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ABSTRACT 

In this paper, we introduce tail dependene measures for collateral losses from catastrophic events. To calculate these 
measures, we use bivariate compound process where a Cox process with shot noise intensity is used to count collateral 
losses. A homogeneous Poisson process is also examined as its counterpart for the case where the catastrophic loss fre-
quency rate is deterministic. Joint Laplace transform of the distribution of the aggregate collateral losses is derived and 
joint Fast Fourier transform is used to obtain the joint distributions of aggregate collateral losses. For numerical illustra-
tions, a member of Farlie-Gumbel-Morgenstern copula with exponential margins is used. The figures of the joint distri-
butions of collateral losses, their contours and numerical calculations of risk measures are also provided. 
 
Keywords: Aggregate Collateral Losses; Bivariate Compound Cox Process; Shot Noise Process; 

Farlie-Gumbel-Morgenstern Copula; Tail Dependence; Joint Fast Fourier Transform 

1. Introduction 

Over the recent years, numerous papers have looked at 
the modelling of dependence within an insurance port- 
folio or between insurance portfolios [1-5]. Also in the 
field of financial risk management, a range of papers on 
dependence modelling within credit risk and operational 
risk can be noticed [6-8]. Besides the construction of 
specific multivariate models, considerable attraction is 
given to the use of copulas. In particular, within the 
theory of Lévy processes, Lévy copulas have proven to 
be useful [9]. 

Our paper is very much based on insurance applica- 
tions where two lines of business are hit by a common 
external event, hence the word “collateral losses” in the 
title. These joint losses may, for instance be triggered by 
events such as flood, windstorm, hail, bushfire, earth- 
quake and terrorism. Particular examples concern colla- 
teral losses due to 2011 Great Eastern Japan Earthquake, 
2010-2011 Queensland floods, 2009 Victorian Bushfires 
[10], 2005 Hurricane Katrina [11] and 2001 September 
11 attack [12]. 

For the purpose of this paper, we concentrate on a very 
specific model and show how, within this model several 
explicit calculations for relevant risk quantities can be 
performed. The bivariate model we consider has the 

following structure: 

   1 2

1 1

,
t tN N

t i t
i i

L X L
 

  ,iY          (1) 

where  is the total loss arising from risk type  k
tL

1,2k   and t  is the number of collateral losses up to 
time . The random variables i

N
t X  and , 1, 2,iY i , 

 1
tL  2

tL
N

 
denote the individual loss amounts. In this model, the de- 
pendence between two random variables  and  
comes from the common arrival process t , together 
with the dependence between the individual losses iX  
and i . The latter is modelled using the notion of copula 
[13]. To be more specific, we assume the loss random 
variable i

Y

X  and iY  are independent identically distri- 
buted with continuous distribution function XF  and YF  
respectively. The joint distribution of the vector  ,X Y


 

is assumed to be of the form  with a given 
copula . The uniqueness of this two stage construction 
goes back to Sklar’s Theorem. 

C F ,X YF
C

Theorem 1.1. (Sklar’s Theorem) Let F  be a joint 
distribution function with margins XF  and YF . Then 
there exists a copula  such that for all C ,x y  in  

 , ,    

    , ,X Y .F x y C F x F y        (2) 
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If the margins are continuous, then C is unique; other- 
wise C is uniquely determined on YRan RanXF F , 
where  Ran i iF F   denotes the range of iF . Con- 
versely, if C is a copula and XF  and YF  are uni- 
variate distribution functions, then the function F defined 
in (2) is a joint distribution function with margins XF  
and YF . 

Proof. See Schweizer and Sklar [14] or Nelsen ([13], p. 
18). 

To deal with stochastic nature of catastrophic loss 
arrival in practice, we use a Cox process for t . The 
Cox process provides flexibility by letting the intensity 
not only depend on time but also allowing it to be a 
stochastic process. Therefore the Cox process can be 
viewed as a two step randomisation procedure. A process 

t

N

  is used to generate another process t  by acting its 
intensity. That is, t  is a Poisson process conditional 
on 

N
N

t  which itself is a stochastic process. 
Losses arising from a catastrophe depend on its inten- 

sity. One of the processes that can be used to measure the 
impact of catastrophic events is the shot noise process. 
Previous works of insurance application using shot noise 
process and a Cox process with shot noise intensity can 
be found in [15-19]. Reference [20] also used a Cox 
process with shot noise intensity to model operational 
risk. The shot noise process is particularly useful to loss 
arrival process as it measures the frequency, magnitude 
and time period needed to determine the effect of cata- 
strophic events. As time passes, the shot noise process 
decreases as more and more losses are settled. This de- 
crease continues until another event occurs which will re- 
sult in a positive jump in the shot noise process. There- 
fore the shot noise process can be used as the parameter 
of a Cox process to measure the number of catastrophic 
losses, i.e. we will use it as an intensity function to 
generate a Cox process. We will adopt the shot noise 
process used by Cox & Isham [21]: 

 
0

1

e e i

Mt
t St

t i
i

Z    



   

where: 
 0  is the initial value of t  that is carried on from 

catastrophic events incurred previously; 
   1,2,i i

Z
   is a sequence of independent and iden-  

tically distributed random variables with distribution 
function  and  (i.e. magni- 
tude of contribution of catastrophic event  to inten- 
sity); 

  0G z z   E Z  
i

   1,2,i i
S

   is the sequence representing the event 
times of a Poisson process tM  with constant inten- 
sity  ; and 

   is the rate of exponential decay. 
Catastrophic events may take long to materialise so the 

decay rate may not be exponential. It is assumed to be of 
this form for a matter of convenience, i.e. closed-form 
expressions of final results are easily derived. We also 
make the additional assumption that a Poisson process  

tM  and the sequences   1,2,i i
Z

  ,   1,2,i i
X

   and  

  =1,2,i i
Y   are independ h otent of eac her. 

A Pois ate son process with loss frequency r   is also 
st

alculate the 
fo

udied for tN , that may be considered when cata- 
strophic loss f uency rate is deterministic. 

With the above model specifications, we c
req

llowing relevant risk measures: 

 
     

    1 2

1 1 1 2

1
lim ,

t t
t tL Lu

L F l L F l 

      (3) 

   
     

    1 2

1 1 21 1, ,
t t

t t tL L
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      1 1

1 1 21 1

1
lim

t t
t t tL Lu
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 2

tL
  (5) 

and 

     
      1 2

1 1 2 1 .
t t

t t t L L
L L L F l


         (6) 

Here  1
tL

F ,  2
tL

F  and    1 2
t tL L

F


 are the distribution  

fun s of the rando  variab

easures, we need to 
ob

ction m les  1L ,  2L  and t

(3
t

) and (5   1 2
t tL L  respectively. The quantities ) are 

 asymptotic upper tail dependence measures 
and the quantities (4) and (6) are conditional tail expecta- 
tions. The motivation for calculating these quantities that 
measure extremal dependence in the upper tail of a bi- 
variate distribution is that insurance industry is more 
concerned with dependence between extreme losses. For 
a discussion on the coefficient of tail dependence para- 
meters, see McNeil et al. [22]. 

In order to evaluate above risk m

known as

tain the joint distribution of the aggregate collateral 
losses  1

tL  and  2
tL . Unfortunately, it is not easy to 

derive joint di tribution the aggregate collateral 
losses explicitly. So in Section 2, we derive joint Laplace 
transform of the distribution of the aggregate collateral 
losses expressed with a copula function applying the 
piecewise deterministic Markov processes (PDMPs) 
theory. For tN , a shot-noise Cox process and a homo- 
geneous Pois  process are used respectively. Section 3 
provides the expressions of the moments, covariance and 
linear correlation between  1

tL  and  2
tL  at time t  for 

both cases. In Section 4, we present t expressions for 
joint probabilities of the aggregate collateral losses and 
their densities at  1 0tL

the s

son

he 

  and  2 0tL  , which are re- 
quired to improve t racy of the distributions of the 
aggregate collateral losses inverting joint Fast Fourier 
transforms. We also provide the figures of the joint dis-  

he accu
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tribution of the aggregate collateral losses and their con- 
tours. In Section 5, we illustrate the calculations of rele- 
vant risk measures (3)-(6) using joint Fast Fourier trans- 
forms. For numerical illustrations, an exponential dis- 
tribution for the jump sizes of catastrophic event, a mem- 
ber of Farlie-Gumbel-Morgenstern copula with exponen- 
tial margins are used throughout the paper. Section 6 
shows the sensitivity analysis on the parameters of a 
shot-noise Cox process from a Poisson process using the 
risk measure of (4). Concluding remarks are in Section 7. 

2. Joint Laplace Transform of the 
llateral 

Th se deterministic Markov processes theory 

2.1. Shot-Noise Cox Process 

process  follows a 

Distribution of the Aggregate Co
Losses 

e piecewi
developed by Davis [23] is a powerful mathematical tool 
for examining non-diffusion models. From now on, we 
present definitions and important properties of  1

tL  and 
 2
tL  with the aid of piecewise deterministic Marko  pro- 

es theory [16,24,25]. This theory is used to derive 
joint Laplace transform of the distribution of the aggre- 
gate collateral losses  1

tL  and  2
tL . 

v
cess

Assuming that the loss arrival  tN
Cox process with shot noise intensity t , t e generator  

of the process     1 2, , , , , acting on a func-  

h

t t t t tN L L t   
   1 2tion  , , ,f n o its domain is , ,l l 

 
t  belonging t

given by
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(7) 

where 





0

d
t

t s s   . Now let us find a suitable martingale  

in order to derive joint Laplace transform of the dis- 

Lemma 2.1. Considering constants  

tribution of the aggregate collateral losses  1
tL  and 

 2
tL . 

0 1, 0, 0 and 0         then 

    
  

    

1 2

0

exp exp

ˆexp , 1

ˆexp e exp 1 e d

tN
t t

t

t
t s

t

L L

c

 

g s 

  

  

  

 

    
 

   
 


   (8) 

martingale, where  is a 

 
    2

x y
C 

 
  

0 0

,
, e e d d

F x F y
c x y

x y
 ˆ   

    and  

 ˆ  
0

e duzg u G


  . z

Proof. From (7),     1 2, , , , ,f n l l t   has to satisfy  

0fA   for     , , ,1 2, ,f n l l t   a martingale.  to be
Setting 

    
         

1 2

1 2

, , , , ,

e exp exp exp e eB tn t

n l l t

l l 



   



   
 

f

we get the equation 

       ˆ, 1 e 1tg    ˆB t c   0        (9) 

e solution is 

s   (10) 

ich the result follows. 
ined in Lemma 2.1 and sett- 

and th

by wh

ing 

       d

0

ˆ ˆ, 1 , 1 e d
t

sc B t g         

Using the martingale obta
1   and 0,   we can easily obtain the general 

form int Laplace transform of the distribution of the 
aggregate collateral losses  1

tL  and  2
tL , i.e. 

   

 of jo

        

1 2
L L   

2 2

2

1 1

1

1 2

e e

ˆp exp exp , 1 d ,

t t

t

t

st t
t

L L c s    

 
 

 
    

  


(11) 

where the conditional expectation  is based on the 

ex

E

E
probability space  , , P  , and t  information set  he

  0t t
    with th   e filtration

     t s s sL L s t  1 2, , :   . Without loss of generality,  

he time scale anchange t d assume that  1 0L0   and 
 2
0 0,L   then it is given by 

       
1 2

0
0

ˆe e exp , 1 d .t t

t
L L

sE c s        
  

 
   (12) 

roughout the paper, we firstly assume that jump Th
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. If loss Xsizes of catastrophic event follow an exponential distri- 
bution, i.e.    exp , 0, 0g z z z       and that t  
is stationary [16], (12) i  
given by 

. Then using Theorem 2.6 in s

 occurs by arriva
noise in ity 

        

      

1 2

ˆ1 ,

e
e e

ˆ1 ,
1 e

ˆ1 ,
1 e

.
e

t t

t
L L

t

c
t

t

E
c

c





 




  






 




 






 



 





 


  


 
  

 
 
 
 








  (13) 

Secondly, as a specific example for , we use the 
Fa as

4) 

where 

C
rlie-Gumbel-Morgenstern (FGM) copul  given by 

    , 1 1 ,C u v uv uv u v        (1

     0,1 , 0,1 and 1,1u v     .
his calculation somewhat easier, w

 1 e 0, 0y y     it th

 
as

e co

L

rrespond-  

ing expression for the above

astly, to 
make t e sume that 
   1 e 0, 0xF x x      and  

. We om F y

 joint Laplace transform of 
the distribution of the aggregate collateral losses as it can 
be easily obtained using the joint distribution function 
 ,F x y  driven by (14), i.e. 


   

      

ˆ ,

2 2
1 .

2 2

c  

       
       
    

 
   

 (15) 

It will be of interest to examine the joint Laplace trans- 
fo

 
rm of the distribution of the aggregate collateral losses 
 1
tL  and  2

tL  at time t , using other copulas and other 
gins mar F x  and  F y . If  Z , which are the  

1,2,i i 

magnitud ontribu f ca  event to inten- e of c tion o tastrophic
sity t , are high, we also need to consider heavy-tailed 
distri tions for jump size of catastrophic event, bu  G z . 
We also omit the corresponding expressions f  
Laplace transform of the distribution of   , 1, 2i

tL i   
which are the Laplace transforms of the distr  
the compound Cox process with shot noise intensity t

or the

ution ofib
 , 

where its jump sizes follow an exponential distribut  
[16]. 

If w

ion

e set 0   
istribu

in (15), we have joint Laplace trans- 
form of the d tion of the aggregate collateral losses, 
which is the case that two losses X and Y occur same 
time from a sharing loss frequency rate t , but their 
sizes are independent each other. Due to the ependence 
of collateral losses of X and Y with sharing loss fre- 
quency rate t

 d

 , we can see that 

          1 2

e e e et t t tL LE E E    
1 2

L L      (16) 

even if 0  l process 
 1
tN  with shot tens  1

t  that has three para-  

meters of  1 ,   1  and   1z  and loss Y occurs by  

al process  2N  with sho intensity  2

 G

arriv t noise t t  that 

has three mpara rs of ete  2 ,   2  and   2G z  and  

everything is inde ndent each other, we can e the 
joint Laplace transform of bution egate 

 1  2

pe  hav
 the distri of aggr

Let us now assume that the loss arrival process 
s with loss

losses tL  and tL  at time t, that is the product of the  

Laplace transforms of the distribution of   , 1, 2i
tL i  . 

2.2. Homogeneous Poisson Process 

tN  
 fre- follows a homogeneous Poisson proces

quency μ. Setting t   in (12), i.e. considering det  
ministic loss frequency μ, we can easily obtain that 

   

er-

 2
tL    

1

ˆe e exp 1 ,tLE c t              (17) 

and using (14) we have 
    

   
      

1 2

e e

2 2
exp .

2 2

t tL LE

t

 

       


       

  

         
       

 

(18) 

We omit the corresponding expressions for the La- 
place transform of the distribution of , w
ar

  , 1, 2i
tL i   

ntial los

hich 
e the Laplace transforms of the distribution of the 

compound Poisson process with expone s sizes, 
as they can be easily obtained setting 0   and 0,   
respectively. 

Similar to shot-noise Cox process for tN , due to the 
dependence of collateral losses of X  and Y  
sh

 with
aring loss frequency rate ,  it shows th

   

at 

       1 2 1 2

e e e et t t tL L L LE E E        (19)    

even if . If loss X0   occurs by arrival
 with loss frequenc

 process 
 1
tN y  1  and loss  oc Y curs by 

arrival p tN  with oss frequency rocess  2  l  2  and 
everything is independent eac other, we can also have 
the joint Laplace transform of the distribut  of 
aggregate losses tL  and  2

tL  at time t  that is the 
product of the Laplace transforms of the distribution of 

  , 1, 2i
tL i  . 

3 oments, Covariance and Linear 

h 
ion

 1

. M
Correlation of Aggregate Collateral 

In nce and 

Losses 

 this section, we examine the moments, covaria
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lin tion between  and  at time . For ear correla  1
tL  2

tL  t
the loss arrival process tN , we use a Cox process with 
shot noise intensity t  an a hom eneous Poisson 
process with loss frequency 

d og
 , respectively. 

3.1. Shot-Noise Cox Process 

Also set 0   and 0   in (12) and differentiate 
itw.r.t. v and   respectively, we can obtain the expecta-  

tion of  and  at time t, i.e.  1
tL  2

tL

      1
t tE L E E X            (21) 

and 
Differentiating (12) w.r.t.   and   and set 0   and 

      2 .t tE L E E Y             (22) 0,   we can derive the joint e
 2

xpectation  and  of  1
tL

tL  at time t , i.e. 

     
The higher moments of  and  at time t can 

be obtained by differentiating it further, i.e. 

 1
tL  2

tL
 .E L      1 2 2

t t t tL E E XY E E X E Y     (20) 

 
           21 2
t t tVar L E X Var E X     E                        (23) 

nd a
           22 2 .t t tVar L E E Y Var E Y                             (24) 

The covariance between  and  at time is given by 

                  (25) 

and the linear correlation coefficient between  and  at time is given by 

 1
tL  2

tL  t  

              1 2,t t t tCov L L E E XY Var E X E Y     

 1  2
tL tL t  

    
    

                           
   

1 2

2 22 22 2 2 2

,t t

E XY E X E Y  t t

t t t t

L L

E Var

E E X E Y E Var E X E Y E X E Y Var E X E Y




         

  (26) 

 
Let us now illustrate the calculations of the covariance 

nd linear correlation between  and  at time 
            21 2 .t tE L L tE XY t E X E Y  

a
w

 1
tL  2

tL t , 
here tN  follows a shot-noise Cox process. 
Example 1 
From [17], we have 

    2 2 2 3 2 3

2 2 2
e t

t t 

  (27) 

r  f  vari

T een nd  at e t is 
given by 

We omit the exp essions or the expectation and - 
ance of  1

tL  and  2
tL  at time t  as they can be easily 

derived similar to a shot-noise Cox process for 
he covariance b

tN . 
timetw    a1

tL  2
tL

,tE t Var
   
      

    

and using (14) we have 

  
      1 2,t tCov L L tE XY         (28) 

and the linear correlation coefficient between  1  and 
 tL

 1
1 .

4

E XY


   
 

 

The parameter values used to calculate the covariance 
and linear correlation using (25) and (26) are 

2  at time t  is given by tL

      
   

1 2

2 2Y
, .t t

E XY
L L

E X E
      (29) 

var
and  and  at time 
where follows a Poisson 

Exam e 2

0.5, 2, 1, 1, 0.5, 1.t           

Hence from (25) and (26), the calculation

Let us now illustrate the calculations of the co iance 
 linear correlation between  1

tL
process. 

 2
tL t , 

tN  
pl

s of cova- 
riance and linear correlation between  and  at 
tim

Similar to a shot-noise Cox process for  differen- 

 1
tL   2

tL
e t  are shown in Tables 1 and 2 respectively. 

3.2. Homogeneous Poisson Process 

 
The parameter values used to calculate the covariance 

and linear correlation using (28) and (29) are 

4, 1, 1.t0.5,       

From 8) and (29), the calculations 
 ,tN

tiating (17) w.r.t.   and   and set 0  an d 0   
 we can easily derive the joint expectation ,tL  and 

 2L  at time t , i.e. 
of 1

t

 (2
ear correlati

of covariance and 
lin
sh

on between tL  and tL  at time t  are 
own in Table 3 and Table 4 respectively. 

 1  2
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Table 1. Covariance between  1
tL  and  

tL 2 . 

θ t tCov L L      1 2,

−1 12.82 

−0.5 13.82 

15.82 

0 14.82 

0.5 

1 16.82 

 
Table 2. Linear correlation between  



 1
t  and L  

tL 2 .

θ     1 2,t tL L  

−1 0  .56175

−0.5 0.60557 

2 

0 0.64940 

0.5 0.6932

1 0.73705 

 
Table 3. Covariance between  



  1
tL  and  

tL 2 .

θ     1 2,t tv L LCo  

−1 6  

−0.5 7  

0 8  

0.5 9  

1 10  

 
Table 4. Linear correlation between  and   1

tL  
tL 2 .

θ     1 2,t tL L  

−1 0.37  5

−0.5 

0 

0.4375  

0.5  

0.5 0.5625  

1 0.625  

 
3.3. Comparison 

The paramet alues used in Examples 1-2 ovide us 
with the sam means of aggregate collateral losses 
regardless of t ss arrival process i.e. 

where 

er v
e 

 pr

he lo tN , 

     Poisson Cox ,k k
t tL L   

    1Poisson (1) Cox 4t tL L        (30) 

and 

     2 2Poisson Cox 8.t tL L       (31) 

ever for each How ,  

om
ocess.
n be

om

Tables 1 and 3 show that there 
is an increase in the covariance between 
by changing fr  a homogenous Poi

t-noise C pr  Tables 2 and 4 h
the linear co tween  and  incre
by changing fr  a homog s Poi
a shot-noise

 1
tL

sson
 also s

 2
tL

sson p

 and  2
tL  

 process to tN  
ox 

rrelatio

tN  

a sho ow that 
ases   1

tL
enou rocess to 

 Cox process for each  . This implies that 
the marginal distributions of the aggregate collateral loss 
with respect to a Cox process have heavier tail than their 
counterparts with respect to a Poisson process, i.e. 

    1 1Poisson C8 41t tVar L Var L      (32) 

and 

 

 ox 11.

    2 2Poisson Cox32 45.64.t tVar L Var L    (33) 

It will also become apparent by the joint distributions 
of aggregate collateral losses and their contours
tion 4 and numerical risk measure values in Exa

4. Joint Distribution of the Aggregate 

t bivariate Fast Fourier transforms from joint Laplace 
transforms of the vector 

 in Sec- 
mples 3- 

6. 

Collateral Losses via Bivariate Fast 
Fourier Transform 

In order to calculate the risk measures of (3)-(6), we in- 
ver

    1 2,t tL L  

5, 

obtained in Section 
er trans- 

fo calcula- 
tio we present the ex- 

2. For details on how to use bivariate Fast Fouri
rm, we refer to [26-28]. Before we show the 
ns of risk measures in Section 

pressions for the joint probabilities of the aggregate 
collateral losses and their densities at  1 0tL   and 

 2 0tL  . These are required to im rove the accuracy of 
the joint distributions of the aggregate collateral losses 
inverting bivariate Fast Fourier transforms. 

4.1. Shot-Noise Cox Process 

If we let 

p

   and     in (13), w e the 
on for the joint probability of aggregate collateral 

losses at  1 0tL

e hav
expressi

  and  2 0tL  , i.e. 

      1
1 2 e

0, 0
1 et tL L   


 .
t


 










 


 
   (34) 

t

Regardless of loss size distributions, we have the same 
joint probability of aggregate collateral losses at  1 0tL   
and  2L 0t   

 process 
wh loss ar  

a Cox with shot noise intensity 
en the rival process tN  follows 

t . If we set 
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the expression for the joint density of aggregate collateral losses at 
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 1 0tL   and  2 0tL   is given by 
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, 0,0 e 1 e 1
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1 11 e e 1 e
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ss sizes (14), i.eBased on (35), we can easily obtain its expression for exponential lo  using . 
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Figures 1-4 are the joint distributions of aggregate 4.2. Homogeneous Poisson Process 

  

f 

collateral losses and their contours at each value of 
If we let    and     in (18),

expression for the joint probability of aggreg  

losses at 

 we have the 

ate collateral 
with respect to a shot-noise Cox process for 

Figure 2 (or Figure 1) shows that joint pr ilities o
ggregate collateral losses are mainly located between 

tN . 
obab

 1 0tL   and i.e.  2 0tL  , a
the bottom left corner and the top right corner when 

1  , which means loss X  and Y  move in the same 
direction. On the other hand, compared to when 1  , 
Fi

    1 20, 0 eL L .t
t t

           (37) 

Regardless of loss size distributions, we have the same 
ability of agg egate co sses at  1 0

gure 4 (or Figure 3) shows that joint probabilities of 
aggregate collateral losses at the bottom left corner and 
the top right corner moves to its diagonal left and right, 
respectively when 1    which means loss X  and 
Y  move in the opposite direction.    

tL   joint prob r llateral lo
and  2L tN  follows 0t   

ogeneo
wh loss ar  

a hom us Poisson process with loss 
en the rival process

frequency  . 
If we set 
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lim exp
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expression for the joint density of aggregate collateral 

sses at  and is given by 

2
e ,

2 2
tt     

    


     
     

 

th
lo

e 
 1 0tL   2 0tL   

 , 0,0 e .t
X Yf t            (38) 

Based on (38), we can easily obtain its expression for 
exponential loss sizes using (14), i.e. 

1 e .tt               (39) 

The figures of the joint distribution
co

s of aggregate 
llateral losses and their contours at each value of   

with respect to a Poisson process for  are omitted, 
for which see the early version of this 

tN
paper in  

http://ssrn.com/author=383758. 

1-2 and 
alculations of the risk

measures of (3)-(6) with respect to a shot-noise Cox 
process and a Poisson process. They are shown in Tables 
5-18. 

To reduce the error of used algorithm for inverting 
bivariate Fast Fourier transforms using Matlab, the fol- 
lowing methods have been used: 

 
e 

5. Calculating Risk Measures for Collateral 
Losses 

Now using the parameter values in Examples 
Matlab, let us illustrate the c

 The sampling points have been taken as many as
possible, i.e. we have used 8192 × 4096 points in th
calculation, which was the maximum points we could 
sampled in 32-bit Matlab. 

 If the sampling interval gap is too small, there would  
be a large amount of truncation error. Also if the 
sampling interval is too big, there would be a large 

  
.

amount of sampling error. Hence we have chosen 
carefully the right sampling interval, so that the total 
errors caused by inverting bivariate Fast Fourier 
transforms could be negligible  

 For the figures in this paper, we have used the 2D  
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Figure 1. The joint distribution of collateral losses with θ = 
1. 
 

 

Figure 2. The contour of the joint distribution of collateral 
losses with θ = 1. 
 

 

Figure 3. The joint distribution of collateral losses with θ = 
−1. 
 

low-pass/moving-average filter to filter the jitter noise 
out. Then we have used the linear interpolation to 
smooth the borders of the data. The pattern matrix 
used for this filter was 





0.0625 0.125 0.0625

0.125 0.25 0.125

0.0625 0.125 0.0625




  

. 

 

Figure 4. The contour of the joint distribution of collateral 
losses with θ = −1. 
 

Example 3 
Using the different  at  and 

the calculations of th
Tables 5-8. 

Tables 5-8 show that each quantile values are higher 
with respect to a shot-noise Cox process than their 
counterparts. They also show that the risk measures of (3) 
with respect to a shot-noise Cox process are higher than

e aggregate collateral losses with re- 
-noise Cox process have heavier tail than 

th  respect Poisson pro

%qVaR
e risk 

% 95%q 
measure of (3) are shown i

99% , 
n 

 
their counterparts. These justify that the marginal/joint 
distributions of th
spect to a shot

eir counterparts with  to a cess. 
Example 4 
Secondly, based on the %qVaR  at 95% and 99% in 

Example 3, the calculations of the risk measure (4), i.e.  
   

     
    1 2

1 1 21 1,
t t

t t tL L
L L F u L F u    are shown in Ta-  

bles 9 and 10. 
Tables 9 and 10 show that the risk measures of (4) 

with respect to a shot-noise Cox process are higher than 
their counterparts regardless of the critical values. Re- 
gardless of the loss arrival process tN , the risk measures 
of ng bigger as the critical value goes to 99%.  (4) are getti
Th rences

9
Example 5

ey also show that the diffe  between the values in 
Table 9 and their counterparts in Table 10 are getting 
higher as the critical value goes to 9 %. 

 
Showing the calculations of the quantiles of the  %q  

su    1 2m, t tL L , i.e.      1 2
t tL L

1F u


 in  

   
     



 1 2

1 2 1>
t t

t t L L
L L F u


  and the joint probability be- 

tween  
   1

1 1

t
t L

L F u  and    
     1 2

1 2 1 ,
t t

t t L L
L L F u


   i.e. 

 
       

      1 1 2

1 1 21 1,
t t t

t t tL L L
L F u L L F u 


    for each cases  

in 4, the calculations of the risTables 11-1
e shown in T

k measure (5) 
ar ables 15 and 16. 
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      1 210.55 21.10 0.05t tL L     .Table 5. A shot-noise Cox process, where  

      1 210.55, 21.10t tL L            1 2 2 110.55 21.10 21.10 10.55t t t tL L L L       

0.02090  1  0.41793  

0.5  0.019   

  

 0.015   

00 0.38002

0 0.01723  0.34449

0.5 55 0.31105

1   0.01397  0.27946  

 

Table 6. A Poisson process, where      1 29.37 18.74 0.05t tL L     . 

      1 29.37, 18.74t tL L            1 2 2 19.37 18.74 18.74 9.37t t t tL L L L       

1  0.01459  0.29186  

0.5  0.012

 

 0.008   

 0.146  

57  0.25129  

0 0.01068   0.21363

0.5 93 0.17862

1  0.00730 05

 

Table 7. A shot-noise Cox process, where         t tL L 1 214.79 29.58 0.01 . 

    1 214.79, 29.58t tL L            1 2 2 114.79 29.58 29.58 14.79t t t tL L L L         

1  0.00284  0.28389  

0.5  0.00247  0.24727  

0  0.002  

 0.001  

 0.156  

14  

84  

0.21401

0.5 0.18373

1  0.00156 17

 

Table 8. A Poisson process, where      1 212.61 25.22 0.01t tL L     . 

    1 212.61, 25.22t tL L            1 2 2 112.61 25.22 25.22 12.61t t t tL L L L         

  1  0.00152 0.15183

0.5  0.00121  0.12079  

0  0.000

 0.000

 0.050  

94   

70   

0.09369

0.5 0.07022

1  0.00050 13

 
 

θ  q% 95% 

Table 9. A shot-noise Cox process.

99% 

Table 10. A Poisson process. 

θ  q% 95% 99% 

1  13.99969  1  8 8178.1 1  11.89360  14.99842

0.5  1   

 1   

 

3.99910 18 7480

 

0.5.1  1  1.85723  14.95484

0  11.809640  13.98970  18 87   14.90020  

0.5

.158

 1   1.74893 14.831890.5 3.97155 18.13402

1  13.94446  18.09996 11.67172  1  41  .74505
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Table 11. quantiles of the s for a hot- 

noise Cox p ess. 

θ  q 99% 

%  q um,    t tL L1 2   s

roc

% 95% 

1  30.27695  41.70510  

0.5   30.04685  41.32161

0  29.81675  40.93811  

0.5  29.58665  40.59297  

1  29.35656  40.17112  

 
Table 12. %q  quantiles of the s for a pois- 

 

θ  q% 95% 99% 

um,    t tL L1 2  

son process

1  26.44199  34.68714  

0.5  26.17355   

 25.90510   

34.22695

0 33.80510

0.5  25.63665  33.30656  

1  25.32986  32.80801  

 

Table 13.          
      > , > 


 F u 1

1 1 21 1

t t
t t tL L

L F u L1  for a 

shot-noise Co
tL 2

x process. 

L

θ  q% 95% 99% 

1  0.02942  0.00469  

0.5  0.02798  0.00439  

0  0.026   

 0.003  

57 0.00410

0.5  0.02519  0.00380  

1  0.02384 54

 

Table 14.  
       

      > , > 




t t
t t tL L

L F u L F u 1 1

1 1 21 1

tL 2  for a 

ss. 

θ  q% 95% 99% 

L

Poisson proce

1  0.02444  0.00344  

0.5  0.02264  0.00311  

0  0.02085  0.00275  

0.5  0.01906  0.00243  

1  0.01736  0.00210  

 
       

      > > 




t t
t t tL L

L F u LTable 15. 
tL

F u 1 1 2

1 1 21 1  for a 

θ  q% 95% 99% 

L

shot-noise Cox process. 

1  0.58843  0.469  00

0.5  0.55950  0.43908  

0  0.53137  0.40990  

0.5  0.50387  0.38020  

1  0.47681  0.35389  

 

Table 16.  
       

      >
t

t L
> 




t t
t t L L

L F 1 1u L L F u2

1 1 21 1  for 

a Poisson pr ess. 

θ q 99% 

oc

% 95% 

1  0.48882  0.34377  

0.5  0.45288  0.31048  

0  0.41706  0.27504  

0.5  0.38126  0.24282  

1  0.34710  0.21026  

 

θ  q% 95% 

Table 17. A shot-noise Cox process. 

99% 

1  11.69317  1  4.99356

0.5  11.46820  14.64166  

0  11.22903  14.25449  

 10.974670.5  13.75803  

1  10.70397  13.36212  

 
Table 18. A Poisson process. 

θ  q% 95% 99% 

1  9.  57781 11  .53855

0.5  9.28678  11.14740  

0  8.96709  10.60372  

0.  5 8.61560  10.13953  

1  8.28519  9.57822  
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Tables 11 and 12 show that the quantiles  the 
sum, with respect to a se Cox process 
are rdless of the 
critical v l process 
they g bigger al oe  

how that the differe ces betwee  
values in ble 11 and their counterparts in Table  are 
getting higher as the critical valu es to 99.9%. 

Tables 13 and 14 show that e joint probability be-  

tween  and with  

respect to a  Cox process are higher than r 
counterparts regardless of the critical values. Reg less 
of the loss rrival process , they are getting smaller 
as  The

ferences

of
 

Example 6

%q  
ot-noi

e critical v
n

of
   1 2
t tL L  

higher than
alues. 

a
. They also s

 sh
a their counterp rts rega

Regardless of the loss arriva tN , 
s to

n the
re gettin as th ue g

99.9%
Ta 12

e go
 th

 
   1

1 1

t
t L

L F u    
     1 2 1
1 2t t

L Lt t

L L F u


   

 shot-noise  thei
ard

 a t

 the critical value goes to 99.9%. y also show that 
the dif  between the values in Table 13 and their 
counterparts in Table 14 are getting lower as the critical 
value goes to 99.9%. 

Tables 15 and 16 show that the risk measures of (5) 
with respect to a shot-noise Cox process are higher than 
their counterparts regardless of the critical values. Re- 
gardless of the loss arrival process N , the risk m

N

t easures 
 (5) are getting smaller as the critical value goes to 

99.9%.
 

Lastly, based on the quantile values and the joint 
probabilities in Example 5, the calculations of the risk  

measure (6), i.e.      
      1 2

1 1 2 1

t t
t t t L L

L L L F u


   are  

shown in Tables 17 and 18. 
Tables 17 and 18 show that the risk measures of (6) 

with respect to a shot-noise Cox process are higher than 
their counterparts regardless of the quantile values. Re- 
gardless of the loss arrival process tN , the risk measures 
of (6) are getting bigger as the critical value goes to 
99.9% . They also show that the differences between the 
values in Table 17 and their counterparts in Table 18 are 
getting higher 

With respect
as the critical value goes to 99.9%. 
 to the FGM copula correlation parameter, 

 , the risk measures of (3)-(6) are increasing (decreasing) 
as it changes to 1  1

 be in
g other cop

 regardless of the loss arrival 
teresting to find these risk 

re va usin ulas with different marginal 

t 

process tN . It will mea- 
su lues 
distributions. 

6. Sensitivity Analysis 

In this section, we examine the effec on the risk measure 
of (4), i.e. 

   
     

   

sh

w

 1 2

1 1 21 1,
t t

t t tL L
L L F u L F u    

caused by changes in the values of the parameters of a 
ot-noise Cox process from a Poisson process. To do so, 

e double the means of aggregate collateral losses, (30) 
and (31) with  8  for a Poisson case and with 

4,   0.25   and 0.5,   respectively for shot- 
noise Cox case, i.e. 

     1 1Poisson Cox 8t tL L    

and 

     2 2Poisson Cox 16,t tL L    

where other parameter values are the same as in Exam- 
ples 1-2. 

Figures 5-6 are the joint distribution of aggregate 
collateral losses and its contour at 1   with respect to 
a Poisson process for tN . Figures 7-12 are the joint dis- 
tributions of aggregate collateral losses and their con-  
 

 

Figure 5. The joint distribution of collateral losses with θ = 
1 for a Poisson process. 
 

 

Figure 6. The contour of the joint distribution of collateral 
losses with θ = 1 for a Poisson process. 
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Figure 7. The joint distribution of collateral losses with θ = 
1 and ρ = 4. 
 

 

Figure 8. The contour of the joint distribution of collateral 
sses with θ = 1 and ρ = 4. 

 
lo

 

 

Figure 10. The contour of the joint distribution of collateral 
losses with θ = 1 and δ = 0.25. 
 

 

Figure 11. The joint distribution of collateral losses with θ = 
1 and γ = 0.5. 
 

 

Figure 12. The contour of the joint distribution of collateral 
losses with θ = 1 and γ = 0.5. 

Figure 9. The joint distribution of collateral losses with θ = 
1 and δ = 0.25. 

Copyright © 2012 SciRes.                                                                                  AM 
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Table 19.      
    ( )
1 2

1 1 2 1

t t
t t t L L

L L L F u   . 

1   %q  A Poisson process A shot-noise Cox process 

 4   0.25   0.5   

95%   21.41   23.50179  18.52079 422 21.37291

99%  22.33392  26.15472  26.47892  29.68759  

 
tours at 1   

. 
-12

with respect to a shot-noise Cox process 
for 

 (shot-noise Cox cases) show how dif- 
ferent joint probabilities of aggregate collateral losses are 
from Figures 5-6 (a Poisson case) by changes in the 
value of 

tN
Figures 7

, and  
e same mean, th

es for s

, respectively. Even though they 
have th e joint probabilities of aggregate 
collateral loss hot-noise Cox cases are located 
more between the bottom left corner and the top right 
corner when 1   than its counterpart. Shot-noise Cox 
ases di have heavier tail than their 

counterparts hown in Table 19 in terms of 
the risk (4). Compared to the effect on the 
risk m ) by changes in the value of 

c splay that they 
, which are s

 measure of 
easure of (4

, and   , respectively 
 that 

from a Poisson case, Table 19 
shows  , which is the parameter in exponential 
jump size distribution of catastrophic event, is the most 
sensitive parameter in terms of changes in the value the 
risk measure of (4). 

7. Conclusions 

We have used bivariate compound process to model 
aggregate collateral losses arising from catastrophic 

er of collateral losses, a Cox process was 
sed to accommodate the stochastic nature of their fre- 

quency rate in practice. The shot noise s used 
as the intensity of a Cox process as the number of 
collateral lo ses rising from ents depends 
on the frequency and magn mary events 
and the time period needed to determine the effect of 
these events. o examined a Poiss process for the 
number of collateral losses as its counterpart. With the 
common collateral loss arrival process in the bivariate 

odel, the dependence between the individual losses 
om d

not f copula where for numerical illustrations, a 
m

collateral 

tween

surance premiums. We have presented the expressions 
for joint probabilities of the aggregate collateral losses 
and their densities at  1 0tL   and , which were 
used to improve the of joi utions of the 
aggregate collateral losses inverting the Fast Fourier 
transforms. We have compared the simulated risk mea- 
sure values obtained using a compound Poisson and a 
compound shot-noise Cox model, respectively. The s  

ess also provided using the 
isk measure of (4). 

Other counting processes and other copulas with dif- 
ferent margins can be considered in the proposed bi- 
variate model, that we leave for further research. We 
hope that what we have presented in this paper provides 
practitioners with feasible models to quantify collateral 
losses that would occur more often due to global warm- 
ing, climate change and terrorism. 
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