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ABSTRACT

In this paper, we introduce tail dependene measures for collateral losses from catastrophic events. To calculate these
measures, we use bivariate compound process where a Cox process with shot noise intensity is used to count collateral
losses. A homogeneous Poisson process is also examined as its counterpart for the case where the catastrophic loss fre-
quency rate is deterministic. Joint Laplace transform of the distribution of the aggregate collateral losses is derived and
joint Fast Fourier transform is used to obtain the joint distributions of aggregate collateral losses. For numerical illustra-
tions, a member of Farlie-Gumbel-Morgenstern copula with exponential margins is used. The figures of the joint distri-

butions of collateral losses, their contours and numerical calculations of risk measures are also provided.

Keywords: Aggregate Collateral Losses; Bivariate Compound Cox Process; Shot Noise Process;
Farlie-Gumbel-Morgenstern Copula; Tail Dependence; Joint Fast Fourier Transform

1. Introduction

Over the recent years, numerous papers have looked at
the modelling of dependence within an insurance port-
folio or between insurance portfolios [1-5]. Also in the
field of financial risk management, a range of papers on
dependence modelling within credit risk and operational
risk can be noticed [6-8]. Besides the construction of
specific multivariate models, considerable attraction is
given to the use of copulas. In particular, within the
theory of Lévy processes, Lévy copulas have proven to
be useful [9].

Our paper is very much based on insurance applica-
tions where two lines of business are hit by a common
external event, hence the word “collateral losses” in the
title. These joint losses may, for instance be triggered by
events such as flood, windstorm, hail, bushfire, earth-
quake and terrorism. Particular examples concern colla-
teral losses due to 2011 Great Eastern Japan Earthquake,
2010-2011 Queensland floods, 2009 Victorian Bushfires
[10], 2005 Hurricane Katrina [11] and 2001 September
11 attack [12].

For the purpose of this paper, we concentrate on a very
specific model and show how, within this model several
explicit calculations for relevant risk quantities can be
performed. The bivariate model we consider has the
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following structure:
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where L(tk) is the total loss arising from risk type
k=12 and N, isthe number of collateral losses up to
time ¢. The random variables X, and Y,,i=12,---,
denote the individual loss amounts. In this model, the de-
pendence between two random variables L(tl) and L(tz)
comes from the common arrival process N,, together
with the dependence between the individual losses X,
and Y. The latter is modelled using the notion of copula
[13]. To be more specific, we assume the loss random
variable X, and Y, are independent identically distri-
buted with continuous distribution function F, and F,
respectively. The joint distribution of the vector (X,Y)
is assumed to be of the form C(Fy,F,) with a given
copula C. The uniqueness of this two stage construction
goes back to Sklar’s Theorem.

Theorem 1.1. (Sklar’s Theorem) Let F be a joint
distribution function with margins F, and F,. Then
there exists a copula C such that for all x,y in
R =[],

F(x.y)=C(Fy (x), Fy (). @)
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If the margins are continuous, then C is unique; other-
wise C is uniquely determined on RanF, xRanfF, ,
where RanF, :E(I@) denotes the range of F,. Con-
versely, if C is a copula and F, and F, are uni-
variate distribution functions, then the function F defined
in (2) is a joint distribution function with margins F,
and F,.

Proof. See Schweizer and Sklar [14] or Nelsen ([13], p.

18).

To deal with stochastic nature of catastrophic loss
arrival in practice, we use a Cox process for N,. The
Cox process provides flexibility by letting the intensity
not only depend on time but also allowing it to be a
stochastic process. Therefore the Cox process can be
viewed as a two step randomisation procedure. A process
A, 1s used to generate another process N, by acting its
intensity. That is, N, is a Poisson process conditional
on A, which itself is a stochastic process.

Losses arising from a catastrophe depend on its inten-
sity. One of the processes that can be used to measure the
impact of catastrophic events is the shot noise process.
Previous works of insurance application using shot noise
process and a Cox process with shot noise intensity can
be found in [15-19]. Reference [20] also used a Cox
process with shot noise intensity to model operational
risk. The shot noise process is particularly useful to loss
arrival process as it measures the frequency, magnitude
and time period needed to determine the effect of cata-
strophic events. As time passes, the shot noise process
decreases as more and more losses are settled. This de-
crease continues until another event occurs which will re-
sult in a positive jump in the shot noise process. There-
fore the shot noise process can be used as the parameter
of a Cox process to measure the number of catastrophic
losses, i.e. we will use it as an intensity function to
generate a Cox process. We will adopt the shot noise
process used by Cox & Isham [21]:

M, .
J =2y 4y 7, )
i=1
where:
e /4, is the initial value of A, that is carried on from
catastrophic events incurred previously;
e {Z} _,,. is a sequence of independent and iden-

tically distributed random variables with distribution
function G(z)(z>0) and E(Z)<o (ie. magni-
tude of contribution of catastrophic event i to inten-
sity);

* {8}, Is the sequence representing the event
times of a Poisson process M, with constant inten-
sity p; and

e O is the rate of exponential decay.

Catastrophic events may take long to materialise so the
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decay rate may not be exponential. It is assumed to be of
this form for a matter of convenience, i.e. closed-form
expressions of final results are easily derived. We also
make the additional assumption that a Poisson process

M, and the sequences {Zi}izl,z,m’ {X'}i:l,Z,-u and

i

{¥;}_,,. areindependent of each other.

A Poisson process with loss frequency rate x 1is also
studied for »,, that may be considered when cata-
strophic loss frequency rate is deterministic.

With the above model specifications, we calculate the
following relevant risk measures:

. o .
{‘1%11?’{@ > FL‘,” (1)

JISEN FL;!;) (1)}, 3)

t t

E{L(l)‘L(l) > Fo (1,17 > Fi) (1)}, )

13;111}1»{4” >F) (1)‘L§” +17 > Fi o (1)} (5)
and

IE}{ D>y (z)}. ©)

Here F,, F, and F, ( are the distribution
L L L+,

functions of the random variables L(,l) , L([z) and
L§1)+L(tz) respectively. The quantities (3) and (5) are
known as asymptotic upper tail dependence measures
and the quantities (4) and (6) are conditional tail expecta-
tions. The motivation for calculating these quantities that
measure extremal dependence in the upper tail of a bi-
variate distribution is that insurance industry is more
concerned with dependence between extreme losses. For
a discussion on the coefficient of tail dependence para-
meters, see McNeil ef al. [22].

In order to evaluate above risk measures, we need to
obtain the joint distribution of the aggregate collateral
losses L(tl) and L(tz). Unfortunately, it is not easy to
derive the joint distribution the aggregate collateral
losses explicitly. So in Section 2, we derive joint Laplace
transform of the distribution of the aggregate collateral
losses expressed with a copula function applying the
piecewise deterministic Markov processes (PDMPs)
theory. For N,, a shot-noise Cox process and a homo-
geneous Poisson process are used respectively. Section 3
provides the expressions of the moments, covariance and
linear correlation between L(,l) and L(Iz) at time ¢ for
both cases. In Section 4, we present the expressions for
joint probabilities of the aggregate collateral losses and
their densities at L(tl) =0 and L(,z) =0, which are re-
quired to improve the accuracy of the distributions of the
aggregate collateral losses inverting joint Fast Fourier
transforms. We also provide the figures of the joint dis-
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tribution of the aggregate collateral losses and their con-
tours. In Section 5, we illustrate the calculations of rele-
vant risk measures (3)-(6) using joint Fast Fourier trans-
forms. For numerical illustrations, an exponential dis-
tribution for the jump sizes of catastrophic event, a mem-
ber of Farlie-Gumbel-Morgenstern copula with exponen-
tial margins are used throughout the paper. Section 6
shows the sensitivity analysis on the parameters of a
shot-noise Cox process from a Poisson process using the
risk measure of (4). Concluding remarks are in Section 7.

2. Joint Laplace Transform of the
Distribution of the Aggregate Collateral
Losses

The piecewise deterministic Markov processes theory
developed by Davis [23] is a powerful mathematical tool
for examining non-diffusion models. From now on, we
present definitions and important properties of L(tl) and

L(tz) with the aid of piecewise deterministic Markov pro-

cesses theory [16,24,25]. This theory is used to derive
joint Laplace transform of the d1str1but10n of the aggre-
gate collateral losses L(t) and L 2,

2.1. Shot-Noise Cox Process

Assuming that the loss arrival process N, follows a
Cox process with shot noise intensity 4,, the generator

of the process (/1 A, N,,L([), E),t) acting on a func-

tion f(/i,A,n,l(),l( ),t) belonging to its domain is
given by

Af(ﬂ,A,n,l(l),l(z),t)

5114_/112i;
ot oA

w{ﬁf(/l,A,n + 1,10 4 x, 1) 4 y,t)
00
C(F(x).F(»))

oxoy

- f(/l,A,n,l(l),l(z),t)}

dxdy

of
A==+
Py

-Df(/z tz, A,n,l(l),l(z),t)dG(z)—f(l,A,n,l(l),l(z),t)}
0
@)
t
where A, = I/l_yds . Now let us find a suitable martingale
0

in order to derive joint Laplace transform of the dis-
tribution of the aggregate collateral losses L(tl) and
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.
Lemma 2.1. Considering constants
0<{<Lv=>20,£>0and x>0 then
M exp( )exp( §L )

exp[-{¢¢(v.€)-1}A, ] (8)

X exp (—K/Ite‘” )exp {pj‘ {1 -g (KCJS )} ds}
0
is a martingale, where

O*C(F(x).F ()

—vx —5
'[ '[ © ' oxoy

_ {e"‘sz(z).

dxdy <o and

Proof. From (7), f(/I,A,n,l(l)

Af =0 for f(/l,A,n,l(l),l(z),t) to be a martingale.
Setting

f(/I,A,n,l(l),l(z),t)

:é’"ev//\ exp( )exp( g[ )exp(_,de&)eB(t)

we get the equation
B (0)+ Ay + 4{¢e(.€) =11+ p{4xe

and the solution is

—{é’é(vaf)—l},B(t)=p}{l—g(rce“)}ds (10)

0

,1(2),t) has to satisfy

e”)- 1}:0 )

by which the result follows.

Using the martingale obtained in Lemma 2.1 and sett-
ing £ =1 and x=0, we can easily obtain the general
form of joint Laplace transform of the distribution of the
aggregate collateral losses L(tl) and L(f) ie

E{e Lg)eif o J,}
.4 an
:exp( ( )exp( §L )exp{{é(v,f)—l}jﬂsds},

where the conditional expectation E is based on the
probability space (€, J,P), and the information set
3= {S, }Q , With the filtration

3, = o-{(/is,Lg),Lf)):s < t} . Without loss of generality,

change the time scale and assume that L(Ol) =0 and
L(Oz) =0, then itis given by

) /10} - exp{{é(v,é‘)

Throughout the paper, we firstly assume that jump

E{eVL(')e l}jxlsds}. (12)
0
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sizes of catastrophic event follow an exponential distri-
bution, i.e. g(z)=yexp(-yz),z>0,y>0 and that 4,
is stationary. Then using Theorem 2.6 in [16], (12) is
given by

P
5
E{e_VL(l])e_‘fL(IZ) } _ 7e—§t
l—é(v,é) s
pe TS e
(13)
w
- 1-¢(v,¢) (1) or+{1-8(v.2)}
o)
’ }/e—ﬁr

Secondly, as a specific example for C, we use the
Farlie-Gumbel-Morgenstern (FGM) copulas given by
C(u,v)zuv+0uv(1—u)(l—v), (14)
where u €[0,1], ve[0,1] and Oe[-1,1]. Lastly, to
make this calculation somewhat easier, we assume that
F(x)=1-¢“(a>0,x>0) and
F(y)=1-¢”"(>0,y>0). We omit the correspond-
ing expression for the above joint Laplace transform of
the distribution of the aggregate collateral losses as it can
be easily obtained using the joint distribution function
F(x,y) drivenby (14), i.e.
é(v.¢)
(a&+pv+vE)(2a+v)(2p+E)-0apvé  (15)
(a+v)(B+E)(2a+v)(2p+E)

It will be of interest to examine the joint Laplace trans-
form of the distribution of the aggregate collateral losses
L(tl) and L(,z) at time ¢, using other copulas and other
margins F(x) and F(y).If {Z}

i1,...» which are the

magnitude of contribution of catastrophic event to inten-
sity 4, , are high, we also need to consider heavy-tailed
distributions for jump size of catastrophic event, G(z).
We also omit the corresponding expressions for the
Laplace transform of the distribution of L(ti),i =12
which are the Laplace transforms of the distribution of
the compound Cox process with shot noise intensity 4,
where its jump sizes follow an exponential distribution
[16].

If we set =0 in (15), we have joint Laplace trans-
form of the distribution of the aggregate collateral losses,
which is the case that two losses X and Y occur same
time from a sharing loss frequency rate A,, but their
sizes are independent each other. Due to the dependence
of collateral losses of X and Y with sharing loss fre-
quency rate A,, we can see that

(1) (2) (1) (2)
E{e_"LZ el } # E(e_VL’ )E(e_aZ ) (16)
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even if d=0. If loss X occurs by arrival process
Nt(l) with shot noise intensity /lt(l) that has three para-

meters of 5, p(]) and G(z(l)) and loss Y occurs by
arrival process N,(z) with shot noise intensity /”Lt(z) that

has three parameters of 6(2), p(z) and G(z(z)) and

everything is independent each other, we can have the
joint Laplace transform of the distribution of aggregate
losses L(tl) and L(tz) at time ¢, that is the product of the

Laplace transforms of the distribution of L(t[) =12,

2.2. Homogeneous Poisson Process

Let us now assume that the loss arrival process N,

follows a homogeneous Poisson process with loss fre-
quency u. Setting A4, = u in (12), i.e. considering deter-
ministic loss frequency u, we can easily obtain that

M ey
E{e—vL,I e*szz } - exp[—ﬂ{l—é(vv 5)}t] (17)
and using (14) we have
E {eva(,l) e’SELg‘z) } =

expl (aé+ pv+vE)(2a+v) (28 +&)-Oapvé t
P{ /1{ (a+v)(B+E)(2a+v)(28+E) } }

(18)
We omit the corresponding expressions for the La-
place transform of the distribution of L(,'),i =1,2, which
are the Laplace transforms of the distribution of the
compound Poisson process with exponential loss sizes,
as they can be easily obtained setting £=0 and v =0,
respectively.
Similar to shot-noise Cox process for N, , due to the
dependence of collateral losses of X and Y with
sharing loss frequency rate g, it shows that

(1) (2) (1) (2)
E {e'VL’] e } # E(e_VL’1 )E (e_ﬂ’2 ) (19)

even if d=0. If loss X occurs by arrival process
Nt(l) with loss frequency ,u(l) and loss Y occurs by
arrival process N,z) with loss frequency y(z) and
everything is independent each other, we can also have
the joint Laplace transform of the distribution of
aggregate losses L(,l) and L(,z) at time ¢ that is the
pr((;duct of the Laplace transforms of the distribution of
L”,i=12.

3. Moments, Covariance and Linear
Correlation of Aggregate Collateral
Losses

In this section, we examine the moments, covariance and

AM



J.JANG, G. Y. FU 2195

linear correlation between L(tl) and L(tz) at time ¢ . For

the loss arrival process N, , we use a Cox process with
shot noise intensity A, and a homogeneous Poisson
process with loss frequency u , respectively.

3.1. Shot-Noise Cox Process

Differentiating (12) w.r.t. v and £ andset v=0 and
& =0, we can derive the joint expectation of L(tl) and
LY attime ¢, ie.

E{LLP | = E(A,)E(XY)+E(A?)E(X)E(Y). (20)

t

t

Also set £=0 and v=0 in (12) and differentiate
itw.rt. vand & respectively, we can obtain the expecta-

tionof L and L? attimer, i.e.

E{L"} = E(A,)E(X) @1
and

E{LP} = E(A,)E(Y). 22)

The higher moments of L(tl) and L(tz) at time ¢ can
be obtained by differentiating it further, i.e.

Var{1"} = E(A,) E(X*)+Var (A, ){E(x)} (23)

and

2

Var{L?} = E(A,)E(¥*)+Var(A,){E(Y)}. (24)

The covariance between L(,l) and L(tz) attime ¢ is given by

Cov(L), 1) = E(A,) E(XY)+Var(A,)E(X)E(Y) (25)

(

and the linear correlation coefficient between Ltl) and L(tz) attime ¢ is given by

o(2.2)

E(A,)E(XY)+Var(A,)E(X)E(Y) (26)

\/{E(A, ) E(X2)E(Yz)+E(A,)Var(A,)[E(Xz){E(Y)}Z +{E(X)) E(r )}r{Var(A,)E(X)E(Y)}

Let us now illustrate the calculations of the covariance
and linear correlation between L(tl) and L(tz) attime ¢,
where N, follows a shot-noise Cox process.

Example 1
From [17], we have

2 20 2
E(A,) =7%t,Var(At): yzgz ‘+ y2§3 e y2§3

and using (14) we have

E(XY):a—lﬂ(ng.

The parameter values used to calculate the covariance
and linear correlation using (25) and (26) are

5§=05p=2y=La=18=051=1.

Hence from (25) and (26), the calculations of cova-
riance and linear correlation between L(,l) and L(,z) at
time ¢ are shown in Tables 1 and 2 respectively.

3.2. Homogeneous Poisson Process

Similar to a shot-noise Cox process for N,, differen-
tiating (17) wrt. v and £ and set v=0 and £=0
we can easily derive the joint expectation of L(,l), and

L(,z) attime ¢, ie.
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2

E{L LD} = B (XY)+ (1)’ E(X)E(Y).  (27)

We omit the expressions for the expectation and vari-
ance of L(,l) and L(,z) at time ¢ as they can be easily
derived similar to a shot-noise Cox process for N, .

The covariance between L(,l) and L(,z) at time ¢ is
given by

Cov( L), 1) = B (xY) (28)

t 27t
and the linear correlation coefficient between L(tl) and

1Y attime ¢ is given by

t
p(LE”,LEZ) ) __ B (29)
B(r)E(r)

Let us now illustrate the calculations of the covariance
and linear correlation between L(tl) and L(tz) attime ¢,
where N, follows a Poisson process.

Example 2

The parameter values used to calculate the covariance
and linear correlation using (28) and (29) are

u=4a=1,8=05¢=1.

From (28) and (29), the calculations of covariance and
linear correlation between L(t') and L(tz) at time ¢ are
shown in Table 3 and Table 4 respectively.
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Table 1. Covariance between L(,') and L.

[ Cov(LE”,L‘zz))
-1 12.82
—0.5 13.82

0 14.82
0.5 15.82

1 16.82

Table 2. Linear correlation between L(,') and L‘,z) .

0 p(L).?)
-1 0.56175
-0.5 0.60557
0 0.64940
0.5 0.69322
1 0.73705

Table 3. Covariance between L(,” and L(,z).

0 Cov(L(l”,L(f))
-1 6
0.5 7

0 8

0.5 9

1 10

Table 4. Linear correlation between L' and L(,z) .

G p(L,L7)
-1 0375
05 0.4375
0 05
0.5 0.5625
1 0.625

3.3. Comparison

The parameter values used in Examples 1-2 provide us
with the same means of aggregate collateral losses
regardless of the loss arrival process N, , i.e.

[ Poisson {L(rk)} — RO {L(zk) } ,

where

Copyright © 2012 SciRes.

[ Poisson {L(;])} — e {L(tl)} -4 (30)
and
gPeisson { ng)} _ gl { L§2>} =8. (31

However for each 6, Tables 1 and 3 show that there
is an increase in the covariance between L(tl) and L(tz)
by changing ~N, from a homogenous Poisson process to
a shot-noise Cox process. Tables 2 and 4 also show that
the linear correlation between L(tl) and L(tz) increases
by changing N, from a homogenous Poisson process to
a shot-noise Cox process for each &. This implies that
the marginal distributions of the aggregate collateral loss
with respect to a Cox process have heavier tail than their
counterparts with respect to a Poisson process, i.e.

gy Poison { L(t])} = 8 < Varc™ { L§‘>} =1141 (32
and
Varts" {L(,Z)} =32 < Var®™ {L(f)} =45.64. (33)

It will also become apparent by the joint distributions
of aggregate collateral losses and their contours in Sec-

tion 4 and numerical risk measure values in Examples 3-
6.

4. Joint Distribution of the Aggregate
Collateral Losses via Bivariate Fast
Fourier Transform

In order to calculate the risk measures of (3)-(6), we in-
vert bivariate Fast Fourier transforms from joint Laplace
transforms of the vector (LEI),LEZ)) obtained in Section
2. For details on how to use bivariate Fast Fourier trans-
form, we refer to [26-28]. Before we show the calcula-
tions of risk measures in Section 5, we present the ex-
pressions for the joint probabilities of the aggregate
collateral losses and their densities at L(tl) =0 and
L(tz) =0. These are required to improve the accuracy of
the joint distributions of the aggregate collateral losses
inverting bivariate Fast Fourier transforms.

4.1. Shot-Noise Cox Process

If we let v—>0 and & —> o in (13), we have the
expression for the joint probability of aggregate collateral
losses at L(,l) =0 and L(,z) =0,1ie.

éj/efbvt

P(a =047 =) (ﬁ

_r
S(1+67)
] . (34)

Regardless of loss size distributions, we have the same
joint probability of aggregate collateral losses at L(,l) =0
and L(,Z) =0 when the loss arrival process N, follows
a Cox process with shot noise intensity /4, . If we set
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»

’ M(l—e’&) orli-a9)) P

R B

5},54’7 5(1+67)
ye - +6y ’

the expression for the joint density of aggregate collateral losses at L(tl) =0 and L(,Z) =0 isgiven by

P
0,0)x ot 5(1+7) _ ot ot
Fru (0.0)p ore A S ol ) ) P . (35)
1+ 6y 1-e +6y 1+ 8y Sye™” 5(1_e“”+5}/)
Based on (35), we can easily obtain its expression for exponential loss sizes using (14), i.e.
P
1+6 —ot S5(1+57) -6t -8t
( )app 577/5 T In I-e ;r Sy . lI-e . (36)
1+0y \(1-e +0oy 1+ 3y Sye™ 5(1_e‘5f+5}/)

Figures 1-4 are the joint distributions of aggregate
collateral losses and their contours at each value of &
with respect to a shot-noise Cox process for W, .

Figure 2 (or Figure 1) shows that joint probabilities of
aggregate collateral losses are mainly located between
the bottom left corner and the top right corner when
# =1, which means loss X and Y move in the same
direction. On the other hand, compared to when 6 =1,
Figure 4 (or Figure 3) shows that joint probabilities of
aggregate collateral losses at the bottom left corner and
the top right corner moves to its diagonal left and right,
respectively when 6 =-1 which means loss X and
Y move in the opposite direction.

4.2. Homogeneous Poisson Process

If we let v—>o and &— o in (18), we have the
expression for the joint probability of aggregate collateral
losses at L(,l) =0 and L(,z) =0, ie.

() =0, =0)=e*. (37)

Regardless of loss size distributions, we have the same
joint probability of aggregate collateral losses at L(tl) =0
and L(tz) =0 when the loss arrival process N, follows
a homogeneous Poisson process with loss frequency .
If we set

v—0,&—0

the expression for the joint density of aggregate collateral
losses at L(tl) =0 and L(tz) =0 is given by

Sy (0,0)x pure™". (38)

Based on (38), we can easily obtain its expression for
exponential loss sizes using (14), i.e.

(1+l9)aﬁx,ute_‘”. (39)

The figures of the joint distributions of aggregate
collateral losses and their contours at each value of &
with respect to a Poisson process for N, are omitted,
for which see the early version of this paper in
http://ssrn.com/author=383758.

5. Calculating Risk Measures for Collateral
Losses

Now using the parameter values in Examples 1-2 and
Matlab, let us illustrate the calculations of the risk

Copyright © 2012 SciRes.

. (a(§+ﬂv+v§)(2a+v)(2ﬂ+§)—9a,6’w§ iy
lim vé‘[exp{—y{ (@) (p+E)2a+v)(25+2) }t}e }

measures of (3)-(6) with respect to a shot-noise Cox

process and a Poisson process. They are shown in Tables

5-18.

To reduce the error of used algorithm for inverting
bivariate Fast Fourier transforms using Matlab, the fol-
lowing methods have been used:

e The sampling points have been taken as many as
possible, i.e. we have used 8192 x 4096 points in the
calculation, which was the maximum points we could
sampled in 32-bit Matlab.

o If the sampling interval gap is too small, there would
be a large amount of truncation error. Also if the
sampling interval is too big, there would be a large
amount of sampling error. Hence we have chosen
carefully the right sampling interval, so that the total
errors caused by inverting bivariate Fast Fourier
transforms could be negligible.

e For the figures in this paper, we have used the 2D
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Figure 2. The contour of the joint distribution of collateral
losses with 8 =1.

0.12+

0.1+

Figure 3. The joint distribution of collateral losses with 6 =
-1.

low-pass/moving-average filter to filter the jitter noise
out. Then we have used the linear interpolation to
smooth the borders of the data. The pattern matrix
used for this filter was

0.0625 0.125 0.0625
0.125 025 0.125
0.0625 0.125 0.0625

Copyright © 2012 SciRes.
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Figure 4. The contour of the joint distribution of collateral
losses with 6 =—1.

Example 3
Using the different VaR , at ¢%=95% and 99%,

the calculations of the risk measure of (3) are shown in
Tables 5-8.

Tables 5-8 show that each quantile values are higher
with respect to a shot-noise Cox process than their
counterparts. They also show that the risk measures of (3)
with respect to a shot-noise Cox process are higher than
their counterparts. These justify that the marginal/joint
distributions of the aggregate collateral losses with re-
spect to a shot-noise Cox process have heavier tail than
their counterparts with respect to a Poisson process.

Example 4

Secondly, based on the VaR, at 95% and 99% in
Example 3, the calculations of the risk measure (4), i.e.
E{L(tl) LV FLLI) (u), P > F! (u)} are shown in Ta-

t LSZ)

bles 9 and 10.

Tables 9 and 10 show that the risk measures of (4)
with respect to a shot-noise Cox process are higher than
their counterparts regardless of the critical values. Re-
gardless of the loss arrival process N, , the risk measures
of (4) are getting bigger as the critical value goes to 99%.
They also show that the differences between the values in
Table 9 and their counterparts in Table 10 are getting
higher as the critical value goes to 99%.

Example 5
Showing the calculations of the ¢% quantiles of the

sum, L) +1" ie. FLE11)+L(,2) (u) in

]P){LE]) + 1) > FL;)M@ (u)} and the joint probability be-
tween L) > FL?) (u) and L) +1 > FLI,IIML(,Z) (u), ie.
IP’{L(:) > FL[III) (u), 1 + 1) > FL?)%&Z) (u)} for each cases

in Tables 11-14, the calculations of the risk measure (5)
are shown in Tables 15 and 16.
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Table 5. A shot-noise Cox process, where ]P’{L(,l) > 10.55} = ]P’{L(,z) > 21.10} =0.05.
0 P{L>1055,17 >21.10} P{L>10.53 L7 >21.10f = P{£? > 21.10] " >10.55)
1 0.02090 041793
05 0.01900 0.38002
0 0.01723 0.34449
-0.5 0.01555 031105
-1 0.01397 0.27946
Table 6. A Poisson process, where ]P’{L(,') > 9.37} = ]P’{L(,z) > 18.74} =0.05.
0 P{L>937, >18.74) P{L) >9.37|L7 >18.74) = P{L? >18.74[ 1 >9.37|
1 0.01459 0.29186
0.5 0.01257 0.25129
0 0.01068 021363
-0.5 0.00893 0.17862
-1 0.00730 0.14605
Table 7. A shot-noise Cox process, where ]P’«{L(,l) > 14.79} = ]P’{L(,z) > 29.58} =0.01.
0 P{L" >14.79,L" >29.58} P{L >14.79|17 > 29.58) = P{L? >29.58|) >14.79)
1 0.00284 0.28389
0.5 0.00247 0.24727
0 0.00214 021401
-0.5 0.00184 0.18373
-1 0.00156 0.15617
Table 8. A Poisson process, where P{L">12.61)=P{L? >25.22}=0.01.
0 P{L >12.61,1" > 2522} P{L >12.61[1" >25.22) =P{1" >25.22|1)) >12.61]
1 0.00152 0.15183
0.5 0.00121 0.12079
0 0.00094 0.09369
-0.5 0.00070 0.07022
-1 0.00050 0.05013
Table 9. A shot-noise Cox process. Table 10. A Poisson process.
0 q% 95% 99% 0 9% 95% 99%
1 13.99969 18.18178 1 11.89360 14.99842
0.5 13.99910 18.17480 0.5 11.85723 14.95484
0 13.98970 18.15887 0 11.80964 14.90020
-0.5 13.97155 18.13402 -0.5 11.74893 14.83189
-1 13.94446 18.09996 -1 11.67172 14.74505
Copyright © 2012 SciRes. AM
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Table 11. ¢% quantiles of the sum, L(,l) +L(,2) for a shot-
noise Cox process.

shot-noise Cox process.

Table 15. IP{L‘,')>FL;)(u)

t

01>
t

-1
FL(‘,)+L(‘2) (u); for a

0 g% 95% 99%
0 q% 95% 99%
1 30.27695 41.70510
1 0.58843 0.46900
0.5 30.04685 41.32161
0.5 0.55950 0.43908
0 29.81675 40.93811
0 0.53137 0.40990
-0.5 29.58665 40.59297
-0.5 0.50387 0.38020
-1 29.35656 40.17112
-1 0.47681 0.35389
Table 12. ¢% quantiles of the sum, L(,” +L(,z) for a pois-
son process
( ORI -1
Table 16. IP{ (u)| L'+ L7 >F o (u) for
0 q% 95% 99% to
a Poisson process.
1 26.44199 34.68714
0q% 95% 99%
0.5 26.17355 34.22695
1 0.48882 0.34377
0 25.90510 33.80510
0.5 0.45288 0.31048
-0.5 25.63665 33.30656
41 27504
-1 25.32986 32.80801 0 041706 0-2750
-0.5 0.38126 0.24282
W) 5 -t W, @5
Table 13. P{L, > Fj) (), 1)+ I >FL(/,)+L(/,)(u)} for a » 034710 021026

shot-noise Cox process.

Table 17. A shot-noise Cox process.

0 q% 95% 99%
1 0.02942 0.00469 0 g% 95% 99%
0.5 0.02798 0.00439 1 11.69317 14.99356
0 0.02657 0.00410 0.5 11.46820 14.64166
-0.5 0.02519 0.00380 0 11.22903 14.25449
-1 0.02384 0.00354 -0.5 10.97467 13.75803
-1 10.70397 13.36212
Table 14. ]P’{L(,‘) > F (w). L)+ L) >FLI’I')+L(’Z)(u)} for a
Poisson process. Table 18. A Poisson process.
0 q% 95% 99% 0 q% 95% 99%
1 0.02444 0.00344 1 9.57781 11.53855
0.5 0.02264 0.00311 0.5 9.28678 11.14740
0 0.02085 0.00275 0 8.96709 10.60372
0.5 0.01906 0.00243 —0.5 8.61560 10.13953
-1 0.01736 0.00210 -1 8.28519 9.57822

Copyright © 2012 SciRes.
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Tables 11 and 12 show that the ¢% quantiles of the
sum, L(tl) + L(tz) with respect to a shot-noise Cox process
are higher than their counterparts regardless of the
critical values. Regardless of the loss arrival process N,,
they are getting bigger as the critical value goes to
99.9% . They also show that the differences between the
values in Table 11 and their counterparts in Table 12 are
getting higher as the critical value goes to 99.9%.

Tables 13 and 14 show that the joint probability be-

1 - 1 2 - .
tween L > FL(,II) (u) and L +1?) > FL(tll)u(f) (u) with

respect to a shot-noise Cox process are higher than their
counterparts regardless of the critical values. Regardless
of the loss arrival process N, , they are getting smaller
as the critical value goes to 99.9%. They also show that
the differences between the values in Table 13 and their
counterparts in Table 14 are getting lower as the critical
value goes to 99.9%.

Tables 15 and 16 show that the risk measures of (5)
with respect to a shot-noise Cox process are higher than
their counterparts regardless of the critical values. Re-
gardless of the loss arrival process N, , the risk measures
of (5) are getting smaller as the critical value goes to
99.9%.

Example 6

Lastly, based on the quantile values and the joint
probabilities in Example 5, the calculations of the risk

measure (6), i.e. B {L(,l)‘L(,l) + 17> FL§‘1>+L§2) (u)} are

shown in Tables 17 and 18.

Tables 17 and 18 show that the risk measures of (6)
with respect to a shot-noise Cox process are higher than
their counterparts regardless of the quantile values. Re-
gardless of the loss arrival process N, , the risk measures
of (6) are getting bigger as the critical value goes to
99.9% . They also show that the differences between the
values in Table 17 and their counterparts in Table 18 are
getting higher as the critical value goes to 99.9%.

With respect to the FGM copula correlation parameter,
@, the risk measures of (3)-(6) are increasing (decreasing)
as it changes to 1(—1) regardless of the loss arrival
process N, . It will be interesting to find these risk mea-
sure values using other copulas with different marginal
distributions.

6. Sensitivity Analysis

In this section, we examine the effect on the risk measure
of (4), i.e.

E{Lﬁl)‘d}) > Fy| (u), 1P > F (u)}

caused by changes in the values of the parameters of a
shot-noise Cox process from a Poisson process. To do so,

Copyright © 2012 SciRes.

we double the means of aggregate collateral losses, (30)
and (31) with x=8 for a Poisson case and with
p=4 0=025 and y=0.5 respectively for shot-
noise Cox case, i.e.

gPoisson {L(zl)} _ e {Ltl)} -8
and
B (10} = ger (10} <16,

where other parameter values are the same as in Exam-
ples 1-2.

Figures 5-6 are the joint distribution of aggregate
collateral losses and its contour at € =1 with respect to
a Poisson process for N, . Figures 7-12 are the joint dis-
tributions of aggregate collateral losses and their con-

0.03-
0.025-

0.02
0.015

0.01-
0.005

Figure 5. The joint distribution of collateral losses with 6 =
1 for a Poisson process.

60, T T T T T

50

P 10 20 30 40 50 60

Figure 6. The contour of the joint distribution of collateral
losses with @ =1 for a Poisson process.
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0.025 00
0.02
0.015 ' , 40r

Figure 7. The joint distribution of collateral losses with 6 =
landp=4. 0

10 20 30 40 50 60
L2
60 T T

Figure 10. The contour of the joint distribution of collateral
losses with 6 =1 and ¢ = 0.25.

50r R

Figure 11. The joint distribution of collateral losses with 8 =

. 1and y=0.5.
40 60
60
Figure 8. The contour of the joint distribution of collateral
losses with # =1 and p =4.
50r
0.03-~
40¢
0.025-
0.02
0.015

% 10 20 30 40 50 60
L2
Figure 9. The joint distribution of collateral losses with 6 = Figure 12. The contour of the joint distribution of collateral
1 and 0 =0.25. losses with 6 =1 and y=0.5.

Copyright © 2012 SciRes. AM
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Table 19. ]E{L(,” LY+ 17> Fji o).
=1 q% A Poisson process A shot-noise Cox process
p=4 5=025 7=05
95% 18.52079 21.41422 21.37291 23.50179
99% 22.33392 26.15472 26.47892 29.68759

tours at @ =1 with respect to a shot-noise Cox process
for N,.

Figures 7-12 (shot-noise Cox cases) show how dif-
ferent joint probabilities of aggregate collateral losses are
from Figures 5-6 (a Poisson case) by changes in the
value of p, d and y, respectively. Even though they
have the same mean, the joint probabilities of aggregate
collateral losses for shot-noise Cox cases are located
more between the bottom left corner and the top right
corner when 6 =1 than its counterpart. Shot-noise Cox
cases display that they have heavier tail than their
counterparts, which are shown in Table 19 in terms of
the risk measure of (4). Compared to the effect on the
risk measure of (4) by changes in the value of
p,0 and y , respectively from a Poisson case, Table 19
shows that y, which is the parameter in exponential
jump size distribution of catastrophic event, is the most
sensitive parameter in terms of changes in the value the
risk measure of (4).

7. Conclusions

We have used bivariate compound process to model
aggregate collateral losses arising from catastrophic

events such as flood, storm, hail, bushfire and earthquake.

For the number of collateral losses, a Cox process was
used to accommodate the stochastic nature of their fre-
quency rate in practice. The shot noise process was used
as the intensity of a Cox process as the number of
collateral losses arising from catastrophic events depends
on the frequency and magnitude of the primary events
and the time period needed to determine the effect of
these events. We also examined a Poisson process for the
number of collateral losses as its counterpart. With the
common collateral loss arrival process in the bivariate
model, the dependence between the individual losses
arising from different risk type has been modelled using
the notion of copula where for numerical illustrations, a
member of Farlie-Gumbel-Morgenstern copula with ex-
ponential margins was used.

As it was difficult to derive the joint distributions the
aggregate collateral losses, we derived their Laplace
transforms and inverted their Fast Fourier transforms
numerically to calculate introduced relevant risk mea-
sures. These measures can be used to calculate tail de-
pendences between collateral losses or to calculate in-

Copyright © 2012 SciRes.

surance premiums. We have presented the expressions
for joint probabilities of the aggregate collateral losses
and their densities at L(,l) =0 and L(,Z) =0, which were
used to improve the accuracy of joint distributions of the
aggregate collateral losses inverting the Fast Fourier
transforms. We have compared the simulated risk mea-
sure values obtained using a compound Poisson and a
compound shot-noise Cox model, respectively. The sen-
sitivity analysis on the parameters of a shot-noise Cox
process from a Poisson process also provided using the
risk measure of (4).

Other counting processes and other copulas with dif-
ferent margins can be considered in the proposed bi-
variate model, that we leave for further research. We
hope that what we have presented in this paper provides
practitioners with feasible models to quantify collateral
losses that would occur more often due to global warm-
ing, climate change and terrorism.
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