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ABSTRACT 

In this paper, we present a local Lipchitz condition for the local existence of solution to a class of stochastic differential 
equations with finite delay in a real separable Hilbert space which has the following form:  

         , , ,t tdX t AX t f t X dt g t X dW t t   0  
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1. Introduction 

The purpose of this paper focuses on the local existence 
of mild solution to a class of the following stochastic 
differential equations with finite delay in a real separable 
Hilbert space H  

         , ,

0
t tdX t AX t f t X dt g t X dW t
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where  :A A H H  is a linear (possibly unbound) 
operator, and with a constant 0   we define  
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In which, r  is the space of all continuous functions 
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( : rf C H    and 0
2: rg C L    are continu- 

ous functions;  is a W t   Weiner process defined 
in Section 2). 

In [1], if A is the generator of a uniformly exponen-
tially stable semi-group in H ; ,f g  satisfies Lipchitz 
and linear growth conditions then the mild solution of 
Equation (1) is exponentially stable in mean square. 

In this paper, we prove the local existence of solution 
for Equation (1) with the weaker condition on ,A f ; and 
g . 

2. Preliminaries 

In this section, we will recall some notions from Bezan- 
dry and Diagana [1]. 

Let H, K be real separable Hilbert spaces,  , , , tF P   
robability space; and   , 1, 2,nb nt    is a 

-valued standard Brownian motions mu- 
tually independent on this space. Furthermore, 

be a filtered p
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where  0, 1n n    are nonnegative real numbers; and  

  1n n
e


te orthonormal basis in is the comple K . 

In a   an op-
er

ddition, we suppose that  ,B K K  is
ator defined by n n ne e  such that 
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  0EW t   Then, and for all  the distribu- 
tio

0t s 
n of    t W sW  is  0, t s  . The K-valued 

stochastic process  t  einer process. 
The subset 

W is called a  -W
1 2

0K K  is a Hilbert space equipped 
with the norm 

0

1 2
0,

K K
u u u   K

and we define the space of all Hilbert-Schmidt operators 
from 0K  into H  by 
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Clearly, is a separable Hilbert space with norm 0
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Let   2 0
20, ,T L  be all valued predictable 0

2 -L
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pr es such that ocess 

  1 2 1 2
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Tr d
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 E Q Q s
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Then, for all   2 0
20, ,T L  the stochastic inte- 

gral   
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where the Weiner process defined above. We 
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In the following, we assume the stochastic integrals 
ar

2.1. Definition [1] 

stic process is said to be a 

e well defined. For stochastic differential equation and 
stochastic calculus, we refer to [1-8]. 
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for all with probability one. 
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2.2. Definition [1] 
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3. Main Results 
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(*) The operat A  generates a strongly semi-group  
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(3) can be written in the form (4). 
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or 
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It is expressed by Theorem 3.1. 
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By the definition of strong solution, we have 
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Now, we turn our attention to the local existence of 
mild solution of Equation (1). 

3.2. Theorem 

If the condition (*) and (**) are satisfied, then (1) has 
only mild solution.  

Proof: Let be a fixed number in , for each 0T   
0  , there exists rC      , such that 
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Finally, if  22 1a MC T  , we have  is contrac-
tion map in 
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fixed point principle we conclude mild 
solution on  ,r T . 
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