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ABSTRACT 

In this paper we prove the existence of mild solutions of a general class of nonlinear evolution integrodifferential equa- 
tion in Banach spaces. Based on the resolvent operator and the Schaefer fixed point theorem, a sufficient condition for 
the existence of general integrodifferential evolution equations is established. 
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1. Introduction 

Pazy [1] has discussed the existence and uniqueness of 
mild, strong and classical solutions of semilinear evolu- 
tion equations by using semigroup theory. The nonlocal 
Cauchy problem for the same equation has been studied 
by Byszewskii [2,3]. Balachandran and Chandrasekaran 
[4] investigated the nonlocal Cauchy problem for semi- 
linear integrodifferential equation with deviating argu- 
ment. Balachandran and Park [5] have discussed about 
the existence of solutions and controllability of nonlinear 
integrodifferential systems in Banach spaces. Grimmer [6] 
obtained the representation of solutions of integrodiffer- 
ential equations by using resolvent operators in a Banach 
space. Liu [7] discussed the Cauchy problem for integro- 
differential evolution equations in abstract spaces and 
also in [8] he discussed nonautonomous integrodifferen- 
tial equations.  

Lin and Liu [9] studied the nonlocal Cauchy problem 
for semilinear integrodifferential equations by using re-
solvent operators. Liu and Ezzinbi [10] investigated non- 
autonomous integrodifferential equations with nonlocal 
conditions. Byszewskii and Acka [11] studied the classi- 
cal solution of nonlinear functional differential equation 
with time varying delays. There are several papers ap- 
peared on the existence of differential and integrodiffer-
ential equations in Banach spaces [12,13]. The purpose 
of this paper is to prove the existence of mild solutions 
for time varying delay integrodifferential evolution equa-
tions with the help of Schaefer’s fixed point theorem. 
The results generalize the results of [14]. 

The paper is organized as follows: In Section 2, we 
give the necessary definition and gave a description of 
the idea of the proof of the main results formulated and 
proved in Section 3. Moreover in Section 3, we prove the 
existence of solution of general integrodifferential evolu-
tion equation with nonlocal condition. 

2. Preliminaries 

Consider the nonlinear delay integrodifferential evolution 
equation with nonlocal condition of the form 
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    00x h x x               (2) 

where A(t) and B(t,s) are closed linear operators on a 
Banach space X with dense domain D(A) which is 
independent of t,  

: ,if J J X X   : ,g J J X X    
 : , ,h C J X X  1: nF J X X   and  

:G J X X X    are given functions. Here  
 0,J T . 

We shall make the following conditions: 
 1H  A(t) generates a strongly continuous semigroup 

of evolution operators. *Corresponding author. 
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 2 H  Suppose Y is a Banach space formed from D(A) 
with the graph norm. A(t) and B(t,s) are closed operators 
it follows that A(t) and B(t,s) are in the set of bounded 
linear operators from Y to X, B(Y,X), for  and  0 t T 
0 s t T

0 at T 
  , respectively. A(t) and B(t,s) are continuous 

on , respectively, into B(Y,X). nd 0 s t T  
Definition 2.1. A resolvent operator for (1) and (2) is a 

bounded operator valued function      , ,R t s B X
0 s t T   , the space of bounded linear operators on X, 
having the following properties. 

(i) R(t,s) is strongly continuous in s and t. R(t,t)=I, the 
identity operator on X.    , e ,t sR t s M t s J   and 

,M   are constants. 
(ii)  is strongly continuous in s 

and t on Y. 
   , ,R t s Y Y R t s ,

(iii) For  , ,y Y R t s y
0

 is continuously differenti- 
able in s and t, and for s t T   , 
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tinuous on 0 s t T   . Here R(t,s) can be extracted 
from the evolution operator of the generator A(t). The 
resolvent operator is similar to the evolution operator for 
nonautonomous differential equations in Banach spaces. 

Definition 2.2. A continuous function x(t) is said to be 
a mild solution of the nonlocal Cauchy problems (1) and 
(2), if 
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is satisfied. 

Schaefer’s Theorem [15]. Let E be a normed linear 
space. Let :F E E  be a completely continuous 
operator, that is, it is continuous and the image of any 
bounded set is contained in a compact set and let 

   : for some 0F x E x Fx     1  

Then either  F  is unbounded or F has a fixed 
point. 

Assume that the following conditions hold: 
 3H  There exists a resolvent operator R(t,s) which is 

compact and continuous in the uniform operator topology 
for . Further, there exists a constant  such 
that  

t  s 1 0M 

  1, .R t s M  

 4 H  The function  : ,h C J X X
0M 

 is continuous 
and there exists a constant 2  such that  

  2Mh x   for any x X . 

 5H  For each t , the function J

  1, : nF t X X 
 , , , n

 is continuous and for each 
1

0 1 nx x x  X  the function 

 0 1., , , , :nF x x x J X
 

 is strongly measurable. 

6H  There exists an integrable function 
 such that  0, 

 
:im J

   , , , , for any , , ,i i if t s x m t s x t s J x X     

, .t J x X 
ondecreasi

 where  is   : 0, 0,i   
n. 

for any  a 
continuous n ng functio

 7H  Ther exists an integrable function  
 0 : 0,m J J    such that  

     , ,g 0 0, , for any , , ,t s x m t s J x X     

where 

t s x

   0 : 0, 0,     
unction. 

is a continuous nondecrea - 
ing f

s

 8H  Th  ,J X X  is completely 
continuous an

e function 
d ther  such 

:G C
e exists a constant 10 1c 

that  

        1, , , for anyG t  x t y t c x t y t t J     

and is equicontinuous in (J,X) 
 9H  The function 

continuous and there exists a
 : ,G C J X X
 constant 

 is completely 

2  such 
that 

0 1c 

        2, , , for anyt x t y t c x t y t t J F      

and is equicontinuous in (J,X) 
 H10  There are function  
         1 . , . , . , . :H H J  2 1 2 0,  such that  

       1A 1,t R t s H t s  

       2 2, , .B t s R t s H t s  
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 11H  The function 
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3. Existence of Mild Solutions 

The main result is as follows. 
Theorem 3.1. If the assumptions    1 11-H H  are 

satisfied then the problems (1) and (2) has a mild so- 
lution on J. 

Proof: Consider the Banach space Z = C(J,X). We 
establish the existence of a mild solution of the problems 
(1) and (2) by applying the Schaefer’s fixed point the- 
orem. 

First we obtain a priori bounds for the operator equa- 
tion 

    , 0 1,x t x t               (3) 

where : Z Z   is defined as 
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Denoting the right hand side of the above inequality as 
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Inequality (5) implies that there is a constant K such 
that   ,v t K t J   and hence we have  

  sup : ,x x t t J K    where K depends only on T  

and on the functions 0ˆ , and im   . 
prove that the operator : Z Z We shall now  is a 

completely continuous operator. Let  
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The right hand side is independent of kx B  and 

tends to zero as , since f is com  con- 
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Since R(t,s) is a compact operator, the set      : kY t x t x B     is precompact in X for every , 0 t   . 
Moreover, for every kx B  we have 
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