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ABSTRACT 

We establish, through solving semi-infinite programming problems, bounds on the probability of safely reaching a de- 
sired level of wealth on a finite horizon, when an investor starts with an optimal mean-variance financial investment 
strategy under a non-negative wealth restriction. 
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1. Introduction 

In probability theory, the first passage-time problem is 
the study of the first moment when a stochastic process 
reaches a certain threshold. This problem often arises in 
financial mathematics and particularly in portfolio man- 
agement. For example, consider a risky strategy on an 
horizon [0,T], the investor may encounter a specific in-
stant t when the amount of wealth  x t  be sufficient 
enough so that he may, at this point, safely reinvest all of 
his money in a simple bank account with (deterministic) 
interest rate  r t  and the resulting terminal wealth 
 x T will attain his financial goal z. So we consider the 

following stopping time random variable : 
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and we naturally want to compute the probability 
 zP T  


 of such an event. If x0 > 0 is his initial wealth 

then we will assume  so that the   0 0
exp d

T
z x r s s 

investor cannot achieve his financial goal by simply 
placing his initial investment in a bank account. 

2. Market Model 

In order to investigate this goal-achieving problem, we 
must first define a mathematical setting for the dynamics 
of the financial market. We will consider here the cele- 
brated Black-Scholes model that we next describe. The 
first asset is a bank account whose price at time t,  0P t , 
is the solution to the following ordinary differential equ- 
ation (ODE): 

     0 0d dP t r t P t t .         (2) 

The next assets consist of m stocks whose prices 
    1 , , mP t P t  at time t are the solutions to the fol- 

lowing SDEs (stochastic differential equations): 
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where   , 0W t t   is a standard m-dimensional Brow- 
nian motion. 

We will assume that the interest rate r(t), stock appre- 
ciation rates bi(t) and stock volatilities σij(t) are determi- 
nistic functions and that 

 
  

   

11 1

1

m

m mm

t t

t

t t

 


 

  
   
  

        (4) 

is invertible. 

Let       1 , , ,0
T

mu t u t u t t T    be a finan- 

cial strategy (or portfolio) where  is the amount 
placed in the ith stock. If we assume that all strategies 

 iu t

 u t  are self-financed (no outside injection of funds to 
the investors) and with no transaction costs then the 
wealth dynamic at time t is given by the following sto-
chastic differential equation (SDE): 
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where .           1 , ,
T

mB t b t r t b t r t  
Finally, among all the possible strategies, we will fo- 
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cus on the one generated by a family of stochastic control 
problems defined by  

     min . . .VAR x T s t E x T z     (6) 

These are known as mean-variance problems and are 
considered the cornerstone of modern portfolio manage- 
ment theory which originated with the work of Nobel 
Prize laureate H. Markowitz.  

3. Goal Achieving Probabilities 

3.1. Case 1: Unconstrained and No Short-Selling 
Restriction 

In this context, the optimal wealth process has the fol- 
lowing form 
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with y0 < 0, β > z and  having specific values 
for the unconstrained and no-short selling (no borrowing 
stocks) case respectively. The computation of the prob- 
ability , following a stochastic time change, 
can be reduced to the calculation of the probability of the 
first passage time of a Brownian motion with drift 
through a fixed level, more precisely the probability is 
given by: 
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where 

  2 21
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is the cumulative density function of a standardized nor- 
mal distribution. 

Detailed proofs can be found in Li and Zhou [1] and 
Scott and Watier [2]. 

3.2. Case 2: No Bankruptcy Restriction 

In this case, unfortunately, the optimal wealth process 
has a more complex expression, according to Bielecki et 
al. [3] it is given by 
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and z   and  are Lagrange multipliers ob- 
tained by solving the nonlinear system of equations: 

0µ 

  E T 
 z  

         (15) 

     0E TT x 
   

     (16) 

with 
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Evidently, an explicit form for the corresponding goal- 
achieving probability  NB

zP   T  as in the cases dis- 
cussed in Section 3.1 appears unrealistic. However, we 
will show that we can obtain precise bounds for this 
probability through solving (deterministic) semi-infinite 
programming (SIP) problems. 

The basic idea is to convert the original passage-time 
problem of this complex stochastic process with a fixed 
barrier into an equivalent passage-time problem for a 
simple Gaussian Markovian process but with a time- 
varying boundary. 

To this end, the following result will be useful. 
Let , then 0A 

     
21

2e
Ax A

g x x A
 

     x    (18) 

is a strictly increasing function on the real line that takes 
on values in  0,1 . 

The proof is straightforward since clearly  
 lim 0x g x   and , while   lim 1x g x 
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From this property we have that, for each fixed 
 0,t T , 
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therefore, if 
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then 

   .NB invf
z zTP P          (22) 

Due to the intricate nature of the time-varying bound- 
ary obtained, there is again little hope to find an explicit 
formula. But suppose we can get simpler boundaries hl 
and hu such that     1 ,l uh t f t z h t  



 then clearly 
by defining 
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we would have 

     .u lh hinvf
z z zP T P T P T          (25) 

The next task at hand is to find suitable boundaries, for 
this, we need to recall first passage-time results for 
Gaussian Markovian processes through a specific family 
of time-varying boundaries known as Daniels’ curves 
(see Dinardo et al. [4]). 

Consider the stochastic process 
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then the first passage-time probability through a boun- 
dary of the form 
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where 
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1 20, 0,c c     and , is given in 
explicit form by 

 lim 0t T t  
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Therefore the family of Daniels curves appears to be 
excellent candidates for obtaining explicit upper and 
lower bounds for our original goal-achieving problem. 
Finally, in order to generate the tightest bounds possible, 
we are naturally led to solve the following SIP problems: 
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For inquiries on efficient techniques for solving these 
SIP problems we refer the reader to Lopez and Still [5] 
and Reemtsen and Rückmann [6]. 

4. Numerical Examples 

In order to illustrate that the solutions to the 3-parameter 
SIP problems can produce tight bounds, let us reprise the 
one stock market model example in Bielecki et al. that is 
      00.06, 0.12, 0.15, 1, 1r t b t t x T      but 

with different wealth objective z. Table 1 sums up the 
results. 
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Finally, we can easily show that the 80% rule (i.e. 
 z 0.80P T  

2.0z

, for all possible values of the market 
parameters) obtained by Li and Zhou and, Scott and 
Watier unfortunately does not hold in general for a no- 
bankruptcy optimal mean-variance strategy. For example, 
if we set  , by solving (29), we have  
  0.65zP T   . 
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