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ABSTRACT 

One orbit flip and two inclination flips bifurcation is considered with resonant principal eigenvalues. We introduce a 
local active coordinate system to establish bifurcation equation and obtain the conditions when the original homoclinic 
orbit is kept or broken. We also prove the existence and the existence regions of double 1-periodic orbit bifurcation. 
Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately, and are well lo- 
cated. 
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1. Introduction 

Homoclinic bifurcations have been comprehensively in- 
vestigated from the initial work of Silnikov in [1] who 
gave a detailed study of a system which permits an orbit 
homoclinic to a saddle-focus. After that many flips cases 
attract researcher’s interests, including resonant eigen- 
values case in [2], orbit flips in [3,4], inclination flips in 
[5-7], and also resonant homoclinic flips in [8-11]. In 
these cases homoclinic-doubling bifurcation has been ex- 
pensively studied, which is a codimension-two transition 
from an n-homoclinic to a 2n-homoclinic orbit. Some ap- 
plications of these cases may be referred to a model for 
electro-chemical oscillators, the FitzHugh-Nagumo nerve- 
axon equations [12], a Shimitzu-Morioka equation for 
convection instabilities [13], and a Hodgkin-Huxley mo- 
del of thermally sensitive neurons [14], etc. 

More recently, the flip of heterodimensional cycles or 
accompanied by transcritical bifurcation is got attention, 
see [15-17], the double and triple periodic orbit bifur- 
cation are proved to exist, and also some coexistence 
conditions for the homoclinic orbit and the periodic orbit. 
But the research is not concerned with multiple flips. 
While multiple cases may have more complicated bifur- 
cation behaviors and even chaos, it is necessary to give a 
deep study. This paper produces mainly a theoretical stu- 
dy of homoclinic bifurcation with one orbit flip and two 
inclination flips, which can take place at least in a four- 
dimensional system. Compared with the above work 

mentioned, our problem has higher codimension with 
resonant, and we get not only the existence of 1-periodic 
orbit, 1-homoclinic orbit, and double periodic orbit, but 
also the 2 -homoclinic orbit and their corresponding 
bifurcation surfaces. 

n

In the present context, we consider the following  
system 

rC

   , ,z f z g z               (1.1) 

and its unperturbed system 

  ,z f z                     (1.2) 

where  46, , , 4, 0 1, 0 0,lr z l f         
   0, ,0 0g g z   . 

Hypothesis 

We assume that system (1.2) has a homoclinic orbit 
    : ,z t t  0       to an equilibrium 0z  , 

which is hyperbolic and has two negative and two posi- 
tive eigenvalues, denoted by 1 2 1 2, , ,     , and addi- 
tionally 2 1 1 20        . Set sW  (resp. ssW ) 
and  (resp. ) the stable (resp. strong stable) 
manifold and unstable (resp. strong unstable) manifold of 
the equilibrium 

uW uuW

0z  , respectively. Now we further 
make three assumptions: 

(H1) (Resonance)   1 1      for 1  , where  

 1 0 1   and  01 1  . 

(H2) (Orbit flip) Define    lim
t

e t 


   t , 
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are unit eigenvectors corresponding to 1  and 2  
respectively, where 0  is the tangent space of the 
corresponding manifold  at the saddle 

uT W
W u 0z  , and 

the similar meaning for 0
ssT W . 

(H3) (Inclination flips) Denote by u  and e e  the 
unit eigenvectors corresponding to 2  and 1  re- 
spectively, let 

  , as

.

T W t

span e

 



 e 

 

 ,t tT 

 , as

sspan e

e t 

u sW
 

The paper is organized as follows. In Section 2 we will 
construct the Poincaré map by the method used in [18] to 
get the associated successor function. In Section 3, we 
first establish bifurcation equation. Then a delicate study 
shows our main results about the existence of double 
1-periodic orbit, 1-homoclinic orbit and also 2 -ho- 
moclinic orbit. The last section gives a conclusion of the 
work. 

n

2. Two Normal Forms and Successor 
Function 

From the above hypotheses, the normal form theory 
provides a  system as follows after four successive 

 to  transformations in U  (see [10,11,18]) 

4rC 

3rC rC
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1
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2
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2
2 2

,

,

x a xy o xy x
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,
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x y

H

4

, ,x H

y

3

3 4

2

2

. . .,

. . .,

k k

l

,

v

x y u

(2.1) 

with the assumption 
(H4) .    1 2,0,0 0, 0, ,0 0H x H y 

Indeed we have 
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ik i
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6 7

1 1 1

2
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max , ,

2 , 1,3,5, ,i
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l i l l

  
  



 
   

 
1

0   

 

and 

     2
6 7 1 1 2 2 1

1

0, 0 , 0 , 0l l


1     


      

and 

       2 20 , , ,a b c      

and  d   are parameters depending on  . Notice that 
we have straightened the corresponding invariant mani- 
folds. So it is possible to choose some moment , such 
that 

T
   , 0,0,0 T  and   0,T 0,0,  , where 

  is small enough and 

  , , , : , , , 2x y u v x y u v U  . 

Now we turn to consider the linear variational system 
and its adjoint system 

   ,z Df t z               (2.2) 

   .z Df t


   z            (2.3) 

First we introduce a lemma, see [10,11] 
Lemma 2.1 There exists a fundamental solution ma- 

trix           1 2 3 4, , ,Z t z t z t z t z t  of system (2.2) 
satisfying 
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0 0 0
,
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0 0 0

0 1
,
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w w w
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w w
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w w
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where 

       
         

   

1

2

3

,

,

c c
u s

t t

u s
t t

u
t

z t T W T W

z t t T T W T W

z t T W

 

 



 



  





    

and    4
s

tz t T W , and . 14 21 31 42 210, 0w w w w w 
1Remark 2.1 The matrix   Z t

  is a fundamental 
solution matrix of system (2.3), denote by  

             1
1 2 3 4, , ,t t t t t Z t   

   , 
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then 

       1

c c
u s

t tt T W T W     

is bounded and tends to zero exponentially as t    
due to    1 1, 1t z t   and  tends exponentially 
to infinity. 

 1z t

Let 

     
       1 1 3 3 4 4 ,

s t t Z t N

t z t n z t n z t n







   


   (2.4) 

where . We can well regard   1 3 4,0, ,N n n n 
        1 2 3 4, , ,z t z t z t z t


 as a new local coordinate 

sys- tem along , and choose  

  
  

0

1

: , , , 2 ,

: , , , 2

S z s T x y u v U

S z s T x y u v U





   

    
 

as the cross sections of  at t  and  T t T   res- 
pectively. Under the transformation of (2.4), system (1.1) 
becomes 

    ,0 . . ., 1,3, 4.i in t g t h o t i    



 

A simple integrating of both sides from  to T  of 
the above equation, we further achieve 

T

    . . ., 1,3,4,i i in T n T M h o t i           (2.5) 

where 

    ,0 d , 1,3, 4
T

i i
T

M t g t t i 



   

are the Melnikov vectors (see [18]). 
Lemma 2.2 

         1 1 1,0 d ,0 d
T

T

M t g t t t g t t    


 

 

   . 

Actually a regular map is given by (2.5) as (see Figure 
1(a)) 

     
      

1 1 0 1 3 4

1 3 4

: ; ,0, ,

,0, , .

F S S n T n T n T

n T n T n T

   


 

But this map is established in the new coordinate 
system, so we should look for the relationship between 
two coordinate systems. Set  

   
   

2 2 2 2 2 0

2 1 2 1 2 1 2 1 2 1 1

, , , ,

, , ,

j j j j j

j j j j j
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(a)                            (b) 

Figure 1. Transition maps. (a) F1: S1→S0; (b) F0: S0→S1. 
 

Take ,t T T   respectively in (2.4), we have 

 

1
2 ,1 2 33 31 2
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1
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    j

.

  (2.6) 

 

1 1 1
2 1,1 14 2 1 44 14 42 2 1

1
2 1,3 2 1 13 14 2 1

1 1
13 44 14 43 42 2 1

1
2 1,4 42 2 1

,
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n w v w w w y
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        (2.7) 

and 

2 1 2,j jx v                   (2.8) 

Next, we start to set up a singular map  

   0 0 1 0 0 0 0 0 1 1 1 1 1: ; , , , , , ,F S S q x y u v q x y u v   

(see Figure 1(b)) induced by the solutions of system (2.1) 
in the neighborhood , for example U
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where   is the time going from 0 0  to 1q S 1q S . 
Denote the Silnikov time  1es    , then there is  

   2 2
0 1 1 0 lnx x T sx O x y s s  . 

Similarly, there are 
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  (2.9) 

j  

With Equations (2.6)-(2.9), Equation (2.5) well defines 
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the Poincaré map 1 0F F F  , 
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The above fact enables one to achieve the associated 
successor function      1 0 1 3 4 0 0, , , ,G s u y G G G F q q    
as follows: 
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(2.10) 

3. Main Results 

To begin the bifurcation study,  and 3 0G  4 0G   
first give  
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Substitute them into , we get 1 0G 
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  (3.1) 

this is the bifurcation equation. Here we have omitted the 
parameter   in  i   and  i  , and replaced the 
exponent 1 1   by one owing to (H1) for concision. 

Set    1 0 1 3 4, ,Q s ,u y G  , ,G G G Q , we find 
that, when , 33 0w 
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310
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32 33 12 31
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det 1 0 0.
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The implicit function theorem reveals that 0G   has 

a unique solution 

    1 1 0 0, ,s s u u y y  ,      

satisfying      1 00 0, 0 0, 0 0s u y . 
0s 

0s

  So system (1.1) 
has a unique periodic orbit as  or a unique ho- 
moclinic orbit as  , and they do not coexist. Fur- 
thermore,  , 0F s    has explicitly a sufficiently 
small positive solution 1

1 1
33 31 . . .s w w   

0
M h o t   if 

31 33 1w w M   . On the other hand, it has a solution 
0s   when  . . 0t1

1: .H M h o   
0M 


w
, so we have 

Theorem 3.1 Suppose that 1  and 33 0  
hold, then system (1.1) has at most one 1-periodic orbit 
or one 1-homoclinic orbit in the neighborhood of  . 
Moreover an 1-periodic orbit exists (resp. does not exist) 
as   in the region defined by 31 33 1 0w w M    (resp. 

) and an 1-homoclinic orbit exists as > 0 1H  , but 
they do not coexist. 

In the following stage, we try to look for bifurcations 
according to the case 1 2 22     for 33 0w  . 

To begin with we divide (3.1) into two parts: 
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Therefore      1
14, ,F s w Q s P s ,     , where  

 ,W P s   is a line and  ,W Q s   is a curve with 
 0, 0Q    according to the variable s . 
Theorem 3.2 Suppose that  1 4 12,2M MRank ,    

2 2 33 14 1, 0,w w M 0      and 42 44 4 0w w M   , sys- 
tem (1.1) then has a unique double 1-periodic orbit near 
 , and two (resp. not any) 1-periodic orbits near   
when   lies on the side of  which points to the 
direction 

1SN
 14 1sgn w M

1SN
1SN

 (resp. in the opposite direction 
of ). The corresponding double 1-periodic orbit bi- 
furcation surface  is  

2

2 1
2 1 1 44 4
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. . .
w M

w M h o t
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with the normal vector 1M  at 0 
 

. 
Proof Consider equations  , ,P s Q s ,   

   ,P s Q s,    and   ,P s Q s ,   , that is, 
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(3.2) 
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The second equation permits a solution  

1

2 1
1 44 4

2 42

. . .
w M

s h o t
w


  

 





 
  
 

  

as 

42 44 4 0w w M   . 

Substituting it into the first equation of (3.2), we 
obtain the tangency condition, which corresponds to the 
existence of the double periodic orbit bifurcation surface 

 situated in the region 42 44 4
1SN 0w w M    and 

14 1 0w M   . Notice that, when the tangency takes place, 
the line  ,W P s   lies under the curve  ,sW Q  . 
So if 14 1w M   increases (resp. decreases), the line 
must intersects the curve at two (resp. no) sufficiently 
small positive points. Now the proof is complete. 

Theorem 3.3 Suppose that 1 2 22     and 33 0w   
are true, then there exists two codimension-one hyper- 
surfaces  

    1 : 0, 0, 0, 0, 1H P P        

and 

    : 0, 0, 0, 0, 1P P         , 

such that 
System (1.1) has only one 1-homoclinic orbit near   

as 1H   and 42 44 4 0w w M   ; 
System (1.1) has only one 1-periodic orbit near   as 

   and 14 1 0w M   ; 
System (1.1) has exactly one 1-homoclinic orbit and 

one 1-periodic orbit near  as 1 H   and 42 44 4w w M   
; 0

System (1.1) has not any 1-periodic orbit or 1-homo- 
clinic orbit as    and 14 1 0w M   . 

Proof When 1H  , we have at once  

   0, 0, 0F P     

and 4 0M   , therefore 
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has always two nonnegative solutions  and  1 0s 
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for 44 42 4 0w w M    or has only a zero solution 1 0s    

for 44 42 4 0w w M   . If   , there is, on the contrary, 

4M 0  0,P
 ,W P s

 but , apparently the line    0
  is horizontal. So  has a solu- 

tion 
 ,F s  

 
1

2
1

0 14 1 . . .s w M h o t

     

if and only if 14 1 0w M   . The proof is complete. 
From the above proof, we see that if the line 

 ,W P s   has a small positive section with the - 
axis or small positive slope, then there exists a small 
positive 

W

s  such that   ,P s Q s ,   . Thus the fol- 
lowing corollary is valid, which is a complement of 
Theorem 3.2. 

Corollary 3.4 Assume that the hypotheses of Theorem 
3.2 are valid, system (1.1) then has a unique 1-periodic 
orbit near   as   is situated in the region defined by  

14 1 0w M    a n d  42 44 4 0w w M    o r  14 1 0w M   , 

42 44 4w w M 0   and 0  1 ; has not any 1-perio-  

dic orbit as 14 1 0w M    and 42 44 4 0w w M   . 
Notice that in Theorem 3.3, system (1.1) has a codi- 

mension-1 1-homoclinic orbit, see Figure 2(a), that is 
the existing homoclinic orbit has no longer orbit flip. But 
an orbit flip homoclinic orbit could still exist if  

0 4 . . . 0y M h o t   , 

see Figure 2(b). 
Corollary 3.5 Suppose that 1 2 22   33 0  and w   

ystem (1.1) has a codimension-2 orbit-flip homo- 
clinic orbit as  
hold, s

  1 4: 0, . . . 0, . . . 0F M h o t M h o t          . 

Now we turn to study the homoclinic doubling bifur- 
cations. To begin with we look for the 2-homoclinic orbit 
and 2-periodic orbit bifurcation surfaces. Reset 1  and 

2  be the time going from  0 0 0 0 0 0, , ,q x y u v S  to  

 1 1 1 1 1 1, , ,q x y u v S  and from  , , ,q x y u v S2 2 2 2 2 0  to 

 3 3 3 3 3, , ,q x y u v S1  respectively, 21 1 1
1 2e , es s      , 

and  

       0 0 1 1 1 2 0 2 3 1 3 4, , ,F q q F q q F q q F q q q0     . 

Then recall the process of the establishment of (2.10), 
similarly we may get the associated second returning 
successor function  0 0F F q q  expressed as  

   3 4
1 2 1 3 0 2 1 1 1 2 2 2, , , , , , , , , ,G s s u u y y G G G G G G2 1 1 3 4 : 

  
(a)                            (b) 

0 Figure 2. 1-homoclinic orbit (1-H) and (1-OH). (a) μ ∈ Σ1; 
(b) F(0, μ) = 0, y0 = M4μ + h.o.t. = 0. 
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We know that a 2-homoclinic orbit  corresponds 
to the solution 1  and 2  or 1  and 2
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of (3.3) and (3.4), that means an orbit returns once 
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for 1 3 0M M   , and 1 3M M   sufficiently small. 
With this, Equation (3.6) determines a 2-homoclinic orbit 
bifurcation surface 
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for 1 3 0M M    and 1M M3  , which has a 
normal vector 1M  at 0  . 

Continually, differentiating both sides of (3.3) and (3.4) 
with respect to   and for 2H  , we obtain 
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In the region defined by  

42 44 4 0w w M    and 
11

22
1

1 3M M M



4    , 

the 2-homoclinic orbit bifurcation surface 2H  is simpli- 
fied to be  
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Then one may derive  
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which informs that 1s  increases (resp. decreases) as   
moves along the direction 14 1  (resp. the opposite 
direction) such that a -periodic orbit bifurcates from 
the -homoclinic orbit 

w M
2

2 2  as   leaves 2H  for the 
side pointed by . 14 1

Notice that confined on the surface 
w M

1H , (3.3) and (3.4) 
has a unique positive solution, meanwhile Theorem 3.3 
indicates exactly the existence of one 1-periodic orbit 
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when 1H   for 42 44 4 0w w M   , so there does not 
exist any 2-periodic orbit when   is near 1H . There- 
fore in the region bounded by the surfaces 2H  to 1H , 
there must exist another bifurcation surface which mer- 
ges the 1-periodic orbit and the 2-periodic orbit into a 
new 1-periodic orbit with the different stability from the 
original one. We call this surface the period-doubling 
bifurcation surface and denote it by . 2P

The above reasonings can repeat itself many times to 
find the -homoclinic orbit bifurcation surface  2n

22 1 2

2 12 1 2 1

2
1

1 3 4

:
n

H M

O M M M
  

    



3M   



   
 


 

in the same region of   space and simultaneously the 
presence of period-doubling bifurcation surface  of 

-periodic orbit. 

2n

P
12n

In short, we conclude that: 
Theorem 3.6 Suppose that  

 1 3 4 1 2Rank , , 3M M M , 2 2     

and  hold, then for  33 0w 

1 3 14 42 40, 0M M w w M44 1w M      

and 1 3M M  , there exists a -homoclinic orbit 
bifurcation surface 

2n

2n

H  with the normal vector 1M  at 
0 

12n
 and the period-doubling bifurcation surface  

of -periodic orbit in the small neighborhood of the 
origin of 

2n

P

  space. Moreover system (1.1) has exactly a 
-homoclinic orbit as 2n 2n

H   and a -periodic 
orbit as 

2n

  moves away to the side of 2n

H  pointing to 
the direction  and none on the other side. sgn 14 1

To well illustrate our results, a bifurcation diagram is 
drawn in Figure 3, where  represents a -periodic 
orbit. 

w M

kp k

4. Conclusion 

Homoclinic orbits generically occur as a codimension- 
one phenomenon, while if the genericity conditions are 
 

 

Figure 3. Location of bifurcation surfaces for rank (M1, M3, 
M4) = 3, w33 = 0, 2λ1 > λ2 > ρ2. 

broken, some high codimension instance including the 
resonant and flips cases, concomitant usually with 
chaotic behavior, may take place. Homburg and Oldeman 
studied two kinds of resonant homoclinic flips in [8,9] 
with unfolding techniques and numerical methods re- 
spectively. Zhang in [10,11] continued to research on 
these problems and gave some theoretical proofs of the 
existence of -periodic orbit and -homoclinic orbit 
and also their existence regions via the method initially 
established in [18]. Besides these the flip heterodi- 
mensional cycles have also attracted attentions nowadays, 
see [16]. In this paper, we extend the method to fit a 
higher codimension case of 3 flips with resonant. With 
the delicate analysis, the existence of 1-periodic orbit, 
1-homoclinic orbit, and double periodic orbit are proven 
and also the -homoclinic orbit and their corres- 
ponding bifurcation surfaces. With the work, we find the 
extensive existence of the double periodic orbit bifur- 
cation and the homoclinic-doubling bifurcation, which 
efficiently advance the development of the flips homo- 
clinic study. 

n

2

n

n
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