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ABSTRACT 

We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is 
called primary; the other member of each pair is called secondary. Each primary joins the queue upon arrival. Each 
secondary is delayed in a separate area, and joins the queue when “pushed” by the next arriving primary. Thus each 
secondary joins the queue followed immediately by the next primary. This arrival/delay mechanism appears to be new 
in queueing theory. Our goal is to obtain the steady-state probability density function (pdf) of the workload, and related 
quantities of interest. We utilize a typical sample path of the workload process as a physical guide, and simple level 
crossing theorems, to derive model equations for the steady-state pdf. A potential application is to the processing of 
electronic signals with error free components and components that require later confirmation before joining the queue. 
The confirmation is the arrival of the next signal. 
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1. Introduction 

The M/M/1 arrival/delay mechanism considered in this 
paper was introduced by Hlynka [1], who derived the 
Laplace transform of the busy period of the server, using 
the probabilistic interpretation of the Laplace transform. 
The busy period in that analysis included the idle times 
of the server while a secondary is being delayed. 

Here we analyze the model using a level crossing ap- 
proach, and derive: the steady-state pdf of the server 
workload; probability that the system is empty; probabil- 
ity that the server is idle when a secondary is being de- 
layed; expected busy period (as defined in Hlynka [1]); a 
stability condition; expected time the server is busy in a 
cycle between instants of system emptiness, or between 
instants the server becomes idle and a secondary is being 
delayed. An advantage of the level crossing method used 
here is that it focuses on the workload process in a con- 
crete manner. That is, it uses physical properties of a 
typical sample path of the workload process as a guide, 
and simple level crossing theorems, to formulate the 
model equations for the key probability distributions of 
the model. Viewing the sample path in this concrete 
manner, makes the solution procedure intuitive, straight- 
forward, and suggestive of future research ideas. 

Section 2 specifies the M/M/1 variant and sample path 
structure. Section 3 derives the model equations for the 

steady-state pdf of the workload, and specifies related  
quantities. Section 4 uses the model equations to obtain 
relevant constant terms, and gives a numerical example 
of the steady-state pdf of workload. 

2. The M/M/1 Variant 

Singles (primaries) arrive at the system at Poisson rate 

1  and pairs (pair = primary + secondary) arrive at the 
system at Poisson rate 2 ; let 1 2    . When a 
primary arrives at the system, it immediately joins the 
M/M/1 queue, either alone or just behind a secondary 
that was being delayed. When a secondary arrives at the 
system it splits from its primary and is delayed in a 
separate area outside the queue. The delayed secondary is 
“pushed” by the next arriving primary to join the queue, 
followed immediately by the new primary. (Thus the 
delay of each secondary before joining the queue is dis- 
tributed as exponential-  .) Customers in the queue are 
served one at a time at exponential rate   in first- 
come-first-served order. When a primary joins the queue 
alone, the server workload is increased by exponential- 
 . When a primary and secondary join the queue simul- 
taneously, the server workload is increased by Erlang 
(2,  ), i.e., the sum of two independent exponential-  ’s. 
All secondaries join the queue simultaneously with (next) 
primaries. The number of secondaries being delayed in 
the system at any instant is either 0 or 1. 
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Define the state of the system as     
0

,
t

W t J t


  

where W(t) = server workload at time , 0t    0J t   
if zero secondaries are being delayed,  if one 
secondary is being delayed. The state with zero custo- 
mers in the system is denoted by . The state when 
the server is idle and one secondary is being delayed is 
denoted by  . Let 1  denote an exponential-

 J t



1

0,0

0,1 E   
random variable, and  denote an Erlang2E  2,  ran- 
dom variable. 

2.1. Sample Path of     ,
0t

W t J t


 

Technique of “Lines and Sheets (or Pages)” We utilize 
a technique of “lines and sheets (or pages)” to picture the 
state space and a sample path in it (e.g., see Brill [2] 
Section 4.6). This technique partitions the state space 
into mutually exclusive and exhaustive physical lines and  

sheets corresponding to the states of    
0

,
t

W t J t
 .  

We select an arbitrary continuous subset in each sheet, 
having one boundary as a fixed level x  in the state 
space of , e.g., , . We use this con- 
crete physical picture as a guide to balance the sample- 
path exit and entrance rates of the selected state-space 
subsets. Simple level-crossing theorems (e.g., Brill [2]) 
guarantee that the partial steady-state pdf of 

 W t  ,x  0x 

 W t x  
for each sheet is a unique term, or linear factor in a term, 
of the corresponding balance equation. The balance equ- 
ations are generally Volterra integral equations of the 
second kind with parameter. Thus there is an isomor- 
phism between the physical sample path structure and the 
model equations. 

Consider the sample path of  in Fig-     
0

,
t

W t J t




ure 1. All jumps due to an arrival on page 0 are dis- 
tributed as 1  because only primaries join the queue 
when arrivals find zero delayed secondaries present. All 
jumps due to an arrival on page 1 are distributed as 2  
because both the delayed secondary and the arriving 
primary join the queue simultaneously. 

E

E

2.2. Description of the Sample Path of 
   ,W t J t

0t
 in Figure 1 

At time 0 the system is empty (state ). A single 
arrives and the SP (sample path) jumps to level 1  on 
page 0; the arrival immediately starts service. The SP 
decreases at rate 

 0,0
E

  1 d d 1 .W t t    A pair arrives, the 
primary joins the queue and the secondary is delayed; the 
SP jumps 1  since the server workload includes only 
those customers in the queue, and transits to page 1 (de- 
layed secondary present). 

E

A single arrives and pushes the delayed secondary to 
join the queue; the single joins just after it. The SP jumps 

 and transits to page 0 (no delayed secondary present). 2E

 

Figure 1. A sample path of     ,
0t

W t J t


. 

 
A single arrives and joins the queue; the SP jumps 1  
and remains on page 0. A pair arrives; the primary joins 
the queue and the split-off secondary becomes delayed. 
The SP jumps 1  and transits to page 1. A pair arrives, 
the primary pushes the delayed secondary into the queue 
and joins just after it; the new secondary becomes 
delayed. The SP jumps 2  and remains on page 1. The 
SP hits level 0 from above, and remains in state 

E

E

E
 0,1  

for a time distributed as exponentia-  (server idle). A 
single arrives, pushes the delayed secondary into the 
queue and follows just after it. The SP jumps by 2  and 
transits to page 0. Finally the SP hits level 0 from above 
and enters 

E

 00,  (system empty). 
Figure 1 illustrates a cycle starting and ending in state 

 0,0 . A cycle starting and ending in state  would 
be produced similarly. 

 0,1

3. Equations for Probability Distribution of 
Server Workload 

       
       

     
 
    

0,0

0,1

2 2

Let , 0,0 ,

, 0,1 ,

e 1 , 0,

, 0 mixed joint steady-state pdf of

, , 0,1.

t

t

x

j

t

P P W t J t

P P W t J t

E x P E x x x

f x x

W t J t j

 









 

 

    

   



 

Guided by the sample path (Figure 1) we write a sy- 
stem of balance equations for the singleton states  0,0  
and  0,1 , and for sets of continuous states  

  , ,x j , 0,1j  . Explanations of the equations are  

given immediately after Equation (5). 
State  0,0  

 0,0 0 0P f              (1) 
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State   0,1

 0,1 1 0P f               (2) 

States    , ,0x 

   

   

     

 

0 2 0

1 0,0 1 0
0

1 1 1 2 1
0

1 0,1 2

d

e e d

d d

.

x

x
x yx

x

x

f x f y y

P f y y

f y y E x y f y y

P E x





 

 





 





 

  







 

  (3) 

States    , ,1x 

   

   

     

 

1 1 1

2 0,0 2 2 1
0

2 0 2 0
0

2 0,1 2

d

e d

d e

x

x
x

x
x y

x

f x f y y

P E x y f

d

y y

f y y f y y

P E x







 

 








 



  

 







 

    (4) 

Total Probability = 1 

   0,0 0,1 0 1
0 0

d dP P f x x f x x
 

     1.    (5) 

Explanation of Equations (1)-(5) 
Equation (1): Left side = (exit rate of ). Right 

side = (downcrossing rate of level 0 on page 0) = (rate at 
which system is emptied). 

 0,0

Equation (2): Left side = (exit rate of ). Right 
side = (downcrossing rate of level 0 on page 1). 

 0,1

Equation (3): Left side = (exit rate of ) 
due to: i) (downcrossings of level 

  , ,0x 
x  on page 0 ) + ii) 

(arrivals of pairs). Right side = (entrance rate of 
) due to: i) (singles arriving to an empty 

system bringing a workload 
  , ,0x  

x ) + ii) (singles arriving 
when the state is    0,,0 ,y y x  bringing a workload 
 x y  , summed for 0, y x

  ,


,x

) + iii) (singles arriv-  

ing when the state is in ) + iv) (singles arriv-  1
ing when the state is    ,1 , 0,y y x


 adding a work- 

load x y   summed on 0, y x ) + v) (singles  

arriving when the state is  0,1  adding a workload 
x ). 
Equation (4): Similar reasoning as for Equation (3). 
Equation (5): Sum of probabilities = 1. 

Related Quantities 

We now consider related quantities obtainable from the 

solution of Equations (1)-(5): 0,0  = proportion of time 
the system is empty; 0,1  = proportion of time the 
server is idle and a delayed secondary is present;  

P
P

 0 0
0

dF f x x


   = proportion of time the server is busy  

and no delayed secondary is present;  1 1
0

dF f x x


   =  

proportion of time the server is busy and a delayed 
secondary is present. 

Let 0,0C   time between successive     
0

,
t

W t J t


-  

entrances into state  0,0  (system becomes empty).  

Let 0,1C   time between successive     
0

,
t

W t J t


-  

entrances into state  0,1  (server becomes idle and a 
delayed secondary is present). Then 0,0  and 0,1C  are 
regenerative cycles of regenerative processes. From the 
elementary renewal theorem and (1) and (2)  

C

   

   
0,

0,

1 downcrossing rate of level 0 on page

1 0 1 , 0,1.

j

j j

E C j

f P j



  
(6) 

Let 0, jB  be the total time that the server is busy 
during a cycle 0, jC . (Note that 0, jB  is composed gene- 
rally of non-contiguous time segments.) By the theory of 
regenerative processes (e.g., Cohen [3]) and (6) 

     0, 0, 0 1server is busy ,j jE B E C P F F    

     0, 0 1 0, , 0,1j jE B F F P j   .       (7) 

If we define a “busy period” as the proportion of 0,0  
such that there is at least one customer in the system as in 
Hlynka [1] (which includes the time that the server is idle 
while a delayed secondary is present), then 

C

     0,0 0,0busy period 1 .E P   P     (8) 

4. Relevant Constants and Numerical 
Example of Steady-State PDF of Workload 

4.1. Relevant Constants 

Before solving for   , 0,jf x j  1 and  

     0 1 ,f x f x f x x 0   , we solve six linearly inde- 

pendent equations for the constants  

  0,0 , , , 0,1.j j jf F P j   The first two equations are (1)  

and (2). The second two equations are obtained by letting 
 in (3) and (4). The fifth equation is (5). 0x 

The sixth equation is obtained by considering the 
system from the server’s point of view. The arrival rate 
to the queue is   0,0 0 0,1 11 2P F P F      

present delayed secondary) when one secondary is pre- 

 since 
only the arriving primary joins when zero delayed se- 
condaries are present, and two join (arriving primary + 
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sent. The steady-state probability that the server is idle is 
1  (long-run traffic intensity) =  

  0,0 0 0,1 11 2P F P F   he server does not  

nguish between idle periods

  . T

disti  when a delayed secon- 
dary is present or is not present. Thus P (server is idle) 

0,0 0,1P P  . This yields the sixth equatio

  
n 

0,0 0,1 0,0 0 0,1 11 2P P P F P F .        

( )f x

x  

  (9) 

lving the six equations gives the four quantities (as So
well as  0 , 0,1jf j  ): 

    
    
    
    

0,0 1 1 2

0,1 2 1 2

0 1 1 2

1 2 1 2

2 ;

2 ;

2 ;

2 .

P

P

F

F

    

    

   

   

  

   


  


  

    (10) 

From (7) 



Figure 2. Plot of steady-state pdf f(x) using the parameter 
values in Subsection 4.2. 
 

  .315967

4.684033

0.2834250634 e

0.02396560398 e ,

0.

x

x

f x

x





 

 
 

      
     

0,0 1 2 1 1 2

0,1 1 2 2 1 2

2 2

2 2

E B

E B

     

     

   

   
 

;

.
  (11) 

From (8) 

  (13) 

Also 

 
    2

1 2 1 2 1 1 2

busy period

2 2

E

             .
  (12) 

At least one of 1 must be positive for a 
steady state distribution t

   
   
 

0,1

0 1

0,0 0,1

0,0 0,1

0.06756756758; 0.04054054054;

0.5574324325; 0.3344594595;

6.166667; 10.277778,

5.5; 9.166667;

busy period 5.75.

P

F F

E C E C

E B E B

E

0,0P  

 

 

 



 

 0, , 0,jP j   
o exist. This implies that 

1 22     is the condition for stability, which agrees 

Note that i
Note that ;    0 1

0

d 0.89189189f x x F F


  with intuition. 
 the system behaves like a f 2 0 

   0,0 0,10 0.2594594594f P P    ;  

.

standard 
1

M M  eue. If 1 01 qu    it behaves like a 
standard 

2 2, 1M E   queue wit ard to the work- 
load. 

h reg
 0,0 0,1

0

d 1P P f x x


    

4.2. Numerical Example of Steady-State PDF of 

1 and 
ms and in- 
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