
12 -2
+2, (A = A4)Myus™  +hot..
AM
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The second equation permits a solution
A
S, = (wjpﬂl +h.ot.
POWy

as
Wy, Wy M, 2> 0.

Substituting it into the first equation of (3.2), we
obtain the tangency condition, which corresponds to the
existence of the double periodic orbit bifurcation surface
SN' situated in the region w,w,M,u>0 and
w,, M, 1 > 0. Notice that, when the tangency takes place,

the line W =P(s, ) lies under the curve W =Q(s, ).

So if —w,M, u increases (resp. decreases), the line
must intersects the curve at two (resp. no) sufficiently
small positive points. Now the proof is complete.

Theorem 3.3 Suppose that 24, >4, > p, and w, =0
are true, then there exists two codimension-one hyper-
surfaces

H! ={,u: P(O,ﬂ)zO,P'(O,y)¢0,|y| <<1}
and
2 ={u:P'(0,1)=0,P(0,u) %0, <1},

such that

System (1.1) has only one 1-homoclinic orbit near T’
as peH' and w,w,M,u<0;

System (1.1) has only one 1-periodic orbit near T" as
puex and w,M u<0;

System (1.1) has exactly one 1-homoclinic orbit and
one 1-periodic orbit near ' as x#eH' and w,w,,M,u
>0;

System (1.1) has not any 1-periodic orbit or 1-homo-
clinicorbitas xe* and w,M,u>0.

Proof When < H', we have at once

F (O,,u) =-P(0,1)=0
and M,u =0, therefore
F(s,u)=

P2=h i

s[—w44w421wM1M4y+le§s 1 4 Muus 4 +h.o.t.]:0

has always two nonnegative solutions s, =0 and

A

W, M,z |P2—
S, =[‘\‘,‘:/—§ﬂJ “" +hot.
42

for w,,w,,M,u>0 or has only a zero solution s, =0
for w,w,M,u<0.If xeX, thereis, on the contrary,
M,u=0 but P(0,u)=0,apparently the line

W =P(s, «) is horizontal. So F(s,.)=0 has a solu-
tion

Copyright © 2013 SciRes.

X

S, = (—5_1W14M1,u)7; +hot.

if and only if w;,M,« < 0. The proof is complete.

From the above proof, we see that if the line
W =P(s, x) has a small positive section with the W -
axis or small positive slope, then there exists a small
positive § such that P($,u)=Q(S, ). Thus the fol-
lowing corollary is valid, which is a complement of
Theorem 3.2.

Corollary 3.4 Assume that the hypotheses of Theorem
3.2 are valid, system (1.1) then has a unique 1-periodic
orbitnear I' as u is situated in the region defined by
w,M <0 and w,w,M,u<0 or w,Mu<0,

W,,W,,M, >0 and 0<|u|<1; has not any 1-perio-

dic orbitas w,M,xz>0 and w,w,M,u<0.

Notice that in Theorem 3.3, system (1.1) has a codi-
mension-1 1-homoclinic orbit, see Figure 2(a), that is
the existing homoclinic orbit has no longer orbit flip. But
an orbit flip homoclinic orbit could still exist if

Yo =M,u+hot.=0,
see Figure 2(b).
Corollary 3.5 Suppose that 24, > 4, > p, and w,, =0

hold, system (1.1) has a codimension-2 orbit-flip homo-
clinic orbit as

,ue{,u: F(O,,u): M1y+h.0.t.:O,M4ﬂ+h.0.t.:O}.

Now we turn to study the homoclinic doubling bifur-
cations. To begin with we look for the 2-homoclinic orbit
and 2-periodic orbit bifurcation surfaces. Reset z, and
z, be the time going from g,(X,, Yy Uy Ve) €S, tO
0 (X, ¥,U,V; ) €S, and from q,(x,,Y,,U,,v,) €S, to
O (X3, Y3.Us,Vy) €S, respectively, s, =e 7,5, =e 7,
and

Fo (%) =0 F () =0, F(0,) =0 F(0;) = 0 =0

Then recall the process of the establishment of (2.10),
similarly we may get the associated second returning
successor function FoF(q,)—q, expressed as

G (5,15, o ¥2) = (61,626 61,62,61):

Figure 2. 1-homoclinic orbit (1-H) and (1-OH). (a) # € X1;
(b) F(0, u) =0, yy=Muu + h.o.t. = 0.
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P2 Pl A2

~L, 1 /l
G W14 551 W44 W14 W42 Sl yO '

+WeoW, S, + M, 2+ hot.,

A
G =U, —W,W, 55" — Wy 55,
”
-1 1o 4
+ (W13W44W14 — Wy ) W8y, + M,u+hot.,
a %
p
G = W4251 Yo — Y2 + W85t Ug
+ (W32 — Wy Wss ) W3_11552 +M,u+hot.
P2 pl
1_ -1
Gy =Wy, 552 W44W14 W42 Sz Y,
)
—U,S" + Wy W5 S, + M, + hot,,
2
3 _ 1 1
G; = U, — Wi W, 88, — W5,
ey
-1 17
+ (W13W44W14 —Wy3 ) WSt Y, + Myu+hot.,
a 2
—1 Jn
G - W42 SZ/L y2 yo + W1231 ! u1
-1
+ (W32 — Wy, Wa, ) ngé‘sl +M JM+ h.ot..
Eliminating again y,,u,,y,and u, from
G/ =0,i=12 and j=34,and assuming

=024 >4, > p,

we obtain
P2 ’2
715 A ~1 71M 5
Wiy 08" — Wy, Wi Wiy M, 18, — Wi, 58;85° (33)
Y .
+Myus/t + M u+hot.=0,
P2 iz
WSt — W, W AWM, 1S, — W, 85,5,
1499, 44 W1q Wy VI 4 1S, 310929 (3.4)

%

+Myus/t + M, u+hot.=0.

We know that a 2-homoclinic orbit T corresponds
to the solution s, =0 and s,>0 or s, >0 and s,=0
of (3.3) and (3.4), that means an orbit returns once
nearby the singular point in limit time and twice in li-
mitless time. So it is sufficient to seek the small solutions

of ;=0 and s, >0 bysymmetry of G*. Therefore
&2
M,usst +Mu+hot. =0, (3.5)
P2
S, — Wy W8 "M, us, + 6w, Myu (3.6)
+h.ot.=0.
Clearly (3.5) yields

Copyright © 2013 SciRes.

for M,uM,u <0, and [Myu|/|M,u| sufficiently small.
With this, Equation (3.6) determines a 2-homoclinic orbit
bifurcation surface

H2:|M1,U| |: Wy, Sgn 1;“ |M1ﬂ| /12|M3,U|/12

)

Pa=h | pp-iy
} +h.ot.

Wy Wiy 6 M 1| M| 22
for M,uM,u<0 and |M,u|<|Myu|, which has a
normal vector M, at x=0.
Continually, differentiating both sides of (3.3) and (3.4)
with respectto x and for e H?, we obtain

%24

1, -1 1
—Wy Wiy Wy, M s, + 4 4,M 3:“521 Sou
2
W;; 55,8, + M, +hot.=0,

&—1
W44W14 W, M 4HSy, + pzﬂl Wiy 552 TSy,
+M,; +h.ot.=0.
In the region defined by

X X
W,W,,M, >0 and |Ml,u|lfi|M3y|i <|M, 4|,

the 2-homoclinic orbit bifurcation surface H? is simpli-
fied to be
A

WM, p |24
M, u= 444 +h.ot..
1H ( W0 J M, u

Accordingly

A

W, M, u P22
S, :K““—“'uj “ thot.
W,,0

Then one may derive
— W Wy, My
Wy, Mt
s, =— AW Wi, My
2u
(Pz _ﬂl)WMMMu

which informs that s, increases (resp. decreases) as
moves along the direction w;,M,; (resp. the opposite
direction) such that a 2 -periodic orbit bifurcates from
the 2 -homoclinic orbit T'* as x leaves H?® for the
side pointed by w;,M

Notice that confined on the surface H', (3.3) and (3.4)
has a unique positive solution, meanwhile Theorem 3.3
indicates exactly the existence of one 1-periodic orbit

+h.ot.,

1u

+h.ot.,
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when zeH' for w,w,M,u>0, so there does not
exist any 2-periodic orbit when p is near H'. There-
fore in the region bounded by the surfaces H? to H®,
there must exist another bifurcation surface which mer-
ges the 1-periodic orbit and the 2-periodic orbit into a
new 1-periodic orbit with the different stability from the
original one. We call this surface the period-doubling
bifurcation surface and denote it by P?.

The above reasonings can repeat itself many times to
find the 2"-homoclinic orbit bifurcation surface

HZ My

oA P2 )
:o(||v|ly|pzal [Myu|reia +|M pef e |M3u|j

in the same region of x space and simultaneously the
presence of period-doubling bifurcation surface P? of
2" -periodic orbit.

In short, we conclude that:

Theorem 3.6 Suppose that

Rank(M,,M;,M,)=3,24 > 4, > p,
and w,, =0 hold, then for
MM < 0, Wy, Wy, Wy, My M 12> 0

and |M, | <|M,u|, there exists a 2"-homoclinic orbit
bifurcation surface HZ'  with the normal vector M, at
u =0 and the period-doubling bifurcation surface =
of 2"*-periodic orbit in the small neighborhood of the
origin of u space. Moreover system (1.1) has exactly a
2" -homoclinic orbit as xeH? and a 2" -periodic
orbitas x moves away to the side of H? pointing to
the direction (sgnw, )M, and none on the other side.

To well illustrate our results, a bifurcation diagram is
drawn in Figure 3, where p“ represents a k -periodic
orbit.

4. Conclusion

Homaclinic orbits generically occur as a codimension-
one phenomenon, while if the genericity conditions are

M,

SN!

H /

p+p2+p4 H4/H2

p+p2

Figure 3. Location of bifurcation surfaces for rank (M;, M;,
My) =3, w33=0,24 >, > p,.

Copyright © 2013 SciRes.

broken, some high codimension instance including the
resonant and flips cases, concomitant usually with
chaotic behavior, may take place. Homburg and Oldeman
studied two kinds of resonant homoclinic flips in [8,9]
with unfolding techniques and numerical methods re-
spectively. Zhang in [10,11] continued to research on
these problems and gave some theoretical proofs of the
existence of n -periodic orbit and n-homoclinic orbit
and also their existence regions via the method initially
established in [18]. Besides these the flip heterodi-
mensional cycles have also attracted attentions nowadays,
see [16]. In this paper, we extend the method to fit a
higher codimension case of 3 flips with resonant. With
the delicate analysis, the existence of 1-periodic orbit,
1-homoclinic orbit, and double periodic orbit are proven
and also the 2" -homoclinic orbit and their corres-
ponding bifurcation surfaces. With the work, we find the
extensive existence of the double periodic orbit bifur-
cation and the homoclinic-doubling bifurcation, which
efficiently advance the development of the flips homo-
clinic study.
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