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Abstract 

The present paper deals with the evaluation of the q-Analogues of Laplece 
transforms of a product of basic analogues of q2-special functions. We apply 
these transforms to three families of q-Bessel functions. Several special cases 
have been deducted. 
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1. Introduction 

In the second half of twentieth century, there was a significant increase of activity 
in the area of the q-calculus mainly due to its application in mathematics, 
statistics and physics. In literature, several aspects of q-calculus were given to 
enlighten the strong inter disciplinary as well as mathematical character of this 
subject. Specifically, there have been many q-analogues and q-series representations 
of various kinds of special functions. In the case of q-Bessel function, there are 
two related q-Bessel functions introduced by Jackson [1] and denoted by Ismail 
[2] as  
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The third related q-Bessel function ( ) ( )3 ;J z qµ  was introduced in a full case as 
[3] 
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A certain type of Laplace transforms, which is called L2-transform, was 
introduced by Yürekli and Sadek [4]. Then these transforms were studied in 
more details by Yürekli [5], [6]. Purohit and Kalla applied the q-Laplace 
transforms to a product of basic analogues of the Bessel function [7].  

On the same manner, integral transforms have different q-analogues in the 
theory of q-calculus. The q-analogue of the Laplace type integral of the first kind 
is defined by [8] as 
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and expressed in terms of series representation as  
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On the other hand, the q-analogue of the Laplace type integral of the second 
kind is defined by [8] as  
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whose q-series representation expressed as  
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In this paper we build upon analysis of [8]. Following [9], we discuss the 
q-Laplace type integral transforms (4) and (7) on the q-Bessel functions 

( ) ( )1 ;J z qµ , ( ) ( )2 ;J z qµ  and ( ) ( )3 ;J z qµ , respectively. In Section 2, we recall some 
notions and definitions from the q-calculus. In Section 3, we give the main 
results to evaluate the q-analogue of Laplace transformation of q2-Basel function. 
In Section 4, we discuss some special cases.  

2. Definitions and Preliminaries 
In this section, we recall some usual notions and notations used in the q-theory. 
It is assumed in this paper wherever it appears that 0 1q< < . For a complex 

number a, the q-analogue of a is introduced as [ ] 1
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This indeed lead to the conclusion  
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The q-analogue of the exponential function of first and second type are 
respectively given in [10] by  
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Indeed it has been shown that  
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The finite q-Jackson and improper integrals are respectively defined by [11]  

( ) ( ) ( )0
0

d 1
x k k

q
k

f t t x q q f xq
∞

=

= − ∑∫                   (13) 

and 

( ) ( )/

0
d 1 .

k kA
q

k

q qf t t q f
A A

∞

∈

 
= −  

 
∑∫


                 (14) 

The q-analogues of the gamma function of first and second type are respectively 
defined in [9] as  
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Some useful results, for 0, 1, 2,x ≠ − −  , we use here are given by  
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3. Main Theorems 

Theorem 1. Let ( ) ( ) ( ) ( )1

1 12 2
12 22 ; , , 2 ;
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q2-Bessel functions, ( ) ( ) ( )11 2
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and the q-analogue of Laplace transformation 2q l  of ( )f t  is given as:  
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By the same argument we can write (26) as  
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2 2 2

2 2
0

; 1
;

2 ; ;

;
;

j j jj

j
j

j j j j
j j

m mmn

q
mj

m

m k m
mj

k
k

q q q
L f t s

s q q q q

a qq q
s q q

µ

µ µ
µ

+
∞

∞
∆+

==
∞

+ + + +∆∞
+ +

∞ =

−
=

 
⋅ 
 

∑∏

∑

 

put 
1

2
j jm µ

α
+ + ∆ +

=  in ( )2q
αΓ , then  

So (25) becomes:  

( )( ) ( ) ( )

( ) ( )2

2 2
2

01

2

; 1

1

j j j
j j jj

j

j

mn m mmj j
q

mj

m j jq

a a
L f t s A q

s s

B q m

µ µ
µ

µ

+
∞ +

∆
==

   
= −   

   

⋅ Γ + + ∆ +

∑∏
 

Similarly  

( )( ) [ ] ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

12 2 2
2 2 2

0 1

2 2

2 2 2 2
0

2

1 1; ;
2 ;

; ;

j

j j j j

j
j j j

n
k k k

q jkk j

m m mk
j

m
m m

l f t s q s q q a q
s q

a q q

q q q q

µ

µ

µ

∞ ∆−

= =
∞

+
∞

=
+

= −
−

−
⋅

∑ ∏

∑
 

Put 2

11 ,
2

j jm
A

s
µ

α
+ + ∆ +

= =  we get 

( )( )

[ ] ( )
( ) ( ) ( )

( )

( )

( ) 2

2

1
2 2 2 22

01 12 2
22

2 2

2

0
2

;

1
1

21
12 1; ;

2

1
1 21 ;

2

j j
j j j j

j

j j j

j j

j
j j j

j
j

q

m
m m m j j

jn

j
mj mj j

m

m
m mj

j j
m q

m j j

l f t s

m
a q q q

a
m

q q K s
s

a
q

ms
A B q

m
K

s

µ
µ

µ

µ

µ

µ

µ

µ

µ
µ

+ +∆+
+

∞

== + +∆+

+

+

∞

∆
=

+ + ∆ + 
− − Γ 

 =
+ + ∆ + 

 
 

− 
  + + ∆ +  = Γ + + ∆ +   
 
 

∑∏

∏

 

Theorem 3. Let ( ) ( ) ( ) ( )3 31 2 1 2
12 2; , , ;

j n nJ q a t q J q a t qµ µ
− −


 be s set of q2-Bessel 
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functions, ( ) ( ) ( )31 1 2
2

1
;

j

n

j
j

f t t J q a t qµ
∆− −

=

= ∏  where , ja∆  and jµ  for  

1,2, ,j n=   are constants. Then we have  

( )( ) ( ) ( )

( ) 2

1
2

01

2

; 1

1
2

j j
j jj

j

j

mn m mmj j
q

mj

j j
m q

a a q
L f t s A q

qs s

m
B q

µ

µ

∞ −
∆

==

   
= −   

   
+ + ∆ + 

⋅ Γ  
 

∑∏
        (27) 

and the q-analogue of Laplace transformation 2q l  of ( )f t  is given by:  

( )( )
( )

( ) ( )
2

1

2
01

2

2

;
11 ;

2

1

2

j
j j

j

j

j

m
m mj

n
j

q
mj j j

j j
m q

a q
q

a s
l f t s A

mqs
K

s

m
B q

µ

µ

µ

−

∞

∆
==

− 
    =   + + ∆ +  
 
 

+ + ∆ +
⋅ Γ

∑∏
        (28) 

Proof. Now  

( ) ( ) ( ) ( )

( )
( )

( ) ( )

2 1
2 1 122

3 1 1 2 1 1
2 2 2 2 2

0
2

; 1
; ;

j j
j

j
j

j
j

j j j

m m
mk

jmk k
j j

m
m m

q q a q s
J a q s q a q s

q q q q

µ

µ

µ

−
− −

∞
− − − −

=
+

= −∑  

( )( )
( )
[ ]

( )
( ) ( )

( ) ( ) ( )
( ) ( )

12 2 2 1
1 1

2 2 2 2
0 1

1 2 1 1

2 2 2 2
0

2

;
;

2 ;

1

; ;

j

jj jj

j
j j j

k k n
k

q j
k j

k
mm mm k

j

m
m m

q q q q s
L f t s a q s

s q q

q q a q s

q q q q

µ

µ

∆−−
∞

− −∞

= =

− − −
∞

=
+

=

−
⋅

∑ ∏

∑

 

put 
1

2
j jm µ

α
+ + ∆ +

= , we get 

( )( )

( ) ( ) ( ) 2

2

1 2

01

;

1
1

2

j j
j jj

j
j

q

mn m mmj j j j
m q

mj

L f t s

a a q m
A q B q

qs s

µ µ∞ −
∆

==

+ + ∆ +     
= − Γ     

     
∑∏

 

Similarly  

( )( )

[ ] ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )
( ) ( )

2

2

1

1
2 2 2 2 2 2

01

1 2 2

0

;

11 1
2 ; ; ;

; .

jj jj j
j j

j
j j

q

mm mm km
n jk

j
mj

m m

k

kk

l f t s

q q qa
q a

s q q q q q

q s q

µ µ

µ

−
∞

−

==
∞ +

∞
∆+

=

−
=

−

⋅ −

∑∏

∑

 

Put 
1

2
j jm µ

α
+ + ∆ +

= , 2

1A
s

=  we get  
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( )( ) ( )
[ ] ( )

( ) ( ) 2

2 2

2 1 2 2
1

1 2

0
2

1
;

2 ;

1
2

.
11 ;

2

j

j
j j

j

j

n
j

q
j

m
m mj j j

m q

m j j

q a
l f t s

qss q q

a q m
q B q

s
m

K
s

µ

µ

µ

∆

∆+
=

∞

−

∞

=

−  
=  

 

− + + ∆ +   
Γ   

   ⋅
+ + ∆ + 

 
 

∏

∑

 

4. Special Cases 

1) Let 1n = , 1µ µ= , 1a a=  in above theorems, respectively we have: 
( ) ( )( )

( ) 2

11 2
2 2

2

0

2 ; ;

1
2

q

m

m q
m

L t J at q s

a a mA B q
s s

µ

µ µ

∆−

∞

∆
=

− + + ∆ +     = Γ     
     

∑
            (29) 

( ) ( )( )

( ) 2

11 2
2 2

2

0
2

2 ; ;

1
1 1 2;

2

q

m

m q
m

l t J at q s

a
a msA B q

ms K
s

µ

µ µ
µ

∆−

∞

∆
=

− 
  + + ∆ +    = Γ   + + ∆ +    

 
 

∑
    (30) 

( ) ( )( )
( ) ( ) ( ) 2

21 2
2 2

2 2 2

0
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11
2

q

m m m
m q

m

L t J at q s

a mA q B q
s

µ

µ
µ µ

∆−

∞
+

∆
=

+ + ∆ +   = − Γ   
   

∑
       (31) 

( ) ( )( )
( )

( ) 2

21 2
2 2

2 2

2

0
2

2 ; ;

1
1 1 2;

2

q

m
m m

m q
m

l t J at q s

a q
a msA B q

ms K
s

µ

µ
µ µ

µ

∆−

+
∞

∆
=

− 
  + + ∆ +    = Γ   + + ∆ +    
 
 

∑
    (32) 

( ) ( )( )
( ) ( ) ( ) 2

31 1 2
2 2

1 2

0

2 ; ;

11
2

q

m
m m m

m q
m

L t J aq t q s

a aq mA q B q
qs s

µ

µ
µ

∆− −

∞
−

∆
=

  + + ∆ +   = − Γ     
    

∑
     (33) 

( ) ( )( )
( )

( ) 2

31 1 2
2 2

1

2

0
2

2 ; ;

1
1 1 2;

2

q

m
m m

m q
m

l t J aq t q s

aq q
a msA B q

ms K
s

µ

µ µ
µ

∆− −

−
∞

∆
=

 
  + + ∆ +    = Γ   + + ∆ +    

 
 

∑
    (34) 

2) Put 1 µ∆ − =  in part (29) above, then  

( ) ( )( ) ( )
[ ] ( )

1
2 2

1 2
2 2 2 2 2

1
2 ; ;

2 ;q

q aL t J at q s
ss q q

µ
µ

µ
µ µ

+

+

∞

−  =  
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( ) ( )
( )

[ ] ( )
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2

2

1
2 2 2 2 2

2 2
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2 2 22 2
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; 1 2 2
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.
2 2;

m
mm

q
m

m
m

q
m

m

q q qa m
s q q

a a
a as s e

ss sq q

µ
µ

µ

µ

µ µ

µ
+ −

+ +
∞

∞

=

∞

+ +
=

− + +   Γ   
   

−   
    −    = =  

 

∑

∑

 

3) Put 0µ =  we get  

( ) ( )( ) [ ] 2
1 2

2 0 2

12 ; ; .
2q q

aL J at q s e
ss
− =  

 
 

which is the same result cited by [7]. 
4) Put 1∆ −  in (33), then  

( ) ( )( ) ( )
[ ] ( )

1
2 2

3 1
2 2 2 2 2

1
2 ; .

2 ;q

q aL t J q at s
qss q q
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µ
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−
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∞

−  
=  
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2

1
1 2 2 2 2 2

2 2
0
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2
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2 2;

m m
m m m
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m
m

m mm

m

q
m

m

aq mq q q q
s

q q

a aaq q
q q aqs E

ss sq q

µ
µ

µ µ

µ µ
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− + +

∞

=

−

∞

+ +
=

+ +   − Γ   
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           = − =  

 

∑

∑

 

5) Let 0µ =  and 0a =  in (34), then  

( ) ( )
[ ] ( ) 2

2 2 1
1 2 2

2 1

2

1 1 1; 1
1 1 22 ;

2

q q

q
L t s q

s K
s

∆

−∆−
∆+

− ∆ + = − Γ  ∆ +   
 
 

 

replacing 1∆ −  by α , we get  

( ) ( )
[ ] 2

2 2

2 2

2

1 1; 1
1 22 ;1

2

q q

q
L t s

s K
s

α

α
α

α
α+

−  = Γ +    + 
 

 

which is the same result in [8].  

Acknowledgements 

The authors are thankful to Professor S. K. Al-Omari for his suggestions in this 
paper. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] Jackson, F.H. (1905) The Application of Basic Numbers to Bessel’s and Legendre’s 

https://doi.org/10.4236/am.2019.105021


A. Al-Shibani, R. T. Al-Khairy 
 

 

DOI: 10.4236/am.2019.105021 311 Applied Mathematics 
 

Functions. Proceedings of the London Mathematical Society, 2, 192-220.  
https://doi.org/10.1112/plms/s2-2.1.192 

[2] Ismail, M.E.H. (1982) The Zeros of Basic Bessel Function, the Functions ( )v ax xJ + , 

and Associated Orthogonal Polynomials. Journal of Mathematical Analysis and Ap-
plications, 86, 1-19. https://doi.org/10.1016/0022-247X(82)90248-7 

[3] Exton, H. (1978) A Basic Analogue of the Bessel-Clifford Equation. Jnanabha, 8, 
49-56. 

[4] Yürekli, O. and Sadek, I. (1991) A Parseval-Goldstein Type Theorem on the Widder 
Potential Transform and Its Applications. International Journal of Mathematics and 
Mathematical Sciences, 14, 517-524. https://doi.org/10.1155/S0161171291000704 

[5] Yürelki, O. (1999) Theorems on L2-Transforms and Its Application. Complex Va-
riables, Theory and Application: An International Journal, 38, 95-107.  
https://doi.org/10.1080/17476939908815157 

[6] Yürekli, O. (1999) New Identities Involving the Laplace and the L2-Transforms and 
Their Applications. Applied Mathematics and Computation, 99, 141-151.  
https://doi.org/10.1016/S0096-3003(98)00002-2 

[7] Purohit, S.D. and Kalla, S.L. (2007) On q-Laplace Transforms of the q-Bessel Func-
tions. Fractional Calculus and Applied Analysis, 10, 189-196. 

[8] Uçar, F. and Albayrak, D. (2011) On q-Laplace Type Integral Operators and Their 
Applications. Journal of Difference Equations and Applications, 18, 1001-1014. 

[9] Al-Omari, S.K.Q. (2017) On q-Analogues of the Natural Transform of Certain 
q-Bessel Function and Some Application. Filomat, 31, 2587-2598.  
https://doi.org/10.2298/FIL1709587A 

[10] Hahn, W. (1949) Beitrage Zur Theorie der Heineschen Reihen, Die 24 Integrale der 
hypergeometrischen q-Differenzengleichung, Das q-Analogon der Laplace Trans-
formation. Mathematische Nachrichten, 2, 340-379.  
https://doi.org/10.1002/mana.19490020604 

[11] Kac, V.G. and De Sele, A. (2005) On Integral Representations of q-Gamma and 
q-Beta Functions. Accademia Nazionale dei Lincei, 16, 11-29.  

 
 

https://doi.org/10.4236/am.2019.105021
https://doi.org/10.1112/plms/s2-2.1.192
https://doi.org/10.1016/0022-247X(82)90248-7
https://doi.org/10.1155/S0161171291000704
https://doi.org/10.1080/17476939908815157
https://doi.org/10.1016/S0096-3003(98)00002-2
https://doi.org/10.2298/FIL1709587A
https://doi.org/10.1002/mana.19490020604


Applied Mathematics, 2019, 10, 312-325 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2019.105022  May 21, 2019 312 Applied Mathematics 
 

 
 
 

Solution of Some Second Order Ordinary 
Differential Equations Using a Derived 
Algorithm 

R. B. Ogunrinde, J. O. Olubunmi 

Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti, Nigeria 

 
 
 

Abstract 
We emphasized explicitly on the derivation and implementation of a new 
numerical algorithm scheme which gave stable results that show the applica-
bility of the method. In this paper, we aimed to solve some second order ini-
tial value problems of ordinary differential equations and compare the results 
with the theoretical solution. Using this method to solve some initial value 
problems of second order ordinary differential equations, we discovered that 
the results compared favorably with the theoretical solution which led to the 
conclusion that the new numerical algorithm scheme derived in the research 
is approximately correct and can be prescribed for any related ordinary diffe-
rential equations. 
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1. Introduction 

Numerical methods are methods that are constructed through a given interval. 
The methods start with an initial point and then take a short step forward in 
time to find the next solution point. The process then continues with subsequent 
steps to map out the solution. There are two main numerical methods of solving 
initial value problems of ordinary differential equations. They are single step 
methods, also known as one step method and multistep methods. The sin-
gle-step methods are the method that uses information about the solution at one 
point xn, to advance it to the next point xn+1. The single step methods have cer-
tain advantages which include, being self-starting and having the flexibility to 
change step size from one step to the next. 
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Various numerical methods have been developed for the solution of some ini-
tial value problems of ordinary differential equations. Some of the numerical 
analysts who have worked extensively on the development on numerical me-
thods are: [1] [2] [3] [4] [5]. Development of a scheme for solving some initial 
value problem of ordinary differential equations with a particular basis function 
was carried out by [1] which was improved upon by [2] for solving related prob-
lems. [4] and [5] worked extensively in other to improve upon schemes devel-
oped by [1] and [2] and better methods were produced. The efficiency of all 
these contributed efforts in numerical analysis had been measured and tested for 
their stability, accuracy, convergence and consistency properties [6] [7] [8]. The 
accuracy properties of different methods are usually compared by considering 
the order of convergence as well as the truncation error coefficients of the vari-
ous methods. Research has shown that for a method to be suitable for solving 
any sets of initial value problems (ivps) in ordinary differential equations 
(ODEs), it must have all the mentioned characteristics. 

Recently [9] developed a scheme in which standard finite difference schemes 
were developed. Similarly, [4] also worked on some approximation techniques 
which were used to derive qualitatively stable non-standard finite difference 
schemes. 

In this paper, a new one-step numerical method is developed with the above 
mentioned characteristics in mind to solve some initial value problems of ordi-
nary differential equations which were based on the local representation of the 
theoretical solution to initial value problem of the form ( ) ( ), ; .y f x y y a η′ = =  
In the interval ( )1,n nx x +  by interpolating function 

( ) ( )2 3
0 1 2 3

kx
eF x a a x a x a x bxR e µ+= + + + + , 0 1 2 3, , ,a a a a  and b are real unde-

termined coefficients and ,k µ  are complex parameters. But in this paper, we 
shall be using the same assumptions but different interpolating functions such as: 

( ) ( )2 3
0 1 2 3

kx
eF x a a x a x a x bxR e µ+= + + + + , where 0 1 2 3, , ,a a a a  and b are real 

undetermined coefficients and ,k µ  are complex parameters. 

2. Methodogy 

Considering an interpolating function: 

( ) ( )2 3
0 1 2 3

kx
ef x a a x a x a x bxR e µ+= + + + +

             
(1) 

where 0 1 2 3, , ,a a a a  and b are real undetermined coefficients and ,k µ  are 
complex parameters. 

Since k and μ are complex parameters, then we have: 

1 2k k ik= +                           (2) 

Also, iµ θ= , where 2 1i = − , therefore putting this together with (2) in (1), 
we have the Interpolating function to be: 

( ) ( )12 3
0 1 2 3 2coskf x a a x a x a x bxe x k x σ= + + + + +           (3) 

Let us define ( )R x  and ( )xθ  as follows: 
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( )
( )

1

2

k xR x xe

x k xθ σ

= 


= +                          
(4) 

Putting (4) in (3), we have: 

( ) ( ) ( )2 3
0 1 2 3 cosf x a a x a x a x bR x xθ= + + + +             (5) 

By assumption, ny  is a numerical estimate to the theoretical solution ( )ny x  
and also ( ),n n nf f x y= . Let our mesh points (self length) be define as follows: 

( )1; 0,1, 2, , 0, . 1n n nx a nh n a x nh x n h+= + = = = = +         (6) 

Imposing the following constraints on the interpolating function (5), we have: 
1) The interpolating function must coincide with the theoretical solution at 

nx x=  and 1nx x += . This required that: 

( ) ( ) ( )2 3
1 0 1 1 2 1 3 1 1 cos .n n n n n nf x a a x a x a x bR x xθ+ + + + += + + + +        (7) 

That is, ( ) ( )n nf x y x=  and 

( ) ( ) ( )2 3
1 0 1 1 2 1 3 1 1 1cosn n n n n nf x a a x a x a x bR x xθ+ + + + + += + + + +        (8) 

It implies that ( ) ( )1 1n nf x y x+ += . 
2) The first, second, third and fourth derivatives with respect to x of the in-

terpolating function respectively coincide with the differential equation as well 
as its first, second, third and fourth derivatives with respect to x at xn, i.e. 

( )
( )
( )
( )

1

2 1

3 2

4 3

n n

n n

n n

n n

F x f
F x f
F x f
F x f

=


= 


= 
=                          

 (9) 

From Equation (9) implies: 

( ) ( ) ( )( ) ( ) ( )( )2
2 3

d d2 3 cos cos
d dn n n n n n nf x f a x a x x bR x bR x x
x x

θ θ = + + +′ +   
(10) 

where 

( )( ) ( )
( )

11 1 1 1

1

1 1

1

d d
d d

xkk x k x k x k x
n

k x
n

bR x bxe e b bx k e be bk xe
x x

be bk R x

⋅ ⋅= = + = +

= +
     

(11) 

( ) ( ) ( )2 2
d dcos cos sin
d dn nx k x k x
x x

θ σ θ+ = −  
           

(12) 

Putting (11) & (12) in (10) we have: 

( ) ( ) ( ){ }
( ) ( )( )

( ) ( ) ( )
( ) ( )( )

1

1

2
1 2 3 1

2

2
1 2 3 1

2

2 3 cos

sin

2 3 cos cos

sin

k x
n n n n n n

n n
k x

n n n n n

n n

f x f a a x a x x be bk R x

bR x k x

a a x a x be x bk R x x

bR x k x

θ

θ

θ θ

θ

= = + + +
+ − 

= + + +  +

−


−

′



 

( ) ( ) ( )
( ) ( )

12
1 2 3 1

2

2 3 cos cos
sin

nk x
n n n n n n

n n

f a a x a x b e x k R x x
k R x x

θ θ

θ

= + + + +
−       

(13) 

That is, ( )n nF x f′ =  
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
2 3

1 1

d d2 6 cos cos
d d

d dcos cos
d d

d dsin sin
d d

n nk x k x
n n n n n

n n n n

n n n n

nF x f a x a x b e x x e
x x

k R x x x k R x
x x

R x x x R x
x x

θ θ

θ θ

θ θ

 ′= = + + +  
+ +


 − +  
 

′



′

  (14) 

where 

( )

( )

1 1

1 1

1

1

1 1 1

2 2
1 1 1 1

d d
d d

n n n

n n n

k x k x k x
n

k x k x k x
n

k R x k xe k x e e x
x x

k xe k e k R x k e

  = = +    
= + = +

          (15) 

Since ( ) ( )11
1 .nk xk

n n n nR x x e x e k R x= = +  
Putting (15) in (14) 

( ) ( )( ) ( )( ){ }
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ){ }

1 1

1

1

2 3 1

2
1 1 1

1

2 6 sin cos

sin cos

cos sin

n n

n

n

k x k x
n n n n n

k x
n n n n

k x
n n

n

n n

F x f a x a x e x x k e

k R x x x k R

b

x k e

R x x x e k R x

θ θ

θ θ

θ θ

′= = + − +

−

′′ + 

+ + +

− + + 


 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1

1

2 3 1

2
1 1 1

1

2 6 sin cos

sin cos cos

cos sin sin

n n

n

n

k x k x
n n n n n

k x
n n n n n

k x
n n n n n

F x a x a x e x k e x

k R x x k R x x k e x

R x x e

b

x k R x x

θ θ

θ θ θ

θ θ θ

= + −′′ + +

− + +

− − −





 

( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )}

1 1
2 3 1

2
1 1

2 6 2 sin 2 cos

2 sin cos cos

n nk x k x
n n n n

n n n n n n

nf a x a x b e x k e x

k R x x k R x x R x x

θ θ

θ θ θ

′ = + + − +

− + −
    (16) 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

3

1 1

1 1

2 2
1 1

d d6 2 sin sin 2
d d

d d2 cos cos 2
d d

d d2 sin sin 2
d d
d d cos cos
d d

d d cos cos
d d

n n

n n

k x k x
n n n

k x k x
n n

n n n n

n n n

n n

n

n

n

F x f a e x x e
x x

k e x x k e
x x

k R x x x k R x
x x

k R x x x k R x
x x

R x x x

b

x

θ θ

θ θ

θ θ

θ θ

θ θ

  ′′= = − +   
 + + 
 
 − + 
 
 + + 
 

− +

′′′ +

( )nR x
x

 
  

 

( ) ( ) ( )( )
( )( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

1 1

1 1

1

1

1

3 1

2
1 1

2
1 1 1

2 2 3
1 1 1

1

6 2 cos 2 sin

2 sin 2 cos

2 cos 2 2 sin

sin cos

sin cos

n n

n n

n

n

n

k x k x
n n n

k x k x
n n

k x
n n n n

k x
n n n n

k x
n n n n

F x a e x k e x

k e x k e x

k R x x k e k R x x

k R x x k e k R x x

R x x e R x x

b

k

θ θ

θ θ

θ θ

θ θ

θ θ

= − +
+ − +

 − + + 
+ − + +

− +

′ +

− +

′′
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1

3 1

2
1 1

3
1 1

6 3 cos 6 sin

3 sin 2 cos

cos sin cos

n n

n

k x k x
n n n

n n n n

k x
n n n n n

nF x f a b e x k e x

k R x x k R x x

k R x x R x x k e x

θ θ

θ θ

θ θ θ

′′= = + − −

+ −

−

′′

+ +

′

  

(17) 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

1 12
1

2
1

d d3 cos cos
d d

d d6 sin sin
d d

d d3 cos cos
d d

d d3 sin sin
d d

n n

n n

n n

v
n n

k x k x
n n

k x k x
n n

k x k x
n n

n n n n

F x f x

b e x x e
x x

e x x e
x x

k e x x e
x x

k R x x x R x
x x

θ θ

θ θ

θ θ

θ θ

′ =

  = − +   

 − + 
 

 + +

′′


 

− +

′


 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )1 1

1

3
1

1

d d2 cos cos
d d

d dcos cos
d d

d dsin sin
d d

d dcos cos
d d

n n

n n n n

n n n

n n n n

k x k x
n n

k R x x x R x
x x

k R x x R x
x x

R x x x R x
x x

k e x x e
x x

θ θ

θ θ

θ θ

θ θ

 − + 
 

 + + 
 

 + + 
 

 − + 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

1

1

2
1 1

3 2 3
1 1 1

1 1

2 4
1 1

4 sin 11 cos 12 sin

4 cos 5 cos 4 sin

3 sin cos sin

cos cos

n n n

n

n

n

k x k x k xIV
n n n n

k x
n n n n n

k x
n n n n n

k x
n n n

F x b e x k e x k e x

k e x k R x x k R x x

k R x x R x x k e x

k e x k R x x

θ θ θ

θ θ θ

θ θ θ

θ θ

= − −

+ − −

+ + +

− + 

 (18) 

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}

1 2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

n

n
k x

n n n n

n n n n

n n n n

f
e x k x k x k x

k x k x R x k x

k x k x x k

b

x

θ θ θ θ

θ θ θ

θ θ θ θ

′′′

− − +

+ − + −

− + + +

=

  

(19) 

From (17), we have: 

( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )}

1 1 1

1

2 2
3 1 1

2 3
1 1 1

1

1 3 cos 6 sin 3 cos
6

3 sin 2 cos cos

sin cos

n n n

n

k x k x k x
n n n n

n n n n n n

k x
n n n

a f b e x k e x k e x

k R x x k R x x k R x x

R x x k e x

θ θ θ

θ θ θ

θ θ

= − − − +

− − +

+ − 

 (20) 

Putting (19) in (20), we have: 
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( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}

( ) ( )

1

1 1

3
2

3 2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

2
1 1

1
6 4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

3 cos 6 sin 3

n

n n

n
n k x

n n n n

n n n n

n n n n

k x k x
n n

f
a f

e x k x k x k x

k x k x R x k x

k x k x x k x

e x k e x k

θ θ θ θ

θ θ θ

θ θ θ θ

θ θ

  
  
  
  
  
  = −
  − − +
  
  + − + −
  
  − + + + 

× − − + ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) ( )}

1

1

2
1

3
1 1 1

cos 3 sin

2 cos cos sin cos

n

n

k x
n n n

k x
n n n n n n n

e x k R x x

k R x x k R x x R x x k e x

θ θ

θ θ θ θ

−



− + + −




(21) 

Let: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

2
1 1

2 3
1 1 1

1

3 cos 6 sin 3 cos

3 sin 2 cos cos

sin cos

n n n

n

k x k x k x
n n n

n n n n n n

k x
n n n

v e x k e x k e x

k R x x k R x x k R x x

R x x k e x

θ θ θ

θ θ θ

θ θ

= − − +

− − +

+ −    

(22) 

Then, (21) becomes: 

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}

1

3
2

3 2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

1
6 4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

n

n
n k x

n n n n

n n n n

n n n n

f
a f v

e x k x k x k x

k x k x R x k x

k x k x x k x

θ θ θ θ

θ θ θ

θ θ θ θ

  
  
  
  
  
  = −  − − +
  
  + − + −  
   − + + +   

(23) 

From (16), we have: 

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}

1

3
1 2

2 2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

1
2 4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

n

n
n n nk x

n n n n

n n n n

n n n n

f
a f f v x

e x k x k x k x

k x k x R x k x

k x k x x k x

θ θ θ θ

θ θ θ

θ θ θ θ

   
   
   
   
   
   = − −   − − +   
   + − + −   

    − + + +  

( ) ( ) ( ) ( ){

( ) ( ) ( ) ( )}

1 1
1 1

2
1

2 sin 2 cos 2 sin

cos cos

n nk x k x
n n n n

n n n n

b e x k e x k R x x

k R x x R x x

θ θ θ

θ θ




− − − −





+ − 




(24) 
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Putting (19) and (23) in (24) we have: 

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}

1

3
1 2

2 2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

1
2 4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

n

n
n n nk x

n n n n

n n n n

n n n n

f
a f f v x

e x k x k x k x

k x k x R x k x

k x k x x k x

θ θ θ θ

θ θ θ

θ θ θ θ

   
   
   
   
   
   = − −   − − +   
   + − + −   

    − + + +  

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( ) ( )}
( ) ( ) ( ) ( ){

( )

1

1 1

3

2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

1 1

2
1

4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

2 sin 2 cos 2 sin

c

n

n n

n
k x

n n n n

n n n n

n n n n

k x k x
n n n n

n

f
e x k x k x k x

k x k x R x k x

k x k x x k x

e x k e x k R x x

k R x

θ θ θ θ

θ θ θ

θ θ θ θ

θ θ θ




 
 
 
 
 
 −  − − +
 
 + − + − 
  − + + + 

× − − −

+ ( ) ( ) ( )}os cosn n nx R x xθ θ





− 




 (25) 

From (13) we have: 

( ) ( ) ( ) ( ) ( )12
1 2 3 12 3 cos cos sinnk x

n n n n n n n na f a x a x b e x k R x x R x xθ θ θ = − − − + −   
(26) 

Putting (19), (23) and (25) in (26), we have: 

( ) ( ) ( ){
( ) ( ) ( ) ( )}

( ) ( ) ( ) ( ){
( ) ( )} ( ) ( ){
( ) ( ) ( )

1 1 1

1

2 2
1 1

2 3
1 1

1 2 3
1 1 1

2 2
1 1 1

3
1 1 1

3 cos 6 sin 3 cos

3 sin 2 cos

4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos

n n n

n

k x k x k x
n n n n

n n n n n
n k x

n n n n

n n n n
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f e x k e x k e x

k R x x k R x x f
a f

e x k x k x k x
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θ θ θ

θ θ

θ θ θ θ

θ θ θ

θ θ θ

− − − − +
− − −

− − +

+ − + −

− + + +

=
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1
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1 1

2
1
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1 1 1
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1 1 1

3
1
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2 sin 2 cos 2 sin
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n n

n

n

k x k x
n n n n

n n n n

k x
n n n n

n n n

n

n

x

e x k e x k R x x

k R x x R x x

e x k x k x k x

k x k x k

k

x

R x x

θ

θ θ θ

θ θ

θ θ θ θ

θ θ θ

θ

 
 
 
 
 
 
 
 
 















− − −
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− − +
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−

−

− +
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( ) ( ) ( ) ( )}4
1 13 sin cos cosn n n n
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x k x x k x

x

θ θ θ
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( ) ( ) ( ){
( ) ( ) ( ) ( )}
( ) ( ) ( ) ( ){

( ) ( )} ( ) ( ){
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1 1 1

1

2
1 1

2
1 12

2 3
1 1 1

2 2
1 1 1

3 4
1 1 1

3 cos 6 sin 3 cos

3 sin 2 cos1
2 4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

n n n

n

k x k x k x
n n n

n n n n
n k x

n n n n

n n n n

n n n n

e x k e x k e x

k R x x k R x x
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e x k x k x k x

k x k x R x k x

k x k x x k x

θ θ θ

θ θ

θ θ θ θ

θ θ θ

θ θ θ θ
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−

− − +

+ − + −
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−
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1
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3
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1 1 1
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1 1 1

3 4
1 1 1

1

4sin 11 cos 12 sin 4 cos

sin cos 5 cos

4 sin 3 sin cos cos

cos cos

n

n

n

n
k x

n n n n

n n n n

n n n n

k x
n n n

x

f
e x k x k x k x

k x k x R x k x

k x k x x k x

e x k R x x R x

θ θ θ θ

θ θ θ

θ θ θ θ
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 −





 
 
 
 
 
 
 
 
 

− − +

+ − + −

− +


 
 
 
  + +

×



−



+ ( ) ( )sinn nxθ  

(27) 

For preservative of the scheme, then we can write the new scheme in a more 
compact form as: 

( ) ( )
( )1

2 3 2
1 1 2 3

2 2

2 1 3 3 1

cos cos sin sin cos

n n

k
n n n n

y y a h a a n h a n n

bR he h k h k hθ θ θ

+ = + + + + + +

 + − − 
 

Putting 1 2,a a  and 3a  as derived above, we arrived at a new scheme. But to 
test the scheme, we shall proceed to write a programme which will command the 
scheme to solve some firs order differential equations. 

3. Implementation of the Scheem 

PROBLEM 1. A spring with a mass of 2 kg has natural length m. A force of 5N is 
required to maintain it stretched to a length of m. If the spring is stretched to a 
length of m and then released with initial velocity 0, find the position of the mass 
at any time. 

( )0.2 25.6k =                          (1) 

So, 25.6 128
0.2

k = = .                      (2) 

Using this value of the spring constant k, together with m = 2 then, we have 
2

2

d2 128 0
d

x x
t

+ =                         (3) 

( ) 1 2cos8 sin8x t c t c t= +                      (4) 

( ) 1 28 sin8 8 cos8x t c t c t′ = − +                    (5) 

Since the initial velocity is given as ( )0 0x′ = , we have 2 0c =  and so the so-
lution is 
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( ) 1 cos8
5

x t t=                          (6) 

The result compared favourably with the theoretical solutions. 
PROBLEM 2: 
Suppose that the spring of Problem 1 is immersed in a fluid with damping 

constant. Find the position of the mass at any time if it starts from the equili-
brium Position and is given a push to start it with an initial velocity of m/s. 

Mathematical Interpretation of the Problem 
From Problem 1, the mass is 2m =  and the spring constant is 128k = , so 

the differential Equation (3) becomes 
2

2

d d2 40 128 0
dd

x x x
tt

+ + =
                     

(7) 

or  

2

2

d d20 64 0
dd

x x x
tt

+ + =
                      

(8) 

( ) 4 16
1 2

t tx t c e c e− −= +                       (9) 

We are given that ( )0 0x = , 1 2 0c c+ = . Differentiating, we get 

( ) 4 16
1 24 16t tx t c e c e− −′ = − +                    (10) 

So  

( ) 1 20 4 16 0.6x c c′ = − + =                     (11) 

Since 2 1c c= − , this gives 112 0.6c =  or 1 0.05c = . Therefore 

( )4 160.05 t tx e e− −= −
                     

(12) 

The result compares favourably with the theoretical solutions. 
The result compares favourably with the theoretical solutions. 

4. Conclusions 

The procedure for development and implementation of a numerical algorithm 
has been examined in this work. The method employed a basis function for ap-
proximation. The scheme that formed the derived method was implemented to 
test the accuracy. The method gave a numerical algorithm capable of solving 
second order problems of ordinary differential equations. The new numerical 
algorithm scheme was employed to solve second order initial value problems of 
ordinary differential equations problems. The computations were carried out in 
computer codes. Tables 1-4 represent the numerical results of the examples at 
various values of step size (H). From the tables, it could be concluded that a 
smaller value of H, gives a better result. Figures 1-4 readily show the compari-
son of the newly derived method and the theoretical solution. Since the results 
obtained compare favorably with the theoretical, this shows the accuracy of the 
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new method and so can be said to be approximately correct. 
 

Table 1. Numerical results of problem 1 at H = 0.01. 

X(n) THEORITICAL SOLUTION OLUBUNMI TRUN 

0.00000000 0.20000000 0.20000000 0.00000000 

0.01000000 0.19936034 0.20000000 0.00063966 

0.02000000 0.19744547 0.19999953 0.00255406 

0.03000000 0.19426760 0.19626706 0.00199946 

0.04000000 0.18984708 0.19087657 0.00102949 

0.05000000 0.18421221 0.18522314 0.00101093 

0.06000000 0.17739899 0,17885647 0.00145748 

0.07000000 0.16945103 0.17057349 0.00112246 

0.08000000 0.16041915 0.16179043 0.00137128 

0.09000000 0.15036115 0.15114648 0.00078533 

0.09999999 0.13934135 0.14011432 0.00077297 

0.11000000 0.12743023 0.12878653 0.0013563 

0.12000000 0.11470401 0.11534238 0.00063837 

0.13000000 0.10124406 0.10815221 0.00690815 

0.14000000 0.08713649 0.08937685 0.00224036 

0.14999999 0.07247157 0.07387969 0.00140812 

0.16000000 0.05734305 0.05876521 0.00142216 

0.17000000 0.04184773 0.04497863 0.0031309 

0.17999999 0.02608475 0.02765649 0.00157174 

0.19000000 0.01015490 0.01217869 0.00202379 

0.19999999 0.00583989 0.00592321 8.332E−05 

 

 
Figure 1. Graphical presentation of problem 1. 
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Table 2. Numerical results of problem 1 at H = 0.001. 

X(n) THEORETICAL SOLUTION OLUBUNMI TRUN 

0.00000000 0.20000000 0.20000000 0.00000000 

0.00100000 0.19999361 0.20000000 0.00000639 

0.00200000 0.19997440 0.19998160 0.00000720 

0.00300000 0.19994241 0.19995000 0.00000759 

0.00400000 0.19989762 0.19990601 0.00000839 

0.00500000 0.19984002 0.19984885 0.00000883 

0.00600000 0.19976965 0.19977901 0.00000936 

0.00700000 0.19968648 0.19969999 0.00001351 

0.00800000 0.19959055 0.19960510 0.00001455 

0.00900000 0.19948183 0.19949996 0.00001813 

0.01000000 0.19936034 0.19937993 0.00001959 

0.01100000 0.19922610 0.19924990 0.00002380 

0.01200000 0.19907911 0.19910485 0.00002574 

0.01300000 0.19891937 0.19894679 0.00002742 

0.01400000 0.19874692 0.19877972 0.00003280 

0.01500000 0.19856173 0.19859963 0.00003790 

0.01600000 0.19836384 0.19840453 0.00004069 

0.01700000 0.19815326 0.19819939 0.00004613 

0.01800000 0.19792998 0.19797923 0.00004925 

0.01900000 0.19769405 0.19774904 0.00005499 

0.02000000 0.19744545 0.19750381 0.00005836 

 

 
Figure 2. Graphical presentation of problem 1. 
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Table 3. Numerical results of problem 2 at H = 0.001. 

X(n) THEORETICAL SOLUTION OLUBUNMI TRUN 

0.00000000 0.10000000 0.10000000 0.0000000 

0.00100000 0.09900676 0.09900348 0.00000328 

0.00200000 0.09802692 0.09807573 0.00004891 

0.00300000 0.09706028 0.09713825 0.00007797 

0.00400000 0.09610662 0.09618537 0.00007875 

0.00500000 0.09516575 0.09527836 0.00011261 

0.00600000 0.09423748 0.09434861 0.00011113 

0.00700000 0.09332163 0.09343216 0.00011053 

0.00800000 0.09241800 0.09252773 0.00010973 

0.00900000 0.09152640 0.09173281 0.00020641 

0.01000000 0.09064666 0.09081132 0.00016472 

0.01100000 0.08977859 0.08999590 0.00021731 

0.01200000 0.08892203 0.08899999 0.00022040 

0.01300000 0.08807679 0.08835681 0.00028002 

0.01400000 0.08724272 0.08752332 0.00028079 

0.01500000 0.08641962 0.08673274 0.00031312 

0.01600000 0.08560735 0.08570748 0.00030213 

0.01700000 0.08480573 0.08413814 0.00043241 

0.01800000 0.08401462 0.08427880 0.00051327 

0.01900000 0.08323386 0.08382617 0.00059231 

0.02000000 0.08246327 0.08209541 0.00063214 

 

 
Figure 3. Graphical presentation of problem 2. 

https://doi.org/10.4236/am.2019.105022


R. B. Ogunrinde, J. O. Olubunmi 
 

 

DOI: 10.4236/am.2019.105022 324 Applied Mathematics 
 

Table 4. Numerical results of problem 2 at H = 0.0001. 

X(n) THEORETICAL SOLUTION OLUBUNMI TRUN 

0.00000000 0.10000000 0.10000000 0.00000000 

0.00010000 0.09990007 0.09992720 0.00002713 

0.00020000 0.09980027 0.09983454 0.00003427 

0.00030000 0.09970061 0.09974292 0.00004231 

0.00040000 0.09960109 0.09965531 0.00005422 

0.00050000 0.09950170 0.09956093 0.00005923 

0.00060000 0.09940244 0.09946347 0.00006123 

0.00070000 0.09930332 0.09937088 0.00006676 

0.00080000 0.09920434 0.09927559 0.00007125 

0.00090000 0.09910548 0.09918759 0.00008211 

0.00100000 0.09900676 0.09909777 0.00009101 

0.00110000 0.09890819 0.09894247 0.00010113 

0.00120000 0.09880973 0.09886919 0.00013274 

0.00130000 0.09871142 0.09877561 0.00015777 

0.00140000 0.09861323 0.09861727 0.00016238 

0.00150000 0.09851518 0.09854087 0.00018621 

0.00160000 0.09841727 0.09845110 0.00020000 

0.00170000 0.09831949 0.09836652 0.00022135 

0.00180000 0.09822183 0.09827469 0.00022927 

0.00190000 0.09812431 0.09830139 0.00024221 

0.00200000 0.09802692 0.09837561 0.00027725 

 

 
Figure 4. Graphical presentation of problem 2. 
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In our subsequent research, we shall pay more attention on the implementa-
tion of this new scheme to solve some higher order initial value problems of or-
dinary differential equation and also compare the results with the existing me-
thods and thereafter we examine the characteristics properties such as the stabil-
ity, convergence, accuracy and consistency of the scheme. 
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Abstract 

The purpose of this paper is to investigate the behavior of a scale factor for 

Wiener integrals about the unbounded function ( ) { }1 0
exp d

Tn
jjF x a xα

=
= ∑ ∫ , 

where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  on the 

Wiener space [ ]0 0,C T . 
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1. Introduction 

In [1], M. D. Brue introduced the functional transform on the Feynman integral 
(1972). In [2], R. H. Cameron wrote the paper about the translation pathology of 
a Wiener spac (1972). In [3] [4] [5], R. H. Cameron and W. T. Martin proved 
some theorems on the transformation and the translation and used the 
expression of the change of scale for Wiener integrals (1944, 1947). In [6] [7], R. 
H. Cameron and D. A. Storvick proved relationships between Wiener integrals 
and analytic Feynman integrals to prove the change of scale formula for Wiener 
integral on the Wiener space in 1987. In [8], M. D. Gaysinsky and M. S. 
Goldstein proved the Self-Adjointness of a Schrödinger Operator and Wiener 
Integrals (1992). 

In [9], G. W. Johnson and M. L. Lapidus wrote the paper about the Feynman 
integral and Feynman’s Operational Calculus (2000). In [10], G. W. Johnson and 
D. L. Skoug proved the scale-invariant measurability in Wiener Space (1979). 
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In [11] and [12], Y. S. Kim proved a change of scale formula for Wiener 
integrals about cylinder functions ( ) ( )( )1 , , ,nf h x h x




 with  

( ) ,1n
pf L R p∈ ≤ ≤ ∞  on the abstract Wiener space: the analytic Wiener 

integral exists for ( ) ,1n
pf L R p∈ ≤ ≤ ∞ , and the analytic Feynman integral 

exists for ( )1
nf L R∈  (1998) and (2001). But the Feynman integral does not 

always exist for 1 p< . 
In [13], Y. S. Kim investigates a behavior of a scale factor for the Wiener 

integral of a function ( ) ( )( ){ }0
exp , d

T
F x t x t tθ= ∫ , where [ ]: 0,T Rθ × →C  is 

defined by ( ) { } ( ), exp d tR
t u iuv vθ σ= ∫  which is a Fourier-Stieltzes transform 

of a complex Borel measure ( )t Rσ ∈M  and ( )RM  is a set of complex Borel 
measures defined on R. 

In this paper, we investigate the behavior of a scale factor 0ρ >  for the 

Wiener integral 
[ ] ( ) ( )

0 0,
d

C T
F x m xρ∫  which is defined on the Wiener space 

[ ]0 0,C T  about the unbounded function ( ) { }1 0
exp d

Tn
jjF x a xα

=
= ∑ ∫  with 

0a > , where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  on 

the Wiener space [ ]0 0,C T . 

2. Definitions and Preliminaries 

Let [ ]0 0,C T  denote the space of real-valued continuous functions x on [ ]0,T  
such that ( )0 0x = . Let   denote the class of all Wiener measurable subsets 
of [ ]0 0,C T  and let m denote a Wiener measure and [ ]( )0 0, , ,C T m  be a 
Wiener measure space and we denote the Wiener integral of a function  

[ ]0: 0,F C T →C  by 
[ ] ( ) ( )

0 0,
d

C T
F x m x∫ . 

A subset E of [ ]0 0,C T  is said to be scale-invariant measurable if Eρ ∈  
for each 0ρ > , and a scale-invariant measurable set N is said to be scale-invariant 
null if ( ) 0m Nρ =  for each 0ρ > . A property that holds except on a 
scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). 
If two functionals F and G are equal s-a.e., we write F G≈ . A function F 
defined on the scale invariant measurable set E is a scale invariant measurable 
function if ( )F xα  is a Wiener measurable function for all 0α > .  

Throughout this paper, let nR  denote the n-dimensional Euclidean space 
and let , +C C , and +C  denote the set of complex numbers, the set of complex 
numbers with positive real part, and the set of non-zero complex numbers with 
nonnegative real part, respectively. 

Definition 2.1. Let F be a complex-valued measurable function on [ ]0 0,C T  
such that the integral  

( ) [ ] ( )
0

1
2

0,
; d

C T
J F F x m xλ λ

− 
=   

 
∫                  (2.1) 

exists for all real 0λ > . If there exists a function ( );J F z∗  analytic on +C  
such that ( ) ( ); ;J F J Fλ λ∗ =  for all real 0λ > , then we define ( );J F z∗  to 
be the analytic Wiener integral of F over [ ]0 0,C T  with parameter z, and for 
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each z +∈C , we write  

( ) ( ) [ ] ( ) ( )
0 0,

; ; d .
anwzaw
C T

I F z J F z F x m x∗= ≡ ∫             (2.2) 

Let q be a non-zero real number and let F be a function defined on [ ]0 0,C T  
whose analytic Wiener integral exists for each z in +C . If the following limit 
exists, then we call it the analytic Feynman integral of F over [ ]0 0,C T  with 
parameter q, and we write  

( ) ( ) [ ] ( ) ( )
0 0,

; lim ; d ,qanwaf aw
C Tz iq

I F q I F z F x m x
→−

= ≡ ∫           (2.3) 

where z approaches iq−  through +C  and 2 1i = − .  
Let { } 1

n
k k

e
=

 be a complete orthonormal set and [ ] [ ]0, 0,ke C T B T∈   for 
1,2, ,k n=   and [ ]2 0,L Tα ∈  and [ ]0 0,x C T∈ . We define a  

Paley-Wiener-Zygmund integral (P.W.Z) of x with respect to α  by  

( ) ( ) ( ) ( ) ( )
0 0

1
d lim , d .

nT T
k kn k

t x t e e t x tα α
→∞ =

≡ ∑∫ ∫  

Theorem 2.2 (Wiener Integration Formula). Let [ ]0 0,C T  be a Wiener 
space. Then  

[ ] ( ) ( )

( )

0
1 20, 0 0 0

2 2

1

d , d , , d d

1 1exp d
2π 2n

T T T
nC T

n
n

j
j

f x x x m x

f u u u

α α α

=

  = −  
   

∫ ∫ ∫ ∫

∑∫



 

R

           (2.4) 

where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  and 
: nf →R C  is a Lebesgue measurable function and ( )1 2, , , nu u u u=



  and 

1 2d d d d nu u u u=


  and 
0

d
T

j xα∫  is a Paley-Wiener-Zygmund integral for 
1 j n≤ ≤ .  

Remark. We will use several times the following well-known integration 
formula:  

{ }
2

2 πexp d exp
4
bau ibu u

a a
 

− + = − 
 

∫R            (2.5) 

where a is a complex number with 0Rea > , b is a real number, and 2 1i = − . 

3. Main Results 

Define a function [ ]0: 0,F C T →C  on the Wiener space by  

( )
0

1
exp d

n T
j

j
F x a xα

=

 
=  

 
∑∫                  (3.1) 

where 0a >  is a finite real number and { }1 2, , , nα α α  is an orthonormal set 
of elements in [ ]2 0,L T . 

Lemma 3.1. For a finite real number 0a > , the unbounded cylinder function 
( )F x  in (3.1) is a Wiener integrable function.  
Proof. By the Wiener integration Formula (2.4), we have that for a finite real 
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number 0a > ,  

[ ] ( ) ( )

( )

0 0,

2 2

1 1

2 22

2

d

1 1exp d
2π 2

1 2π exp
2π 2

exp
2

n

C T

n
n n

j jR
j j

n
n

F x m x

a u u u

n a

n a

= =

  = ⋅ −  
   

   = ⋅ ⋅ +  
   

 = + < ∞ 
 

∫

∑ ∑∫


             (3.2) 

Remark. If we let ( ) ( )1 20 0 0
d , d , , d

T T T
nF x f x x xα α α= ∫ ∫ ∫  and : nf R →C , 

then ( ) { }1exp n
jjf u a u

=
= ∑

 is unbounded for a finite real number 0a > .  

Lemma 3.2. Let [ ]0: 0,F C T →C  be defined by (3.1). For a finite real 
0ρ >  and a finite real 0a > ,  

[ ] ( ) ( )
0

2 2
0,

d exp
2C T

nF x m x aρ ρ = + 
 ∫             (3.3) 

Proof. By the Wiener integration Formula (2.4), we have that  

[ ] ( ) ( )

( )

0 0,

2 2

1 1

2 2 22

2 2

d

1 1exp d
2π 2

1 2π exp
2π 2

exp
2

n

C T

n
n n

j jR
j j

n
n

F x m x

a u u u

n a

n a

ρ

ρ

ρ

ρ

= =

  = ⋅ −  
   

   = ⋅ ⋅ +  
   

 = + < ∞ 
 

∫

∑ ∑∫


            (3.4) 

Lemma 3.3. Let [ ]0: 0,F C T →C  be defined by (3.1). For a finite real 
0ρ >  and a finte real 0a > ,  

[ ] ( ) ( ) [ ] ( ) ( )
2

0 00, 0,
d d

C T C T
F x m x F x m x

ρ

ρ  =   ∫ ∫           (3.5) 

Proof. By the above Lemma, we have that  

[ ] ( ) ( )

[ ] ( ) ( )

0

2

2

0

0,

2 2

2

0,

d

exp
2

exp
2

d

C T

C T

F x m x

n a

n a

F x m x

ρ

ρ

ρ

ρ = + 
 

  = +    

 =   

∫

∫

                 (3.6) 

Now we define a concept of the scale factor for the Wiener integral which 
was first defined in [13]: 

Definition 3.4. We define the scale factor for the Wiener integral by the 
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real number 0ρ >  of the absolute value of the Wiener integral:  

( ) [ ] ( ) ( )
0 0,

d
C T

G F x m xρ ρ= ∫                   (3.7) 

where :G R → R  is a real valued function defined on R.  
Property. <Behavior of a scale factor for the Wiener integral.> 
We investigate the interesting behavior of the scale factor for the Wiener 

integral by analyzing the Wiener integral as followings: For real 0ρ >  and for 
a finite real number 0a > ,  

[ ] ( ) ( )
0

2 2
0,

d exp .
2C T

nF x m x aρ ρ = + 
 ∫               (3.8) 

Example. For the scale factor 21 1, , ,1,10,10 ,
100 10

ρ  =  
 
  , we can 

investigate the very interesting behavior of the Wiener integral:  

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( )

[ ] ( ) ( ) [ ] ( ) ( )

0 0

0 0

0 0

2

0 0

1
10000

0, 0,

1
100

0, 0,

100

0, 0,

0, 0,

1(a) d d
100

1(b) d d
10

1 1(c) d d
100 10

(d) d d

C T C T

C T C T

C T C T

C T C T

F x m x F x m x

F x m x F x m x

F x m x F x m x

F x m x F x m x
ρ

ρ

   =     

   =     

      =            

 =   

∫ ∫

∫ ∫

∫ ∫

∫ ∫

    (3.9) 

Remark. <Interpretation of a scale factor for Wiener integrals of an 
unbounded cylinder function.> 

1) Whenever the scale factor 1ρ >  is increasing, the Wiener integral 
increases very rapidly. Whenever the scale factor 0 1ρ< <  is decreasing, the 
Wiener integral decreases very rapidly. 

2) The function ( ) [ ] ( ) ( )
0 0,

d
C T

G F x m xρ ρ= ∫  for ( )F x  in (3.1) is an 

increasing function of a scale factor 0ρ > , because the exponential function 
2

exy =  is an increasing function of x R∈ . 

3) Whenever the scale factor 0ρ >  is increasing and decreasing, the Wiener 
integral varies very rapidly. 

4. Conclusions 

What we have done in this research is that we investigate the very interesting 
behavior of the scale factor for the Wiener integral of an unbounded function. 

From these results, we find an interesting property for the Wiener integral as a 
function of a scale factor which was first defined in [13]. 

Note that the function in [13] is bounded and the function of this paper is 
unbounded! 

Finally, we introduce the motivation and the application of the Wiener 
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integral and the Feynman integral and the relationship between the scale factor 
and the heat (or diffusion) equation:  

Remark.  
1) The solution of the heat (or diffusion) equation  

( )
2 2

2 ,
2

i h V
t h m
ψ ψ ξ ψ

ξ
 ∂ ∂

= − − + ∂ ∂ 
               (3.10) 

is that for a real 0λ > ,  

( ) ( ) ( ) ( )
0

1 1
2 2

0
, exp d dt

t

C

it V x s s x s m s
hλψ ξ λ ξ ψ λ ξ

− −     = − + ⋅ +            
∫ ∫  (3.11) 

where ( ) ( ),λψ ξ φ ξ⋅ =  and ( )2
dL Rφ ∈  and dRξ ∈  and ( )x ⋅  is a dR

-valued continuous function defined on [ ]0, t  such that ( )0 0x = . 
2) H V= −∆ +  is the energy operator (or, Hamiltonian) and ∆  is a 

Laplacian and : dV R R→  is a potential. This Formula (3.11) is called the 
Feynman-Kac formula. The application of the Feynman-Kac Formula (in 
various settings) has been given in the area: diffusion equations, the spectral 
theory of the schrödinger operator, quantum mechanics, statistical physics, for 
more details, see the paper [8] and the book [12]. 

3) If we let 2λ ρ−= , the solution of this heat (or diffusion) equation is  

( ) ( )( ) ( )( ) ( )
0 0

, exp d dt

t

C

it V x s s x s m s
hρψ ξ ρ ξ φ ρ ξ = − + ⋅ + 

 ∫ ∫   (3.12) 

4) If we let 2mh im
i

ρ
λ

−= = − , then  

( ) ( )( ){ } ( )( ) ( )
0

2
0

, exp d dt

t

C
t m V x s s x s m sρψ ξ ρ ρ ξ φ ρ ξ= + + ⋅ +∫ ∫   (3.13) 

is a solution of a heat (or diffusion) equation:  

( )
2 2 2

2 2

1 .
2

m V
t mm
ψ ρ ψ ξ ψ

ρ ξ
  ∂ ∂

= +  ∂ ∂   
                (3.14) 

This equation is of the form:  

( )
2

2 2

1 1 .
2

V
t m
ψ ψ ξ ψ

ξ ρ
∂ ∂

= +
∂ ∂

                   (3.15) 

5) If we let ( ) ( ) ( )
1 1
2 2

0
exp d

tiF x V x s s x s
h

λ ξ φ λ ξ
− −     = − + ⋅ +            

∫ , then we 

can express the solution of the heat (or diffusion) equation by the formula  

( ) ( ) ( ) ( ) ( )
0 0

1
2, d , , dt tC C

t F x m x t F x m xρ λψ ξ ρ ψ ξ λ
− 

= =   
 

∫ ∫       (3.16) 

6) By this motivation, we first define the scale factor of the Wiener integral by 
the real number 0ρ >  in the paper [13]. 

Remark. <Gratitude for the Refree> I am very grateful for the referee to 
comment in details. 
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Abstract 
To overcome the weaknesses of in-sample model selection, this study adopted 
out-of-sample model selection approach for selecting models with improved 
forecasting accuracies and performances. Daily closing share prices were ob-
tained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock 
Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total 
of 2713 observations were explored and were divided into two portions. The 
first which ranged from January 3, 2006 to November 24, 2016, comprising 
2690 observations, was used for model formulation. The second portion 
which ranged from November 25, 2016 to December 30, 2016, consisting of 
23 observations, was used for out-of-sample forecasting performance evalua-
tion. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were 
applied on the returns series with respect to normal and student-t distribu-
tions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and 
ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum 
predictive errors throughout-of-sample approach outperformed ARIMA 
(2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model cho-
sen through in-sample approach. Therefore, it could be deduced that 
out-of-sample model selection approach was suitable for selecting models 
with improved forecasting accuracies and performances.  
 

Keywords 
ARIMA Model, GARCH-Type Model, Heteroscedasticity, Model Selection, 
Time Series Forecasting, Volatility 

 

1. Introduction 

Model selection is the act of choosing a model from a class of candidate models 
as a quest for a true model or best forecasting model or both (see also, [1], [2], 
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[3]). There are often several competing models that can be used for forecasting a 
particular time series. Consequently, selecting an appropriate forecasting model 
is considerably practical importance [4] [5]. Selecting the model that provides 
the best fit to historical data generally does not result in a forecasting method 
that produces the best forecasts of new data. Concentrating too much on the 
model that produces the best historical fit often leads to overfitting, or including 
too many parameters or terms. The best approach is to select the model that re-
sults in the smallest standard deviation or mean squared error of the 
one-step-ahead forecast errors when the model is applied to data set that was not 
used in fitting process [4]. There are two approaches to model selection in time 
series; the in-sample model selection and the out-of-sample model selection. The 
in-sample model selection is targeted at selecting a model for inference, which 
according to [1] is intended to identify the best model for the data and to pro-
vide a reliable characterization of the sources of uncertainty for scientific insight 
and interpretation. The in-sample model selection criteria include Akaike in-
formation criterion, AIC [6], Schwarz information criterion, SIC [7], and Han-
nan and Quinn information criteria, HQIC [8]. As captured in [9], AIC consi-
dered a discrepancy between the true model and a candidate, BIC approximated 
the posterior model probabilities in a Bayesian framework, and Hannan and 
Quinn proposed a related criterion which has a smaller penalty compared to BIC 
that yet permitted strong consistency property (for more details on information 
criteria, see [10] [11] [12] [13] [14]). However, the major drawbacks of 
in-sample model selection criteria are that, they are unstable and minimizing 
these criteria over a class of candidate models leads to a model selection proce-
dure that is conservative or over-consistent in parameter settings [2] [9], and the 
inability to inform directly about the quality of the model [3]. On the other 
hand, out-of-sample model selection procedure is applied to achieve the best 
predictive performance, essentially at describing the characterization of future 
observations without necessarily considering the choice of true model, rather, 
the attention is shifted to choose a model with the smallest predictive errors [1] 
[2] [15] [16]. The out-of-sample forecast is accomplished when the data used for 
constructing the model are different from that used in forecasting evaluation. 
That is, the data is divided into two portions. The first portion is for model con-
struction and the second is used for evaluating the forecasting performance with 
possibility of forecasting new future observations which can be checked against 
what is observed ([11] [16] [17]). Yet the choice of in-sample and out-of-sample 
model selection criteria is not without contention and such contention is well 
handled in [1] [15] [18] [19] [20]. 

With respect to heteroscedastic processes (or nonlinear time series), details 
regarding model selection are available in the studies of [21]-[27]. Meanwhile, in 
Nigeria, model selection in heteroscedastic processes are mainly based on 
in-sample criteria. For instance, the studies of [28]-[33] rely on the in-sample 
procedure to select the best fit model. Hence, this study seeks to improve on the 
work of [28] who applied the in-sample model selection criteria to choose best 
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fitted heteroscedastic models by adopting out-of-sample forecasting approach in 
selecting heteroscedastic models that would best describe the accuracy and pre-
cision of future observations. 

This work is further organized as follows: materials and methods are treated 
in Section 2, results and discussion covered in Section 3 and Section 4 takes care 
of conclusion. 

2. Materials and Methods 
2.1. Return 

The return series tR  can be obtained given that tP  is the price of a unit share 
at time t, and 1tP−  is the share price at time 1t − . 

( ) 1ln 1 ln ln lnt t t t tR P B P P P−= ∇ = − = −                (1) 

The tR  in Equation (1) is regarded as a transformed series of the share price, 

tP  meant to attain stationarity, that is, both mean and variance of the series are 
stable [29]. The letter B is the backshift operator. 

2.2. Information Criteria 

There are several information criteria available to determine the order, p, of an 
AR process and the order, q, of MA(q) process, all of them are likelihood based. 
The well-known Akaike information criterion (AIC), [6] is defined as 

( ) ( )2 2AIC ln likelihood number of parameters ,x
T T
−

= +         (2) 

where the likelihood function is evaluated at the maximum likelihood estimates 
and T the sample size. For a Gaussian AR(p) model, AIC reduces to  

( ) ( )2 2ˆAIC ln P
PP

T
σ= +                       (3) 

where 2ˆPσ  is the maximum likelihood estimate of 2ˆaσ , which is the variance of 

ta , and T is the sample size. The first term of the AIC in Equation (6) measures 
the goodness-of-fit of the AR(p) model to the data whereas the second term is 
called the penalty function of the criterion because it penalizes a chosen model 
by the number of parameters used. Different penalty functions result in different 
information criteria. 

The next commonly used criterion function is the Schwarz information crite-
rion (SIC), [7]. For a Gaussian AR(p) model, the criterion is  

( ) ( ) ( )2 ln
ˆSIC ln P

P T
P

T
σ

 
= +  

 
                  (4) 

Another commonly used criterion function is the Hannan Quinn information 
criterion (HQIC), [8]. For a Gaussian AR(p) model, the criterion is  

( ) ( ) ( ){ }2 ln ln
ˆHQIC ln P

T
P

T
σ= +                  (5) 

The penalty for each parameter used is 2 for AIC, ln(T) for SIC and ln{ln(T)} 

https://doi.org/10.4236/am.2019.105024


I. U. Moffat, E. A. Akpan 
 

 

DOI: 10.4236/am.2019.105024 336 Applied Mathematics 
 

for HQIC. These penalty functions help to ensure selection of parsimonious 
models and to avoid choosing models with too many parameters. 

The AIC criterion asymptotically overestimates the order with positive proba-
bility, whereas the BIC and HQIC criteria estimate the order consistently under 
fairly general conditions ([11] [17]). Moreover, an in-sample model selection 
criterion is consistent if it chooses a true model when the true model is among 
those considered with probability approaching unity as the sample size becomes 
large, and if the true model is not among those considered, it selects the best ap-
proximation with probability approaching unity as sample size becomes larger 
[3]. The AIC is always considered inconsistent in that it does not penalize the 
inclusion of additional parameters. As such, relying on these criterion leads to 
overfitting. Meanwhile, the SIC and HQIC criteria are consistent in that it takes 
into account large size adjustment penalty. In contrast, consistency is not suffi-
ciently informative. It turns out that the true model and any reasonable ap-
proximation to it are very complex. An asymptotically efficient model selection 
criterion chooses a sequence of models as the sample size get larger for which 
the one-step-ahead forecast error variances approach the one-step-ahead fore-
cast error variance for the true model at least as fast as any other criterion [3]. 
The AIC is asymptotically efficient while SIC and HQIC are not. However, one 
major drawback of in-sample criteria is their inability to evaluate a candidate 
model’s potential predictive performance. 

2.3. Model Evaluation Criteria 

It is tempting to evaluate performance on the basis of the fit of the forecasting or 
time series model to historical data [3]. The best way to evaluate a candidate 
model’s predictive performance is to apply the out-of-sample forecast technique. 
This will provide a direct estimate of the one-step-ahead forecast error variance 
that guarantees an efficient model selection criterion. The methods of forecast 
evaluation based on forecast error include Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). These criteria 
measure forecast accuracy. The forecast bias is measured by Mean Error (ME). 

The measures are computed as follows:  

2
1

1MSE n
ii e

n =
= ∑                         (6) 

2
1

1RMSE n
ii e

n =
= ∑                       (7) 

1

1MAE n
i ie

n =
= ∑                        (8) 

( )1

1ME i
n
i e

n =
= ∑                        (9) 

where ie  is the forecast error and n is the number of forecast error. Also, it 
should be noted that in this work, the forecasts of the returns are used as proxies 
for the volatilities as they are not directly observable [34]. 
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2.4. Autoregressive Integrated Moving Average (ARIMA) Model 

[10] considered the extension of ARMA model to deal with homogenous 
non-stationary time series in which tX , itself is non-stationary but its dth dif-
ference is a stationary ARMA model. Denoting the dth difference of tX  by  

( ) ( ) ( ) ,d
t tB B X Bϕ φ θ ε= ∇ =                  (10) 

where ( )Bϕ  is the nonstationary autoregressive operator such that d of the 
roots of ( ) 0Bϕ =  are unity and the remainder lie outside the unit circle. 
( )Bφ  is a stationary autoregressive operator. 

2.5. Heteroscedastic Models 

Autoregressive Conditional Heteroscedastic (ARCH) Model: The first 
model that provides a systematic framework for modeling heteroscedasticity is 
the ARCH model of [35]. Specifically, an ARCH (q) model assumes that, 

, ,t t t t t tR a a eµ σ= + =  
2 2 2

1 1t t q t qa aσ ω α α− −= + + + ,                  (11) 

where [ ]te  is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with mean zero, that is ( )E 0te =  and variance 1, that is 
( )2E 1te = , 0ω > , and 1, , 0qα α ≥  [36]. The coefficients iα , for 0i > , 

must satisfy some regularity conditions to ensure that the unconditional va-
riance of ta  is finite.  

Generalized Autoregressive Conditional Heteroscedastic (GARCH) Mod-
el: Although the ARCH model is simple, it often requires many parameters to 
adequately describe the volatility process of a share price return. Some alterna-
tive models must be sought. [37] proposed a useful extension known as the ge-
neralized ARCH (GARCH) model. For a return series, tR , let t t ta R µ= −  be 
the innovation at time t. Then, ta  follows a GARCH(q, p) model if  

t t ta eσ= , 

2 2 2

1 1
,

q q

t i t i j t j
i j

aσ ω α β σ− −
= =

= + +∑ ∑                  (12) 

where again te  is a sequence of i.i.d. random variance with mean, 0, and va-

riance, 1, 0, 0, 0i jω α β> ≥ ≥ , and ( )
( )max ,

1
 1

p q

i i
i

α β
=

+ <∑  (see [38]). 

Here, it is understood that 0iα = , for i p> , and 0iβ = , for i q> . The 
latter constraint on i iα β+  implies that the unconditional variance of ta  is fi-
nite, whereas its conditional variance 2

tσ , evolves over time. 
Exponential Generalized Autoregressive Conditional Heteroscedastic 

(EGARCH) Model: The EGARCH model represents a major shift from ARCH 
and GARCH models [39]. Rather than modeling the variance directly, EGARCH 
models the natural logarithm of the variance, and so no parameter restrictions 
are required to ensure that the conditional variance is positive. The EGARCH(q, 
p) is defined as,  
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, ,t t t t t tR a a eµ σ= + =  

2 2
1 1 12 2

ln ln ,q r pt i t k
t i k j t ji k j

t i t k

a a
σ ω α γ β σ

σ σ
− −

−= = =
− −

 
 = + + +
 
 

∑ ∑ ∑    (13) 

where again, te  is a sequence of i.i.d. random variance with mean, 0, and va-
riance, 1, and kγ  is the asymmetric coefficient. 

Glosten, Jagannathan and Runkle (GJR-GARCH) Model: The GJR-GARCH 
(q, p) model proposed by [40] is a variant, represented by  

,t t ta eσ=   
2 2 2 2

1 1 1 ,q p p
t i t i i t i t i j t ji i ja I aσ ω α γ β σ− − − −= = =
= + + +∑ ∑ ∑        (14) 

where 1tI −  is an indicator for negative  t ia − , that is, 

 
1

 

0 if 0,
1 if 0,

t i
t

t i

a
I

a
−

−
−

<
=  ≥

 

and ,i iα γ  and jβ  are nonnegative parameters satisfying conditions similar to 
those of GARCH models. Also the introduction of indicator parameter of leve-
rage effect, 1tI −  in the model accommodates the leverage effect, since it is sup-
posed that the effect of 2

t ia −  on the conditional variance 2
tσ  is different accor-

dingly to the sign of t ia − . 

2.6. Parametric Bootstrap 

The parametric bootstrap is used in computing nonlinear forecasts given the fact 
that the model used in forecasting has been rigorously checked and is judged to 
be adequate for the series under study [39]. Let T be the forecast origin and k be 
the forecast horizon (k > 0). That is, we are at time index T and interested in fo-
recasting T kR + . The parametric bootstrap considered compute realizations 

1, ,T T kR R+ +  sequentially by drawing a new innovation from the specific inno-
vational distribution of the model, and computing T iR +  using the model, data, 
and previous forecasts 1 1, ,T T iR R+ + − . This results in a realization for T kR + . 
The procedure is repeated M times to obtain M realizations of T kR +  denoted by 

( ){ }
1

Mj
T k j

R +
=

. The point forecast of T kR +  is then the sample average of ( )j
T kR + . 

Consequently, Forecasts of the ARCH model are obtained recursively. Let T 
be the starting date for forecasting, that is forecast origin. Let TF  be the infor-
mation set available at time T. Then, the 1-step ahead forecast for conditional 
variance, 2

1Tσ +  is  

( )2 2 2
1 1ˆ ˆ ˆˆ ˆ1 ,T T p T pa aσ ω α α + −= + + +                (15) 

where ˆTa  is the estimated residual. For the 2-step ahead forecast 2
2Tσ + , we 

need a forecast of 2
1Ta + . It is given by ( )2 1Tσ . We therefore obtain 

( ) ( )2 2 2 2
1 2 2ˆ ˆ ˆ ˆˆ ˆ2 1 .T T T p T pa aσ ω α σ α α + −= + + + +           (16) 

The k-step ahead forecast for 2
T kσ +  is  

( ) ( ) ( )2 2 2
1ˆ ˆ ˆ1 ,T T p Tk k k pσ ω α σ α σ= + − + + −           (17) 
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with ( )2 2ˆT T k ik i aσ + −− =  if 0k i− ≤ . 
Forecasts of the GARCH model are obtained recursively in a similar way as 

that of the ARCH model. Then, the 1-step ahead forecast for 2
1Tσ +  is  

( )2 2 2
1 1̂ˆ ˆ ˆ ˆ1T T Taσ ω α β σ= + + ,                      (18) 

since 2 2 2
T T Ta eσ= , the GARCH (1,1) model can be rewritten as  

( ) ( )2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1T T T T T Ta eσ ω α β σ ω α β σ α σ− − − − −= + + = + + + − , 

so that, at time 2T + , we have  

( ) ( )2 2 2 2
2 1 1 1 1 1 1 1T T T Teσ ω α β σ α σ+ + + += + + + − , 

with ( )2
1 1 0T TE e F+

 − =  , we deduce the following 2-step ahead forecast for 
2

2Tσ + : 

( ) ( ) ( )2 2
1 1̂ˆ ˆ2 1T Tσ ω α β σ= + + . 

Generally speaking, the k-step ahead forecast for 2
T kσ +  is  

( ) ( ) ( )2 2
1 1̂ˆ ˆ 1 , 1.T Tk k kσ ω α β σ= + + − >               (19) 

One of the beauties of GARCH is that volatility forecasts for any horizon can 
be constructed from the estimated model. The estimated GARCH model is used 
to get forecasts of instantaneous forward volatilities, that is, the forecast for 

2
T kσ +  made at time T and for every k step ahead. 
For EGARCH model, assuming that the model parameters are known and the 

observations are standard Gaussian, for EGARCH (1,1) model, we have  

( ) ( )2 2
1 1 1 1ln 1 ln ,T T Tgσ α ω α σ − −= − + +   

( ) ( )1 1 1 2 πT T Tg θ γ− − −= + −   .                (20) 

Taking exponentials, the model becomes 

( ) ( )122
1 1 1exp 1 exp ,T T Tgασ σ α ω− −= −        

( ) ( )1 1 1 2 πT T Tg θ γ− − −= + −   .                 (21) 

For the 1-step ahead forecast, 2
1Tσ +  we have 

( ) ( ) ( )122
11 exp 1 expT T Tgασ σ α ω= −       .             (22) 

The 2-step-ahead forecast of 2
2Tσ +  is given by 

( ) ( ) ( ) ( ){ }122
1ˆ2 1 exp 1 expT T T TE gασ σ α ω= −       , 

where TE  denotes a conditional expectation taken at the time origin T with  

( ){ } ( ) ( ) ( ) ( ) ( )
2 22 2exp exp 2 π e eTE g θ γ θ γγ θ γ γ θ+ − = − Φ + + Φ −     

 , 

where ( )xΦ  is the cumulative density function of the standard normal distri-
bution (see [39] for more details). Hence, 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
122

1

2 2

ˆ ˆ2 1 exp 1 2 π

exp 2 exp 2

T T
ασ σ α ω γ

θ γ θ γ θ γ γ θ

 = − − 

   × + Φ + + − Φ −   
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Generally, the k-step-ahead forecast can be obtained as  

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
122

1

2 2

ˆ ˆ 1 exp 1 2 π

exp 2 exp 2

T Tk kασ σ α ω γ

θ γ θ γ θ γ γ θ

 = − − − 

   × + Φ + + − Φ −   

   (23) 

(See also, [34], [38]). 

3. Results and Discussion 
3.1. Plot Analysis 

Figure 1 and Figure 2 are the share prices of Diamond and Fidelity Banks. Their 
movements appeared to fluctuate away from the common mean indicating the 
presence of stochastic nonstationarity.  

Figure 3 and Figure 4 are the returns series of the respective banks and are 
found to cluster around the common mean signifying stationarity. 
 

 
Figure 1. Share price series of diamond bank. 

 

 

Figure 2. Share price series of fidelity bank. 
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Figure 3. Return series of diamond bank. 
 

 

Figure 4. Return series of fidelity bank. 

3.2. In-Sample Model Selection 

Several models with respect to normal distribution (norm) and student-t distri-
bution (std) such as ARIMA (2,1,1)-GARCH (1,0)-std, ARIMA (2,1,1)-GARCH 
(2,0)-std, ARIMA (2,1,1)-GARCH (1,1)-norm, ARIMA (2,1,1)-EGARCH 
(1,1)-norm and ARIMA (2,1,1)-EGARCH (1,1)-std were considered tentatively 
for the return series of Diamond Bank. ARIMA (2,1,1)-GARCH (2,0)-std was 
selected based on minimum information criteria (see Table 1). The model was 
found to be adequate given that the p-values corresponding to weighted 
Ljung-Box Q statistics at lags 1, 8 and 14 on standardized residuals, weighted  
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Table 1. Estimation of Heteroscedastic models of return series of diamond bank. 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

ARIMA (2,1,1)- 
GARCH (1,0)-std 

µ  −9.93e−4 3.81e−4 −2.6037 0.0092 

−4.3202 −4.3049 −4.3147 

1ϕ  0.6479 0.1134 5.7155 0.0000 

2ϕ  0.0115 0.0246 0.4676 0.6401 

1θ  −0.7192 0.1107 −6.4961 0.0000 

ω  4.9e−4 2.6e−5 18.9763 0.0000 

1α  0.5380 0.0581 9.2597 0.0000 

ARIMA (2,1,1)- 
GARCH (2,0)-std 

µ  0.0000 0.0000 −0.0179 0.9857 

−5.0430 −5.0255 −5.0367 

1ϕ  −0.2748 0.1017 −2.7030 0.0069 

2ϕ  0.1899 0.0250 7.5938 0.0000 

1θ  0.2976 0.0988 3.0112 0.0026 

ω  0.0000 0.0000 0.0000 1.0000 

1α  0.5085 0.0215 23.6094 0.0000 

2α  0.4899 0.0216 22.6980 0.0000 

ARIMA (2,1,1)- 
GARCH (1,1)-norm 

µ  −1.89e−4 4.6e−5 −4.1466 0.00003 

−4.3997 −4.3843 −4.3941 

1ϕ  0.7177 0.1399 5.1280 0.0000 

2ϕ  0.0116 0.0248 0.4695 0.6387 

1θ  −0.7663 0.1386 −5.5302 0.0000 

ω  5.0e−6 0.0000 21.4307 0.0000 

1α  0.1499 0.0084 17.9265 0.0000 

1β  0.8491 0.0065 131.3783 0.0000 

ARIMA (2,1,1)- 
EGARCH (1,1)-norm 

µ  −1.325e−3 4.67e−4 −2.8394 0.0045 

−4.3056 −4.2881 −4.2993 

1ϕ  −0.6678 0.0235 −28.3624 0.0000 

2ϕ  −0.0247 0.0222 −1.1137 0.2654 

1θ  0.6243 0.0237 26.3269 0.0000 

ω  −1.8914 0.3467 −5.4553 0.0000 

1α  −0.0003 0.0199 −0.0137 0.9891 

1β  0.7326 0.0488 15.0204 0.0000 

1γ  0.3446 0.0484 7.12488 0.0000 

ARIMA (2,1,1)- 
EGARCH (1,1)-std 

µ  0.0000 7.0e−6 −0.0005 0.9995 

−4.4228 −4.4031 −4.4157 

1ϕ  −0.2876 0.0271 −10.6033 0.0000 

2ϕ  0.0023 0.0203 0.1135 0.9096 

1θ  0.2356 0.0275 8.5685 0.0000 

ω  −0.8316 0.0198 −41.9417 0.0000 

1α  −0.0537 0.0284 −1.8871 0.0000 

1β  0.8820 0.0011 773.2336 0.0000 

1γ  0.9400 0.0378 24.8684 0.0000 
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Ljung-Box Q statistics at lags 1, 5 and 9 on standardized squared residuals and 
weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are all greater than 5% 
level of significance [see Table 2]. That is to say, the hypotheses of no autocor-
relation and no remaining ARCH effect are not rejected.  

Also, for Fidelity Bank, ARIMA (1,1,0)-GARCH (1,0)-norm, ARIMA 
(1,1,0)-GARCH (1,0)-std, ARIMA (1,1,0)-GARCH (1,1)-norm, ARIMA 
(1,1,0)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-std were con-
sidered tentatively (Table 3). Based on smallest information criteria, ARIMA 
(1,1,0)-EGARCH (1,1)-std was chosen as the appropriate model. The selected 
model is adequate since all the p-values corresponding to weighted Ljung-Box Q 
statistics at lags 1, 2 and 5 on standardized residuals, weighted Ljung-Box Q sta-
tistics at lags 1, 5 and 9 on standardized squared residuals and weighted La-
grange Multiplier statistics at lags 3, 5 and 7 are greater than 5% level of signi-
ficance [see Table 4]. That is to say, the null hypotheses of no autocorrelation 
and no ARCH effect are not rejected at 5% significance level. 

3.3. Out-Of-Sample Forecasting Model Selection 

Here, the out-of-sample forecast evaluation criteria; MAE, MSE and RMSE for 
each of the models are considered for the series of the banks. It was found that 
ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm 
possessed the smallest out-of-sample forecast evaluation criteria (see Table 5 
and Table 6). Hence, the most appropriate for the return series of the respective 
banks.  

Based on our findings, the in-sample model selection procedure favoured 
ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model 
while the out-of-sample model selection sufficed the choice of ARIMA 
(2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models 
for the banks considered. Majorly, it is discovered that in each of the models se-
lected through in-sample criteria are ill-conditioned. For instance, the constant 
term of the variance equation, ω of ARIMA (2,1,1)-GARCH (2,0)-std is zero 
which actually violates the constraint condition that requires 0ω > . The impli-
cation is that, this model is not suitable for forecasting long-run variance as it 
would collapse at zero. Again, in EGARCH (1,1)-std, the stationarity condition 
which requires 1p

jj β <∑ , is violated. The implication is that, forecasting 
long-run variance using this model would not be realistic in that the variance  
 

Table 2. Diagnostic checking for heteroscedastic models of return series of diamond bank. 

Model 
Standardized Residuals Standardized Squared Residuals 

Lag Weighted LB p-value Lag Weighted LB p-value Lag Weighted ARCH-LM p-value 

ARIMA (2,1,1)-GARCH (2,0)-std 

1 0.0001 0.9903 1 0.0004 0.9835 3 0.0004 0.9835 

8 0.0007 1.0000 5 0.0012 1.0000 5 0.0010 1.0000 

14 0.0011 1.0000 9 0.0021 1.0000 7 0.0015 1.0000 
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Table 3. Estimation of heteroscedastic models of return series of fidelity bank. 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

ARIMA (1,1,0)-GARCH (1,0)-norm 

µ  0.0181 2.0e−6 7416.5857 0.0000 

9.5841 9.5929 9.5873 
1ϕ  −0.1188 4.1e−5 −2892.9449 0.0000 

ω  0.0000 0.0000 4.8845 0.0000 

1α  0.9755 0.0004 2331.4143 0.0000 

ARIMA (1,1,0)-GARCH (1,0)-std 

µ  −8.0e−4 0.0004 −1.9660 0.0493 

−4.4395 −4.4286 −4.4356 
1ϕ  −0.0671 0.0241 −2.7856 0.0053 

ω  4.0e−4 2.3e−5 18.2910 0.0000 

1α  0.6093 0.0739 8.2413 0.0000 

ARIMA (1,1,0)-GARCH (1,1)-norm 

µ  −5.0e−4 9.0e−5 −56.1884 0.0000 

−4.5492 −4.5382 −4.5452 

1ϕ  −0.0339 0.0225 −1.5108 0.1308 

ω  5.0e−6 0.0000 67.9874 0.0000 

1α  0.1528 0.0105 14.5331 0.0000 

1β  0.8462 0.0088 95.5935 0.0000 

ARIMA (1,1,0)-EGARCH (1,1)-norm 

µ  0.0000 2.0e−5 −0.0004 0.9997 

−4.5912 −4.5781 −4.5865 

1ϕ  −0.0363 0.0231 −1.5721 0.1159 

ω  −0.6564 0.0065 −101.1563 0.0000 

1α  0.0155 0.0164 0.9474 0.3434 

1β  0.9063 0.0007 1341.0781 0.0000 

1γ  0.4184 0.0107 38.9643 0.0000 

ARIMA (1,1,0)-EGARCH (1,1)-std 

µ  −4.0e−6 0.0000 −41.393 0.0000 

−5.1507 −5.1354 −5.1452 

1ϕ  −0.1572 0.0029 −56.078 0.0000 

ω  0.0141 0.0003 49.642 0.0000 

1α  1.1589 0.0001 12452.741 0.0000 

1β  1.0000 1.0e−5 84465.444 0.0000 

1γ  1.1730 0.0001 11481.44 0.0000 

 
Table 4. Diagnostic checking for Heteroscedastic models of return series of fidelity bank. 

Model 
Standardized Residuals Standardized Squared Residuals 

Lag Weighted LB p-value Lag Weighted LB p-value Lag Weighted ARCH-LM p-value 

ARIMA (1,1,0)-EGARCH (1,1)-std 

1 0.0007 0.979 1 0.0010 0.9746 3 0.0010 0.9747 

2 0.0011 1.0000 5 0.0030 1.0000 5 0.0024 0.9999 

5 0.0065 1.0000 9 0.0051 1.0000 7 0.0036 1.0000 
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Table 5. Out-of-sample forecast evaluation criteria for diamond bank. 

Evaluation 
Criteria 

ARIMA (2,1,1)- 
GARCH (1,0)-std Model 

ARIMA (2,1,1)- 
GARCH (2,0)-std Model 

ARIMA (2,1,1)- 
GARCH (1,1)-norm Model 

ARIMA (2,1,1)- 
EGARCH (1,1)- 

norm Model 

ARIMA (2,1,1)- 
EGARCH (1,1)- 

std Model 

MAE 0.019999 0.022278 0.020026 0.019986 0.020047 

MSE 0.000629 0.000772 0.000634 0.000628 0.000636 

RMSE 0.025084 0.027785 0.025179 0.025078 0.025218 

 
Table 6. Out-of-sample forecast evaluation criteria for fidelity bank. 

Evaluation 
Criteria 

ARIMA (1,1,0)- 
GARCH (1,0)-norm Model 

ARIMA (1,1,0)- 
GARCH (1,0)-std Model 

ARIMA (1,1,0)- 
GARCH (1,1)-norm Model 

ARIMA (1,1,0)- 
EGARCH (1,1)- 

norm Model 

ARIMA (1,1,0)- 
EGARCH (1,1)- 

std Model 

MAE 0.026079 0.021095 0.020999 0.020938 0.021193 

MSE 0.000994 0.000680 0.000675 0.000673 0.000695 

RMSE 0.001315 0.026084 0.025977 0.025960 0.026355 

 
would converge at infinity. Moreover, the highly significance of the parameters 
of the models indicated that the models are over-fitted. Meanwhile, the models 
selected through out-of-sample criteria are characterized by non-significant pa-
rameters yet possessed smallest predictive errors and problem associated with 
over-fitting is overcome. In particular, this study showed that the study of [28] 
can be improved by adopting out-of-sample forecasting procedure. Further-
more, the study is in agreement with the works of [1], [2], [22] by supporting the 
choice of models based on smallest predictive errors.  

4. Conclusion 

In all, our study showed that out-of-sample model selection approach outper-
formed the in-sample counterpart in describing the characterization of future 
observations without necessarily considering the choice of true model. The ma-
jor strength of this study is in utilizing the advantage of combining both ARIMA 
and GARCH-type models to achieve forecast accuracy. The weakness of this 
study is in adopting larger samples of training data against smaller sample sizes 
for forecast evaluation, which is suitable for achieving the best fitting models. 
However, this weakness could be overcome by adopting smaller sample sizes of 
data for model formulation and larger samples for forecast evaluation in future 
study. 
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Abstract 
This paper presents the search technique for a lost target. A lost target is 
random walker on one of two intersected real lines, and the purpose is to 
detect the target as fast as possible. We have four searchers start from the 
point of intersection, they follow the so called Quasi-Coordinated search 
plan. The expected value of the first meeting time between one of the search-
ers and the target is investigated, also we show the existence of the optimal 
search strategy which minimizes this first meeting time.  
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1. Introduction 

The search problem for a randomly moving target is very interesting because it 
may arise in many real world situations such as searching for lost persons on 
roads, the cancer cells in the human body and missing black box of a plane crash 
in the depth of the sea or ocean, also searching for a gold mine underground, 
Landmines and navy mines, a faulty unit in a large linear system such as elec-
trical power lines, telephone lines, and mining system, and so on (see [1], [2], 
[3], [4] and [5]). 

The aim of search, in many cases (see [6], and [7]) is to calculate the expected 
cost of detecting the target and is to obtain the search plan, which minimizes this 
expected cost. In the case of linear search for stationary or randomly moving 
targets many studies are made (see [8]-[26]). 

The coordinated search method is one of the famous search methods which 
consider the searchers starting together from the origin and moving, seeking for 

How to cite this paper: Teamah, A.A.M. 
and Elbery, A.B. (2019) Optimal Coordi-
nated Search for a Discrete Random Walk-
er. Applied Mathematics, 10, 349-362. 
https://doi.org/10.4236/am.2019.105025 
 
Received: April 8, 2019 
Accepted: May 20, 2019 
Published: May 23, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2019.105025
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/am.2019.105025
http://creativecommons.org/licenses/by/4.0/


A. A. M. Teamah, A. B. Elbery 
 

 

DOI: 10.4236/am.2019.105025 350 Applied Mathematics 
 

a random walk target. Therefore, coordinated search technique is one of many 
techniques which studied previously on the line where the located targets have 
symmetric and unsymmetric distributions (see [27], [28], [29] and [30]), this 
technique has been illustrated on the circle with a known radius and the target 
equally likely to be anywhere on its circumference (see [31]), also this technique 
has been discussed in the plane when the located target has symmetric and 
asymmetric distribution (see [32] and [33]). There is obviously some similarity 
between this problem and the well known linear search problem.  

In the present paper, we introduce the search problem for a random walk tar-
get motion on one of two intersected lines. This will happen by coordinating 
search between four searchers, all the searchers will start together at the same 
point of intersected their lines with zero as the starting and meeting point of the 
searchers. So that we may assume that two searchers always search to the right 
part and the other searchers search to the left part of intersected point. They re-
turn to zero after searching successively common distances until the target is 
found, we call this search as Quasi-Coordinated Linear Search Problem. We aim 
to minimize the expected value of the first meeting time between one of the 
searchers and the target. This paper is organized as follows. In Section 2 we for-
mulate the problem and we give the conditions that make the expected value of 
the first meeting time between one of the searchers and the target which is finite. 
In Section 3 the existence of optimal search plan that minimizes the expected 
value of the first meeting time is presented. Finally, the paper concludes with a 
discussion of the results and directions for future research. 

2. Problem Formulation 

A target is assumed to move randomly on one of two intersected line according 
to a stochastic process ( ){ },S t t I +∈ , where I +  is the set of non negative in-
tegers. Assume that { } 0i i

X
≥

 is a sequence of independent and identically dis-
tributed random variables such that for any 1i ≥ : ( )1iP X p= =  and  
( )1 1 , , 0iP X p q p q= − = − = > . Thus, we have  

( ) ( )
1

, 0 and 0 0
t

i
i

S t X t S
=

= > =∑                  (1) 

as a Random Walk. Our aim is to calculate the expected value of the first meet-
ing time between one of searcher and lost target, and investigate it, also we show 
the existence of a search plan which minimize this expected value.  

In the present paper we take the search region to be the real lines. Assume 
that, we have four searchers 1 2 3,,S S S  and 4S  start together looking for the 
lost target from the intersected point 0 0H =  on 1 2L L .The searchers coor-
dinate their search to find the lost target, where each of the searchers 1S  and 

3S  start search at 0H  and go to the right part of starting point as far as 11H  
and 21H  respectively, and each of searchers 2S  and 4S  start search at 0H  
and go the left part of the same lines as far as 11H−  and 21H−  respectively. 
Then, turn back to 0H  to tell the other searchers if the target is found or not. 
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Retrace the steps again to explore the right (left) part of 1jH  ( 1jH− ) as far as 

2jH  ( 2jH− ), 1,2j =  and so on, see Figure 1. 
All the searchers 1 2 3,,S S S  and 4S  reach to 11 11 21, ,H H H−  and 21H−  

respectively in the same time 1G , then they come back to 0H  again in the 
same time 2G . If no one of the searchers do not find the lost target, then they 
begin their search from 0H  and reach to 12 12 22, ,H H H−  and 22H−  in the time 

3G , then they come back to 0H  again in the same time 4G  and so on. A search 
plan rφ  with speed rV  is a function :r R Rφ + → , 1,2,3,4r = , such that:  

( ) ( )1 2 1 2 1 2, ,r r rt t V t t t t Rφ φ +− = − ∀ ∈                 (2) 

where ( )0 0, 1,2,3,4r rφ = = . Let the search plan be represented by  
( )0 1 2 3 4 0 0, , , ,φ φ φ φ φ φ= ∈Φ  where 0Φ  is the set of all search plan. 

We assume that 0Z  is a random variable represented the initial position of 
the target and valued in 2I (or 2I + 1) and independent with ( ) , 0S t t > . If 

10Z Z=  then the target moves on 1L  and if 20Z Z=  the target moves on 2L
such that ( ) ( )0 1 0 2 1P Z Z P Z Z= + = = . There is a known probability measures 

jv , such that 1 2 1v v+ =  on 1 2L L , where 1v  is probability measure induced 
by the position of the target on 1L , while 2v  on 2L . The first meeting time is a 
random variable valued in I +  defined as:  

( ) ( ) ( ) ( )
0

2 4

ˆ 1 2
1 3

inf , or .r r
r r

t t Z S t t Z S t
φ
τ φ φ

= =

 
= = + = + 

 
 

 

At the beginning of the search suppose that the lost target is existing on any 
integer point on 1L  but more than 11H  or less than 11–H  or the lost target is 
existing on any integer point on 2L  but more than 21H  or less than 21–H . 
Let 

0̂φ
τ  be the first meeting time between one of the searchers and the target. 

The main objective is to find the search plan such that ( )
0̂

E
φ
τ < ∞  and if 

( ) ( )
00
ˆˆ  E E
φφ

τ τ∗ <  where E terms to expectation value, then we call 0̂φ
∗  is an op-

timal search plan. Given 0n > , if x is: 
 

 
Figure 1. The searchers S1 and S2 start from the origin of L1 after searching successively 
distances H11 and −H11, respectively, they return to the origin (note the black arrow) and 
then they search the distances H12 and −H12, respectively, they return to the origin (note 
the blue arrow) and so on also the same procedure for the searchers S3 and S4 on L2. 
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10
2

n xk n+
≤ ≤ ≤  

where 1k  is integer, then  

( )( ) 1 1
1

1

k n kn
P S n k p q

k
− 

= =  
 

                   (3) 

Existence of a Finite Search Plan 

Assuming that ,λ ζ  be positive integers such that: 1, kζ λ θ> = , where 
1,2,k =   and θ are positive integer numbers greater than one and 1V = . We 

will shall define the following sequences { } 1i i
G

≥
 and { } 1

, 1, 2ji i
H j

≥
= , for all 

the searchers , 1, 2,3, 4rS r =  on the line jL , to obtain the distances which the 
searcher should do them as the functions of λ  and ζ . In Figure 2 we can de-
fine 

( ) ( )11 1 11 1 1
2 2 4 42 1 ,

i ii

iG λ ζ
+ − − + − −  

 
= −  

 
                (4) 

And  

2 1 2
1
2ji i iH G G−= =                        (5) 

Also, we shall define the search paths as follows: for any t I +∈ , If 

1i iG t G +≤ ≤ , 1,2,3,i =  , then 

( ) ( ) ( ) ( )1
1 1

2 2

1 11 1
2 2

i i
j i i ij j

H H t Gtφ +
+ +

   
+ − + − −      

   
=          (6) 

and ( ) ( )1 , 1,3k kt t kφ φ += − = . We define the notations ( ) ( )j t S t tϕ = −  and 
( ) ( )j t S t tϕ = +  on , 1, 2jL j = , respectively, 

0̂φ
τ  is the first meeting between 

one of the searcher and the target. 
 

 
Figure 2. Plots the searched distances Hji and times Gi on L1. 

 
Theorem 1. If 0 , 1, 2,3, 4r rφ ∈Φ =  is a search plan, then the expectation 

( )
0̂

E
φ
τ  is finite if: 
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( ) ( ) ( )( )1 1 1 2 1 1
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − < −∑   

( ) ( ) ( )( )2 1 1 2 1 1
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  

( ) ( )( ) ( )( )3 1 1 2 1
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + < −∑   

( ) ( )( ) ( )( )4 1 1 2 1
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + > −∑  

( ) ( ) ( )( )5 2 2 2 1 2
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − < −∑   

( ) ( ) ( )( )6 2 2 2 1 2
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  

( ) ( )( ) ( )( )7 2 2 2 2
1

 2 1i
i

i
B z p G zζ ζ ϕ

∞

=

= − + < −∑   

and 

( ) ( )( ) ( )( )8 2 2 2 2
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + > −∑  

are finite. 
Proof: 
The hypothesis 1Z  and 2Z  are valued in 2I (or 2I + 1) and independent of 
( ) , 0S t t > , if 1 0Z >  then ( )1Z S t+  is greater than ( )1 tφ  until the first 

meeting between 1S  and the target on 1L  also if 1 0Z < , then ( )1Z S t+  is 
smaller than ( )2 tφ  until the first meeting between 2S  and the target on 1L . 
The same thing for the second line by replacing 1Z  by 2Z  in the second line 

2L  and ( ) ( )1 2,t tφ φ  by ( ) ( )3 4,t tφ φ  respectively. 
Hence, for any 0i > : 

( ) ( )
0

4

ˆ
1

r
r

p t p tφφ
τ τ

=

> ≤ >∑  

hence, 

( ) ( )
0 0ˆ ˆ

0

 dE p t t
φ φ
τ τ

∞

= >∫  

see ([5]), 

( )

( )
( ) ( )

( ) ( )

( ) ( ) ( )

 1

0

 1

0

0

2 1

1

0

ˆ
0

ˆ
0

ˆ1
0

1 1 1 11 1 1
2 2 4 4

0

1 1 11 1 1
2 2 4 4

ˆ

d

d

2 1

 2 1

i

i
i

i

i i

i i

G

i G
G

i
i G

i i i
i

i

i

i

i

p t t

p G t

G G p G

p G

φ

φ

φ

φ

τ

τ

τ

λ ζ

λ ζ τ

+

+

+ +

+

∞

=

∞

=
∞

+
=

+∞  − − + − −  

=

 − − + − −  

= >

≤ >

 = − >  
 

= −  
 

 − −



>   




∑ ∫

∑ ∫

∑

∑
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( )( ) ( ) ( ) ( ){
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) }

0 0

0 0

0 0

0

ˆ ˆ 1

2
ˆ ˆ2 3

2 3
ˆ ˆ4 5

3
ˆ 6

2 1 0 1

2 1 1

2 1 1

2 1

p p G

p G p G

p G p G

p G

φ φ

φ φ

φ φ

φ

λ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ

 = − + > + − >  

+ − + > + − >

+ − + > + − >

+ − + > +

 

To solve this equation we shall find the value of ( )
0̂ 2 1ip G
φ
τ −>  and the value 

of ( )
0̂ 2 , 1ip G i
φ
τ > ≥  as the following  

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

0

0

ˆ 2 1 1 2 1 1 1 1

1 2 1 1 1 1
0
0

2 2 1 2 2 2 2

2 2 1 2 2 2 2
0

|

|

d

d

d|

d|

i i i i

i i i

i i

i i

p G p Z S G H Z z v z

p Z S G H Z z v z

p Z S G H Z z v z

p Z S G H Z z v z

φ
τ − −

−∞
∞

−

−
−∞
∞

−

> ≤ + < − =

+ + > =

+ + < − =

+ + > =

∫

∫

∫

∫

 

We get 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

0

0

ˆ 2 1 1 2 1 1 1 1 1 2 1 1 1 1
0

0

2 2 1 2 2 2 2 2 1 2 2 2
0

 d d

d d

i i i

i i

p G p G z v z p G z v z

p G z v z p G z v z

φ
τ ϕ ϕ

ϕ ϕ

∞

− − −
−∞

∞

− −
−∞

> ≤ < − + > −

+ < − + > −

∫ ∫

∫ ∫





 

also we get 

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

0

0

ˆ 2 1 2 1 1 1 1

1 2 1 1 1 1
0
0

2 2 2 2 2 2

2 2 2 2 2 2
0

2 d

2 d

2 d

2 | d

|

|

|

i i i

i i

i i

i i

p G p Z S G H Z z v z

p Z S G H Z z v z

p Z S G H Z z v z

p Z S G H Z z v z

φ
τ

−∞
∞

−∞
∞

> ≤ + < − =

+ + > =

+ + < − =

+ + > =

∫

∫

∫

∫

 

We get 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( )( ) ( )

0

0

ˆ 2 1 2 1 1 1 1 2 1 1 1
0

0

2 2 2 2 2 2 2 2 2 2
0

  d d

d d

i i i

i i

p G p G z v z p G z v z

p G z v z p G z v z

φ
τ ϕ ϕ

ϕ ϕ

∞

−∞

∞

−∞

> ≤ < − + > −

+ < − + > −

∫ ∫

∫ ∫





 

Hence, we can get, 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )

0

0

ˆ ˆ 1 1 1 1 1

0

1 1 1 1 1 1 2 1 1 1
0

 2 1 0 1 d

d 2 1 d

E p p G z v z

p G z v z p G z v z

φ φ
τ λ ζ τ ζ ϕ

ϕ ζ ζ ϕ

−∞

∞

−∞


≤ − + > + − < −




+ > − + − + < −












∫

∫ ∫
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( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

0
2

1 2 1 1 1 1 3 1 1 1
0

0
2

1 3 1 1 1 1 4 1 1 1
0

0
3

1 4 1 1 1 1 5 1 1 1
0

d 1 d

d 2 1 d

d 1 d

p G z v z p G z v z

p G z v z p G z v z

p G z v z p G z v z

ϕ ζ ϕ

ϕ ζ ζ ϕ

ϕ ζ ϕ

∞

−∞

∞

−∞

∞

−∞


+ > − + − < −




+ > − + − + < −



+ > −






+ − < −






 


∫ ∫

∫ ∫

∫ ∫







 

( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

0
3

1 5 1 1 1 6 2 1 1 1
0

ˆ1 6 1 1 1
0

0

2 1 2 2 2 2 1 2 2 2
0

0

2 2 2 2 2 2 2 2 2 2
0

d 2 1 d

d 2 1 0

1 d d

2 1 d d

p G z v z p G z v z

p G z v z p

p G z v z p G z v z

p G z v z p G z v z

φ

ϕ ζ ζ ϕ

ϕ λ ζ τ

ζ ϕ ϕ

ζ ζ ϕ ϕ

∞

−∞

∞

∞

−∞

∞

−∞








+ > − + − + < −


+ > − + − + >


 
+ − < − + > − 

 
 

+ − + <




− + > −








 

∫ ∫

∫

∫ ∫

∫ ∫







 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )

0
2

2 3 2 2 2 3 2 2 2 2
0

0
2

4 2 2 2 2 2 4 2 2 2
0

0
3

5 2 2 2 2 5 2 2 2 2
0

0
3

2 6 2 2 2

6 2 2 2 2
0

1 d d

2 1 d d

1 d d

2 1 d

d

p G z v z p G z v z

p G z v z p G z v z

p G z v z p G z v z

p G z v z

p G z v z

ζ ϕ ϕ

ζ ζ ϕ ϕ

ζ ϕ ϕ

ζ ζ ϕ

ϕ

∞

−∞

∞

−∞

∞

−∞

−∞

∞

 
+ − < − + > − 

 
 

+ − + < − + > − 
 

 
+ − < − + > − 

 


+ − + < −



+ > − +



∫ ∫

∫ ∫

∫ ∫

∫

∫













  

hence, 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0

0

ˆ ˆ 1 1 1 1 2 1 1 1
0

0

3 1 1 1 4 1 1 1
0

0

ˆ 5 2 2 2 6 2 2 2
0

0

7 2 2 2 8 2 2 2
0

2 1 0 d d

d d

2 1 0 d d

 d d

E p w z v z w z v z

w z v z w z v z

p w z v z w z v z

w z v z w z v z

φ φ

φ

τ λ ζ τ

λ ζ τ

∞

−∞

∞

−∞

∞

−∞

∞

−∞

  
  
  

 
 
 

≤ − + > + +

+ +

  + − + > + +  
  

 + +  
 

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

where, 

( ) ( ) ( )( )1 1 1 2 1 1
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − < −∑   

( ) ( )( )2 1 1 2 1 1
1

 ( 1) ,i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  
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( ) ( )( ) ( )( )3 1 1 2 1
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + < −∑   

( ) ( )( ) ( )( )4 1 1 2 1
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + > −∑  

( ) ( ) ( )( )5 2 2 2 1 2
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − < −∑   

( ) ( ) ( )( )6 2 2 2 1 2
1

 1 ,i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  

( ) ( )( ) ( )( )7 2 2 2 2
1

 2 1i
i

i
B z p G zζ ζ ϕ

∞

=

= − + < −∑   

and 

( ) ( )( ) ( )( )8 2 2 2 2
1

 2 1 ,i
i

i
B z p G zζ ζ ϕ

∞

=

= − + > −∑  

lemma 1. 
For any ≥ 0, if 0na ≥  for 0n > , and 1n na a+ ≤ , { } 0n n

d
≥

 be a strictly in-
creasing sequence of integer numbers with 0 0d = , then  

( ) ( )
11 1     ,

n n
k

n n d k n n d
n k k d n k

d d a a d d a
+

∞ ∞ ∞

+ +
= = =

− ≤ ≤ −∑ ∑ ∑  

where ( )
11  ,

n
k

n n d k
n k k d

d d a a
+

∞ ∞

+
= =

−∑ ∑  and ( )1  
nn n d

n k
d d a

∞

+
=

−∑  are vectors see [32]. 

Theorem 2. For the two intersected lines the chosen search plan satisfies: 

( ) ( )1 1 9 1B z B z≤ , ( ) ( )2 1 10 1B z B z≤ , ( ) ( )3 1 11 1B z B z≤ , 

( ) ( )4 1 12 1B z B z≤ , ( ) ( )5 2 13 2 B z B z≤ , ( ) ( )6 2 14 2 B z B z≤ ,  

( ) ( )7 2 15 2 B z B z≤  and ( ) ( )8 2 16 2 B z B z≤ , 

where ( )9 1B z , ( )10 1B z , ( )11 1B z , ( )12 1B z , ( )13 2B z , ( )14 2B z , ( )15 2B z  
and ( )16 2B z  are linear functions. 

Proof:  
We shall prove the theorem for ( )2 1B z  and ( )6 2B z  since the other cases 

can be proved by similar ways.  

( ) ( ) ( )( )2 1 1 2 1 1
1

1i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  

and 

( ) ( ) ( )( )6 2 2 2 1 2
1

1i
i

i
B z p G zζ ϕ

∞

−
=

= − > −∑  

Let us defined the following: 
1) For 1 0z ≤ , we have ( ) ( )2 1 2 0B z B≤  
And for 2 0z ≤ , we have ( ) ( )6 2 6 0B z B≤ . 
2) but for 1 0z > , we have  

( ) ( ) ( ) ( )( )2 1 2 1 1 2 1
1

0 1 0 ,i
i

i
B z B p z Gζ ϕ

∞

−
=

= + − − < ≤∑  
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( ) ( ) ( ) ( )( )2 1 2 1 1 2 1
1

0 1 0 .i
i

i
B z B p z Gζ ϕ

∞

−
=

− = − − < ≤∑  

and for 2 0z > , we have  

( ) ( ) ( ) ( )( )6 2 6 2 2 2 1
1

0 1 0 ,i
i

i
B z B p z Gζ ϕ

∞

−
=

= + − − < ≤∑  

( ) ( ) ( ) ( )( )6 2 2 2 2 2 1
1

0 1 0 .i
i

i
B z B p z Gζ ϕ

∞

−
=

− = − − < ≤∑  

from theorem 2 see [13], we obtain: 

( ) ( ) ( ) ( ) 2 1
2 2 1

0 1
0 1 0 1 ,0 1iGi i

i
i i

B p Gζ ζ ε ε−
∞ ∞

−
= =

= − > ≤ − < <∑ ∑  

And 

( ) ( ) ( ) ( ) 2 1
6 2 1

0 1
0 1 0 1 ,0 1iGi i

i
i i

B p Gζ ζ ε ε−
∞ ∞

−
= =

= − > ≤ − < <∑ ∑  

Let us defined the following: 
1) 

( ) ( )
( )

1 1
1 112

n
ii

n
V n B

ϕ θ
=

= = ∑  

where { }1iB  is a sequence of independent identically distributed random varia-
ble.  

( ) ( )2 2
2 212

n
ii

n
V n B

ϕ θ
=

= = ∑  

where { }2iB  is a sequence of independent identically distributed random vari-
able.  

2) 

( ) ( )2 1
1

1

1nn
n

G
d K ζ

θ
−= = −  

( ) ( )2 1
2

2

1nn
n

G
d K ζ

θ
−= = −  

3) m1 is an integer such that 11 1 2md zb b= + , m2 is an integer such that 

12 2 2md zb b= + . 
4) 

( ) ( )( )
( )

( ) ( ) ( )
1 2

1 1 1 1
0

2 0 1
z

i

na n p z V n p i V n i
n k =

= − < ≤ = − + < ≤ −  + ∑  

( ) ( )( )
( )

( ) ( ) ( )
2 2

2
0

2 2 22 0 1
z

i

na n p z V n p i V n i
n k =

= − < ≤ = − + < ≤ −  + ∑  

5) 

( )1 ,
1 K
ζα

ζ
=

−
 

( )2 1 K
ζα

ζ
=

−
 

https://doi.org/10.4236/am.2019.105025


A. A. M. Teamah, A. B. Elbery 
 

 

DOI: 10.4236/am.2019.105025 358 Applied Mathematics 
 

and 
6) 

( ) ( ) ( ) ( )1 1
0

, 1 1 ,
n

U j j p j V n j
∞

=

+ = − + < ≤ −  ∑  

( ) ( ) ( ) ( )2 2
0

, 1 1 .
n

U j j p j V n j
∞

=

+ = − + < ≤ −  ∑  

Then ( )1 , 1U j j +  and ( )2 , 1U j j +  satisfies the condition of the renewal 
equation see [33]. Thus, from lemma (1) we have ( )1 nα  and ( )2 nα  are non 
increasing if 1mn d>  and 2mn d>  see [4], consequently, 

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

( )( ) ( )( )

1

1
1

2 1 2 1 1 2 1
1

1 1 2 1
1

1 1 2 1
1

1 11 1
1 1

0 1 0

1 0

 1 0

  
j
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i

i
n

i
i

i

i
i

i n
n

n n
n n

n n n

B z B p z G

p z G

p z G

a d a d

ζ ϕ

ζ ϕ

ζ ϕ

ζ ζ

∞

−
=

−
=

∞

−
= +

∞

= = +

− = − − < ≤

= − − < ≤

+ − − < ≤

= +

∑

∑

∑

∑ ∑

 

( ) ( )( ) ( )( )

( )
( )

( ) ( ) ( )
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11

1 11 1 1 1
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1 1
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2

1 1
1 0

2

1 1
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1

, 1

j

m

m

n
n

n n n
n n n
n

n

n n d

zn
n

n n d i

zn
n

n j

d d a d

a n

p j V n j

U j j

ζ α

ζ α

ζ α

ζ α

∞

−
= = +

∞

= =

∞

= = =

= =

≤ + −

≤ +

≤ + − + < ≤ −  

≤ + +

∑ ∑

∑ ∑

∑ ∑ ∑
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( ) ( ) ( ) ( )( )
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Such that for any line ( )1 , 1U j j +  and ( )2 , 1U j j +  satisfies the condition 
of the renewal equation see [26], we have ( )1 , 1U j j +  and ( )2 , 1U j j +  are 
bounded for all j by a constant so 

( ) ( ) ( )2 1 2 1 2 1 10 10 ,B z B M M z B z≤ + + =  

then 

( ) ( ) ( )1 16 6 2 2 14 20 .B z B M M z B z≤ + + =  

The necessary and sufficient condition for the existence of a finite search plan 
is , 1, 2jE Z j< ∞ = , that is sufficient from the consequence of Theorems 1,2 
and the following Theorem 3.  

Theorem. 3. 
If there exists a finite search plan 0 0

ˆ ˆφ ∈Φ , then jE Z  is finite, where jZ  
is a random variable representing the initial position of the target on a line 

, 1, 2jL j = . 
Proof 

For ( )
0̂

E
φ
τ < ∞ , we have ( )

0̂
is finite 1p

φ
τ = , and so  

( )
4

1
is finite 1

r
r

p φτ
=

=∑  

Therefore, 

( ) ( )
01 02ˆ ˆis finite is fin e 1itp p
φ φ
τ τ+ =  

where 
01 02ˆ ˆ,
φ φ
τ τ  the first meeting time on the 1L  and 2L , respectively, then,  

( )
01ˆ is finit 1ep
φ
τ = . 

we conclude that: 

( )
01ˆ is finit 1ep
φ
τ =  and ( )

02ˆ is finit 0ep
φ
τ =  

or ( )
01ˆ is finit 0ep
φ
τ =  and ( )

02ˆ is finit 1ep
φ
τ =  

If ( )
01ˆ is finit 1ep
φ
τ =  on the first line 1L , then ( ) ( )

01 01ˆ ˆ1Z S
φ φ

φ τ τ= −  with 
probability one and hence 

( ) ( ) ( )
01 01 01 01ˆ ˆ ˆ ˆ1   ,Z S S
φ φ φ φ

φ τ τ τ τ≤ + ≤ +  

that leads to, 

( ) ( )
01 01ˆ ˆ1 .E Z E E S
φ φ
τ τ≤ +  

but ( )
01 01ˆ ˆ S
φ φ
τ τ≤ , then ( ) ( )

01 01ˆ ˆ E S E
φ φ
τ τ≤ . 

If ( )
01ˆ E
φ
τ < ∞ , then ( )

01ˆ E S
φ
τ < ∞ , and 1E Z  is finite. On the second line 

2L . 
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If ( )
02ˆ is finit 1ep
φ
τ = , then ( ) ( )

02 02ˆ ˆ2Z S
φ φ

φ τ τ= −  with probability one, by 

the same way we can get ( )
02ˆE
φ
τ < ∞ , and 2E Z  is finite. 

3. Existence of an Optimal Search Plan 

Definition 1. 
Let ( )ˆ ˆ , 1, 2ji t jφ ∈Φ =  be two sequences of search plans, we say that ˆ

jiφ  
converges to ˆ

jφ  as i tends to ∞  if and only if for any t I +∈ , converges to 
ˆ

jφ uniformly on every compact subset see [13].  
Theorem 1.4. 
Let for any t I +∈ , and S(t) be a process(one dimensional random walk). 

The mapping ( ) ( ) ( )ˆ ˆ1 2 3 4
ˆ , , , E R E R

φ φ
φ φ φ φ φ τ τ+ += → ∈ → ∈  is lower  

semi-continuous on ( )ˆ tΦ . 
Proof 
Let ( )ˆ ,jI tφ  be the indicator function of the set { }ˆj

t
φ
τ ≥ , by the fa-

tou-lebesque theorem see [5] we get:  

( ) ( ) ( ) ( )ˆ ˆ
1 1

ˆ ˆ, liminf , liminf
j jj jii it t

E E I t E I t E
φ φ
τ φ φ τ

∞ ∞

→∞ →∞= =

   
= = ≤   

   
∑ ∑  

for any sequence ˆ ˆ
ji jφ φ→  in ( )ˆ tΦ , where ( )ˆ tΦ  is sequentially compact see 

[29].Thus the mapping ( )ˆ
ˆ

jj E
φ

φ τ→  is lower semi continuous on ( )ˆ tΦ , then 

this mapping attains its minimum. 

4. Conclusions and Future Work 

We illustrated that the quasi coordinated linear search technique for a random 
walk target on one of two intersected real lines has been presented, where the 
target initial position is given by a random variable. We introduced the proof of 
conditions that make the search plan which is finite in Theorem 1 based on the 
continuity of the search plan. In Theorems 2 we showed that the search plan is 
finite if the conditions, where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 9 1 2 1 10 1 3 1 11 1 4 1 12 1

5 2 13 2 6 2 14 2 7 2 15 2 8 2 16 2

, , , ,

, , and ,

B z B z B z B z B z B z B z B z

B z B z B z B z B z B z B z B z

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )9 1 10 1 11 1 12 1 13 2 14 2 15 2, , , , , ,B z B z B z B z B z B z B z  and  
( )16 2B z  are linear functions. We use Theorem 3 to show that if there exists a 

finite search plan then the expected value of the target initial position jE Z  is 
finite. It will also be interesting to see a direct consequence of Theorems 1, 2, 
and 3 satisfying the existence of a finite search plan if and only if jE Z  is fi-
nite. We pointed to the existence of an optimal search plan in Theorem 4. The 
effectiveness of this model is illustrated using a real life application. 

In future research, we have interesting search problems, study the coordinated 
search problem using multiple searchers, when the searchers star from any point 
on more lines rather than the origin. 
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Abstract 
In earlier works we introduced the Inverse Problem, relative to the Shapley 
Value, then relative to Semivalues. In the explicit representation of the In-
verse Set, the solution set of the Inverse Problem, we built a family of games, 
called the almost null family, in which we determined more recently a game 
where the Shapley Value and the Egalitarian Allocations are colalitional ra-
tional. The Egalitarian Nonseparable Contribution is another value for coop-
erative transferable utilities games (TU games), showing how to allocate fairly 
the win of the grand coalition, in case that this has been formed. In the 
present paper, we solve the similar problem for this new value: given a non-
negative vector representing the Egalitarian Nonseparable Contribution of a 
TU game, find out a game in which the Egalitarian Nonseparable Contribu-
tion is kept the same, but it is colalitional rational. The new game will belong 
to the family of almost null games in the Inverse Set, relative to the Shapley 
Value, and it is proved that the threshold of coalitional rationality will be 
higher than the one for the Shapley Value. The needed previous results are 
shown in the introduction, the second section is devoted to the main results, 
while in the last section are discussed remarks and connected problems. Some 
numerical examples are illustrating the procedure of finding the new game.  
 

Keywords 
Shapley Value, Egalitarian Nonseparable Contribution, Inverse Set, Family of 
Almost Null Games, Coalitional Rationality 

 

1. Introduction 

In [1], we introduced a new problem, connected to the Shapley Value, that was 
called the Inverse Problem, relative to the Shapley Value: Let nL R+∈  be the 
Shapley Value of a given TU game. It is well known that the set of cooperative 
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TU games ( ),N v , with ( ),SH N v L= , is a vector space. In this vector space, 
called the Inverse Set, we defined a basis, called a potential basis, such that any 
element of the vector space may be written as  

{ } { }
, 2

,S S N N iN i N i
S N S n i N i N

v c W c W W LW− −
⊂ ≤ − ∈ ∈

 = + + − 
 

∑ ∑ ∑         (1) 

where the basis is { }: ,n
TW W R T N T= ∈ ⊆ ≠ ∅ , expressed in terms of the 

Shapley Value weights, as 

( ) ( )
( )

0

1
1 , , , ,

l

l s t

T Tt t l
lt t l

s t
l

W T W S S T T N
p p

= −

+
= +

− 
−  

 = = ∀ ⊇ ⊆∑        (2) 

This set of games is called the Inverse Set, relative to the vector L. More re-
cently, we introduced, in [2], a new problem connected to the Inverse Problem, 
relative to the Shapley value: to find out, in the Inverse Set of a TU game relative 
to the Shapley Value, a game in which this value is colalitional rational. The 
main idea in solving this problem was to look for the solution in what we called 
the almost null family of the Inverse Set, defined by the formula 

{ } { }
,

N iN N iN i
i N i N

w c w w L w
−−

∈ ∈

 = + − 
 

∑ ∑                (3) 

in which Nc  is a parameter, in fact, the potential of the game. The scalar form 
of this family of games is 

{ }( ) ( )( )
( ) ( )

1 , ,

, 0, , 2.
N i

i
i N

w N i n c L i N

w N L w T T N T n
∈

− = − − ∀ ∈

= = ∀ ⊂ ≤ −∑              (4) 

The coalitional rationality conditions that give the appurtenance of the Shap-
ley Value to the CORE of these games, are 

( ) ( )

( ) ( )

1 2 , ,
1
1or 2 .

1

N i

N i i

c w N n L i N
n

c v N n Min L
n

α

≤ + − ∀ ∈  −

≤ + − =  −

               (5) 

Now, for any value of the parameter satisfying (5), substituted in the above 
scalar form (4), we get a solution of the last problem. Of course, no computation 
is needed, in case that for the given game the Shapley Value is already 
colalitional rational. Obviously, there is an infinite set of solutions, correspond-
ing to the infinite possible choices of the parameter, belonging to the interval 
[ ]0,α . This last number will be called the threshold of coalitional rationality.  

A similar problem may be considered relative to the Banzhaf Value (see [3]). 
Another new problem was discussed in the very recent paper [4]: Let us take 

another efficient value, called the Egalitarian Allocation and try to solve the sim-
ilar problem: If the value is not colalitional rational, find out in the Inverse 
Set, relative to the Shapley Value, a new game in which the value is kept the 
same, but it is colalitional rational. Recall that the Egalitarian Allocation is de-
fined by 
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( ) ( )
, , .i

v N
EA N v i N

n
= ∀ ∈                      (6) 

As shown by (6), this value depends only on the worth of the grand coalition, 
so that the main idea is that of trying to find a solution also in the family of the 
almost null game of the Inverse Set, relative to the Shapley value, where this val-
ue is kept unchanged. Therefore, we have tried again to find it in the family of 
the almost null games of the Inverse Set, relative to the Shapley Value, where the 
coalitional rationality conditions, providing a new threshold for coalitional ra-
tionality, where imposed (see [4]).  

In this paper, we discuss the similar problem for another value, the Egalitarian 
Nonseparable Contribution, a value introduced in [5], and defined by 

( )

( ) { }( ) ( ) ( ) { }( )

,

1 , .

i

j N

ENSC N v

v N v N i v N v N v N j i N
n ∈

 
 = − − + − − − ∀ ∈  

 
∑

   (7) 

The same basic idea from [4] will be used, that is a solution will be found in 
the family of almost null games in the Inverse Set, relative to the Shapley Value. 
The difference is that now we should show that the new game has the same Ega-
litarian Nonseparable Contribution like before and the threshold of coalitional 
rationality is given by a new formula which allows a comparison with the other 
thresholds of the two values considered in the previous works. 

The interesting fact in answering the question why should we use the new 
value is provided by the nice interpretation of the ENSC: in a first stage, we allo-
cate to each player his marginal contribution to the grand coalition, and if the 
win of the grand coalition is not exhausted, the reminder will be shared equally. 
Namely, if the total allocation is smaller than the win of the grand coalition, the 
difference will be shared equally; otherwise, each player will return an equal 
share of the difference. 

Recall that in [4] we used the scalar form (4), of the games in the family of 
almost null games, as well as the definition (6) for the Egalitarian Allocation, to 
express the coalitional rationality conditions. We obtained 

( ) ( ) ( )( )1 1 , ,N i

w N
n n c L i N

n
− ≥ − − ∀ ∈  or 

( )
.N i i

v N
c Min L

n
β≤ + =    (8) 

The last number was the threshold of coalitional rationality for the Egalitarian 
Allocation, and in [4] we proved also the inequality α β≥ . The same steps will 
be used in the case of Egalitarian Nonseparable Contributions. But, we have to 
compute the representation of the ENSC for games in the almost null family and to 
prove that the ENSC will be the same as in the initial game. This will be done in 
the next section, and remarks derived from examples will be in the last section. 

2. The ENSC Value for the Games in the Almost Null Family 

We compute the terms of formula (7) for the ENSC value by using (4); we get 
the sum of marginal contributions 
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( ) { }( ) ( ) ( ) ( )2 1 1 ,N
i N

w N w N i n w N n n c
∈

 − − = − − − ∑          (9) 

then, the average of leftover, after subtracting the initial allocations, namely 

( ) ( ) { }( ) ( ) ( ) ( )
2 11 1 .N

i N

n
w N w N w N i n c w N

n n∈

−  − − − = − −   
∑     (10) 

In this way, from (4), (7), and (10), we obtain the components for the ENSC 
value 

( ) ( ) ( )2, 1 , .i i
nENSC N w n L w N i N

n
−

= − − ∀ ∈             (11) 

Do not forget that in (11) we have the component of the Shapley Value. Now, 
on the one hand, from (11), it is easy to check the efficiency of the value in the 
new game; on the other hand, formula (11) shows the result that in the ENSC 
does not occur the value of the parameter. It follows that whatever would be the 
choice of the parameter, the ENSC has the same value. Of course, this includes 
the value which was providing the ENSC for the initially given game. Hence, any 
choice for the parameter should only satisfy in the new game the coalitional ra-
tionality conditions. Further, we shall impose, by means of Formulas (4), the 
coalitional rationality conditions 

( ) ( ) { }( ), , ,iw N ENSC N w w N i i N− ≥ − ∀ ∈              (12) 

or, in another form 

( )2 .Nc v N
n

γ≤ =                          (13) 

We proved the following result: 
Theorem: The family of almost null games in the Inverse Set, relative to the 

Shapley Value, is providing a family of TU games in which the ENSC value will 
be unchanged and coalitional rational, if the parameter satisfies the inequality 
(13), providing a new coalitional rationality threshold. 

Note that beside the coalitional thresholds given by Formulas (5) and (8), we 
have also a new threshold, for ENSC, offered by formula (13). 

Example 1: Consider the three-person game 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 0, 1,2 22, 1,3 2,3 18, 1,2,3 25.v v v v v v v= = = = = = =   (14) 

First, compute the Shapley Value and the Egalitarian Allocation of this game, 
by using the Shapley formula and the definition (6) given in the first section:  

( ) ( ) 25 25 25, 9,9,7 , ( , ) , , .
3 3 3

SH N v EA N v  = =  
 

            (15) 

The thresholds for coalitional rationality for them are 16α =  and 46
3

β = , 

hence we can get solutions of our problem, in the case of both values, for games 

corresponding to values of the parameter in the interval 460,
3

 
  

. The number 

γ  necessary for getting a solution for the ENSC value is 50
3

γ = ; hence the 
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values of the parameter providing solutions of our problems for all three values 

are those in the interval 460,
3

 
  

. Now, a solution may be obtained by taking the 

maximal value in this interval, which provides the game 

( ) ( ) ( ) ( )

( ) ( ) ( )

501 2 3 0, 1,2 ,
3

381,3 2,3 , 1,2,3 25.
3

w w w w

w w w

= = = =

= = =
              (16) 

For our game (16), beside the same Shapley Value and Egalitarian Value, both 
coalitional rational, we obtain the same ENSC value as in the initially given 
game, namely the coalitional rational value 

( ) 29 29 17, , , ,
3 3 3

ENSC N v  =  
 

                  (17) 

This was not coalitional rational in the given game, as it did not belong to the 
CORE. An interesting remark is that the value of the threshold of coalitional ra-
tionality for the Egalitarian Nonseparable Contribution is higher than the one 
for the Shapley Value and the Egalitarian Allocation, and we may wonder 
whether, or not, this is a general situation. This will provide a second main result 
after the above theorem. 

To see that, first we should compare the numbers  

( ) ( ) ( ) ( )1 1 22 , , ,
1 i i i iv N n Min L v N Min L v N

n n n
α β γ= + − = + =  −

 (18) 

that decide the coalitional rationality in the family of almost null games, in the 
Inverse Set, relative to the Shapley Value. Taking into account that in such 
games we have 

( ) ,i i i
i N

w N L nMin L
∈

= ≥∑                     (19) 

we can compute the differences 

( ) ( )

( )

2 1 2 2 1 0,
1 1 1

1 0,

i i i i

i i

n nw N Min L w N Min L
n n n n n

w N Min L
n

γ α

γ β

− −   − = − − = − ≥   − − −   

− = − ≥

  (20) 

and conclude the result: 
Theorem: In the family of almost null games from the Inverse Set, relative to 

the Shapley Value, we have: 
1) The thresholds for coalitional rationality (18) satisfy the inequalities 

γ α β≥ ≥ , 
2) A game in which the Shapley Value, the Egaltarian Allocation and the Ega-

litarian Nonseparable Contribution are all coalitional rational can be obtained by 
taking [ ]0,Nc β∈ . 

Example 2. An interesting situation occurs in case of the game 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 0, 1,2 1,3 2,3 1,2,3 1v v v v v v v= = = = = = =       (21) 

where the CORE is empty, as a constant sum game, and we have 

( ) ( ) ( )2 1 1 1, , , , , , ,
3 3 3 3

SH N v EA N v ENSC N vα β γ  = = = = = =  
 

     (22) 

and one of the solutions of our problem for all three values is the game obtained 
for the maximal value shown by the previous theorem: 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 2 3 0, 1,2 1,3 2,3 , 1,2,3 1.
3

w w w w w w w= = = = = = =    (23) 

Finally, we could check to see that the Egalitarian Nonseparable Contribution 
will be unchanged for the games in the family of almost null games in the In-
verse Set, relative to the Shapley Value.  

3. Discussion and Remarks 

In the examples 1 and 2, we have shown cases of games in which the thresholds 
for coalitional rationality are satisfying the inequalities proved in the recent 
work [4] and in the last theorem. In example 1, all hold with strict inequality 
signs, while in example 2, all hold with equal signs. In [4], an example was given, 
where the parameter was chosen between the two smallest values. Now, let us see 
that for the ENSC it is possible to have a case where the parameter is chosen at 
the maximal value, while the other two values are not colalitional rational. 

Example 3: Return to the game of example 1, given by Formulas (14). The 
Shapley Value and the Egalitarian Value are given by Formulas (15), while the 
ENSC is given by formula (17). We have the values of thresholds 

50 4616 ,
3 3

γ α β= ≥ = ≥ =                   (24) 

that is, the inequalities are satisfied with strict signs. Let us use the Formulas (4) 
and choose the parameter equal to the maximal value of the threshold for the 

ENSC, that is 50
3Nc = , to compute the new game in the family of the almost 

null games in the Inverse Set relative to the Shapley Value. We obtain the game 

( ) ( ) ( ) ( )

( ) ( ) ( )

581 2 3 0, 1,2 ,
3

461,3 2,3 , 1,2,3 25.
3

w w w w

w w w

= = = =

= = =
             (25) 

We can compute and check that the three values are unchanged, and also 
check the coalitional rationality. For the Shapley Value and the Egalitarian Allo-

cations, the inequalities ( )1 2
581,2
3

x x w+ ≥ = , from the definition of the CORE, 

do not hold, while all the others hold, hence these two values are not colalitional 
rational in the game (25). On the other side, the ENSC satisfies all conditions of 
coalitional rationality. This provides an illustration of the above statement. 

A good question is whether or not, there are other efficient values that gener-
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ate subfamilies of the family of almost null games in the Inverse Set, relative to 
the Shapley Value, in which these values are colalitional rational. This may be 
the topic for future research. 

Note also that the Egalitarian Nonseparable Contribution, beside the efficien-
cy, has the property of possessing the coalitional rationality inside the Inverse 
Set, relative to another value, the Shapley Value. This was also true for the Egali-
tarian Allocations, but it was not that obvious like in the ENSC case.  

We may also check that whatever value satisfying the condition of the above 
theorem was chosen, the ENSC value is the same and equal to the initially com-
puted ENSC for the given game, shown above in (17). This is shown in connec-
tion with formula (11), but we may check it by taking any other value of the pa-

rameter. For example, if we take 41
3Nc = , that is below the common threshold 

for coalitional rationality, and use the Formulas (4) and (7), then we obtain the 
new game 

( ) ( ) ( ) ( ) ( )

( ) ( )

28 ,
3

1 2 3 0, 1,2 1,3

2,3 1,2,3 25, ,40
3

w w w w w

w w

= = = = =

= =
         (26) 

and if we compute the ENSC, we shall get the same result like in (17). The simi-
lar result will be obtained for any other choice. The new game is different, but 
the ENSC is the same as initially, and it is colalitional rational. 
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