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ABSTRACT

In this paper, we present a local Lipchitz condition for the local existence of solution to a class of stochastic differential
equations with finite delay in a real separable Hilbert space which has the following form:

dX (t)= AX (t)+ f(t,X,)dt+g(t, X, )dW (t), t=0
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1. Introduction

The purpose of this paper focuses on the local existence
of mild solution to a class of the following stochastic
differential equations with finite delay in a real separable
Hilbert space H
dX (t)= AX (t)+ f (t, X, )dt+g(t, X, )dW (t),
t>0
where A:D(A) c H — H is a linear (possibly unbound)

operator, and with a constantz >0 we define
X, eC, =C([-7,0],H) by

X, (6)= X (t+6), 0 [-7,0]

)

In which, C, is the space of all continuous functions
from [-7,0] into H equipped with the norm

12
Jele, = s Jz(0), ] -

-7<60<0
(f:R,xC, >H and g:R,xC, - L) are continu-
ous functions; W(t) is a Q—Weiner process defined
in Section 2).

In [1], if A is the generator of a uniformly exponen-
tially stable semi-group in H ; f,g satisfies Lipchitz
and linear growth conditions then the mild solution of
Equation (1) is exponentially stable in mean square.

In this paper, we prove the local existence of solution
for Equation (1) with the weaker condition on A, f ; and

g.

2. Preliminaries

In this section, we will recall some notions from Bezan-
dry and Diagana [1].
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Let H, K be real separable Hilbert spaces, (Q,F,P,%)
be a filtered probability space; and b, (t),n=12,--- isa
sequence of real-valued standard Brownian motions mu-
tually independent on this space. Furthermore,

W(t):i A.be,, t=0.

n=1

where 4, >0,(n>1) are nonnegative real numbers; and
(e,),., is the complete orthonormal basis in K .

In addition, we suppose that Q e B(K,K) is an op-
erator defined by Qe, = A.e, such that

Tro = i/ln < o0,
n=1
Then, EW (t)=0 and for all t>s>0 the distribu-
tion of W (t)-W (s) is N(0,(t-s)Q). The K-valued
stochastic process W (tg is called a Q -Weiner process.

The subset K, = QYK is a Hilbert space equipped
with the norm

o, =[], v ek,

and we define the space of all Hilbert-Schmidt operators
from K, into H by

Lg = Lg ( Ko, H )
:{(// e B(K,, H):Tr[((//Ql/z)((//Ql/z)*}<oo}
Clearly, L) isa separable Hilbert space with norm
Il =Tr] (4@ (w@") | wets.

Let 2°([0,T],3) be all L3- valued predictable
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processes @ such that
T
EjTr[(V/QW)(y/Q”) }ds<oo.
0
Then, for all ® </ ([0,T],13) the stochastic inte-

t
gral jcp(s)dw(s)eH is well-defined by

J(D —IlmZIq)

n—o0

A edb, (s),

te[O,T]

where W is the Q -Weiner process defined above. We

have
elfoaw (s

t
< E.(["cp(s)ﬁ02 ds,

O]

H
0<t<T.
In the following, we assume the stochastic integrals
are well defined. For stochastic differential equation and
stochastic calculus, we refer to [1-8].

2.1. Definition [1]

For T >0, a stochastic process X (t)is said to be a
strong solution of Equation (1) on [-r,T] if

1) X(t)isadaptedto % forall t>0;

2) X(t)is continuous in talmost sure;

3) X(t)e

most surely forany t >0, and

D(A)for any tZO,j||AX(S)"dS<oo al-
0

X (t)=X (0)+ [ AX (s)ds
t 0[ (3)
+[ f (s,Xs)ds+-([g(s,Xs)dW(s)

0
for all t>0with probability one.
4) X(t)=¢(t),-r<t<0 almostsurely.

2.2. Definition [1]

For T >0, a stochastic process X (t)is said to be a
mild solution of Equation (1) on [-r,T] if

1) X(t) isadaptedto % forall t>0;

2) X(t) iscontinuousin talmost sure;

3) X is measureable with T[”X(t)"2 dt <o almost
0

surely forany T >0 and
t

X (@) =T (t)p(0)+ [T (t—s)f (s, X,)ds
. ’ 4)
+[T(t=s)g(s X, )dW (s)

0
forall t>0 with probability one;
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4) X(t)=¢
3. Main Results

We assume that
(*) The operator A generates a strongly semi-group

(T(t),, in H.

(**) f(t,x) and g(t,x) satisfy local Lipchitz con-
ditions respects to second argument that means for
a >0 be agiven real number, there exits

(t),-r<t<0 almost surely.

C,(«),C,(a)>0 such that with t>0, x,yeC,, and
Ix[.|Y]| < @ , we have
[0~ 109 <G @l
Jo(tx)-a(ty)ly <C: (@)=,

If condition (*) holds, we will prove that if X (t) isa
strong solution of Equation (1) then it also is a mild one.
It is expressed by Theorem 3.1.

3.1. Theorem

If (*) holds then (3) can be written in the form (4).
Proof: Applying Fubini theorem, we have

S

jT(t—S)fg(U,Xu)dW(u)ds
i tt ’ (5)
=[[T(t-5)g(u.x,)dsdW (u) ae.
On the other hand
AJT(I—S)Q(S,XS)deW(u)
= AIIUT(S)Q(S,XS)dde(u) ©)

Ct— + Ot—~ =

(T(t=s)-1)g(s,

From (5) and (6), one has

X,)dW (s) ae

S

T(t-s)[a(s,

0

(T(t-s)-1)g(s, X, )d(s) ae

A X, )dW (u)ds

Ot Oy

jg(s,xs) d(S):jT(t—S)g(s,Xs)dW (s)
0 0 ¢ : ()
~AJT(t-5)f g(oX,)dW (ups
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By the definition of strong solution, we have

X (1)~ p(0)— A X (s)ds [ 1 (5, X, )ds

0 0

(s, X;)dw (s)

I
O t—

¢ (8)
g X, )dW (s)
—AjT(t—S)jg(s,xs)dW(u)ds
Since
j;T(t—s):[g( YW (u)d
[7(0-5) X (5100 Al W)= (0,3,

X, )dsdu

~[T(t=5)] f (u,

0 u

:—;[T(t—s)(p(O)

We have

t
ds+J'X (s)ds
0

t S

AT (t=s)[g(s.

X, )dW (u)ds

(s frixs)

0

Substituting equation above for (8), we received

t t

X ()= (0)-A[ X (s)ds—[ f (s, X,)ds
=T (t-5) (5, X)W (5) T (t)(0) ~9(0)

- Al X (s)ds+J'T(t—s) f (s, X,)ds—[ (s, X,)ds.

0 0 0

Hence,
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t

X (1) =T (t)p(0)+[T(t—s)f(s,X,)ds
X, )dW (s)

t
+fT(t—s)g(s,
0
Now, we turn our attention to the local existence of
mild solution of Equation (1).

3.2. Theorem

If the condition (*) and (**) are satisfied, then (1) has
only mild solution.

Proof: Let T >0 be a fixed number in R, for each
a>0, thereexists peC, (|¢|<ea),suchthat

|t (o) <C.(@)lo]+] f (1.0)]
<aC,(a +sup||f (s.0)|<C
se[0.T]
la(t.o)| < C. ()]l +]g(t.0)
<aC,(a +sup||g 5,0)|<cC,

s€[0,T]

where

+sup | f(s,0)],

Se 0 T]

C= max{aC (@)

aC, (a +sup||g sO||}

s<[0T]

Forany ¢eC,, wechose a=|p|+1.Let C, bea
subspace of C([—r,T],H) containing all functions X
which adapt with {F} = suchthat X,eC, and
X :[0,T]—>H is continuous. Then C,, is a Banach
space with norm

2\Y2
Xy =%, +max(E[x (1) )
Let us consider a set Z which is defined by

z ={X €C, : X (s)=o(s)forse[-r,0]

and sup

0<s<T

X (s)- (0] sl}

Itis easy to verify that Z is a closed subspace of C,,
Let U :Z — Z be the operator defined by

T(t)¢(0)+jT(t—s) f (s, X,)ds

+[T(t-s)g(s,

0

X )dW (s) forte[0,T]

U(X)(1)=

o(t) forte[-r,0]
We now prove that U (Z) < Z . Indeed,
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Ju (X)(t)=e(0)] = EJu (X)(t)-0(0)] = E[HT () (0)-p(0)+ [T (t-s) f (s, Xs)ds+iT (t—s)g(s, X, )dW (s)

2 t

<3E[T(1)¢(0)-(0)| +3E +3E

jT(t—s)f(s,Xs)ds

0

ssE||T(t)go(o)—¢(o)||2+3MT]E||f(s,xs)2ds+3|v|jE||g
since X (s)-¢(0)|<Lvse[0,T], [X(s)|<e with

a =|p|+1, wehave |X<a foranyse[0,T].
Furthermore,

|f(s.%,)

Hence

v ()~ (0

<3E[T()p(0)-¢(0)] +3MC?(T2+T)

with M = sup T(t)"z.
0<t<T

If we choose T small enough, such that
sup {3E[T (s)(0)-p(O)ff +3MC? (T2 +T)f <1,
0<s<T

Then, forany te[0,T] we have
|U (X)(t)-¢(0)| <1. In other words, we have
U(z)cz

Forany X,Y eZ,

Efu (X)(0)-u (V)0
gT (t=s)[ f(s,X,)=f(s.Y,)]ds

<C.

<C and |g(sX,)

=E

t 2

+£T (t=s)[g(s. X,)=g(s.Y.)Jdw (s)

< ZEU;”T (t-s)[ (5. X))~ f(s.Y, )]"ds]

+ 2E[j||T (t=s)[g(s,X,)-g(s,Y,)Jaw (S)"J

0

< 2ME[I||f (s,X)—f(s,Y, )||dsj2

+2ME[I||g(s,XS)—g(s,YS) dW(s)j
< 2MCZTI E[[X (s)-Y (s)| ds
+2MCZI E[X (s)-Y (s)[ ds

<2MC?(T +1)iE||x (s)-Y ()| ds.
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[T(t=s)g(s. X,)dw (s)

(s:X)

ET AL.

t

0

;

2

2
9 ds.

In addition, forany a>0andte[0,T], we have:
_a 2
e M E[U(X)(t)-U (Y)(1)]
t
<2MC? (T +1) [ * e =E|X (s)-Y (s)| ds
0

< 2MC?(T +1)max e‘aSE”x (s)-Y (S)HZ je—a(t—s)ds

0<s<t
s 0

<2a'MC?(T +1)maxe ®E ||X (s)-Y (s)"2 .

0<s<t

Therefore,
at 2
(r)na>T({e EJU (X)(1)-U (Y)(1)] }
-1 2 —as 2
<2a7*MC? (T +1) max{eE[X (s)-Y (s)[ |

Finally, if a>2MC?(T +1), we have U is contrac-
tion map in Z respects to the norm

IX1=1%lL,

Because this norm is equivalent to ||, , by applying

fixed point principle we conclude that (1.1) has only mild
solutionon [-r,T].

+ max(e“’“E”X (t)"2 )]/2 , XeC,.

0<t<T
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