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Abstract 
The article examines the effect of atomic number, temperature and tempering 
time on microstructure and mechanical of Ni bulk by molecular dynamics 
simulation and deformation z-axis. Samples Ni with N = 4000, 5324, 6912, 
and 8788 atoms at 300 K, 6912 atoms at T = 1100, 900, 700, 500, 300 K and 
6912 atoms at 900 K after different annealing time. The samples were incu-

bated with the same heating rate 124 10 K sT
t

∆
= ×

∆
. Combined with common 

neighborhood analysis method shown in sample is always existing four types 
structure: FCC, HCP, BCC, and Amor. In particular, structural units FCC, 
HCP and Amor always prevail and BCC are very small and appear only at 300, 
500 K with 6912 atoms. When increasing atomic number, lowering tempera-
ture or increasing tempering time will facilitate crystallization process leading 
to increased FCC and HCP units number. The increasing FCC, HCP units 
number and additional appearance BCC structure led to change microstruc-
ture and mechanical of material: When increasing atom, lowering tempera-
ture and increasing incubation time lead to an increase in density of atoms 
that increase mechanical properties of the material. 
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1. Introduction 

Nowadays, materials Ni bulk are always used in industries: Microelectronics [1] 
[2] [3] [4], photocatalyst [5] [6], photovoltaics [7], and solar energy [8]. In that, 
they have great influence on microstructure, surface morphology and crystalliza-
tion state on microstructure, mechanical. To research and manufacture, mate-
rials have many methods: experimental [9]-[13] and theoretical [14] [15] [16]. 
The results do not always give the desired results. Phase transitions, heteroge-
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neous dynamics, surface shape, size, and crystallization lead to changes struc-
tures: BCC, FCC, HCP, [17]-[24]. Cause when size material limited led to ap-
pearance quantum effects (Size effects, surface effects), materials appear much 
different natures [25] [26] [27] [28]. 

To get a better understanding of the factors that influence on microstructure 
and mechanical of material. Molecular dynamics simulation is considered an ef-
fective tool for empirical research to study the microstructure of metals 
[29]-[38], deformation of z-axis to determine mechanical properties of metal 
have structured FCC (Al, Cu và Ni) and BCC (Fe, Cr, W). Macmillan, Kelley 
[39] and Parrinello, Rahman found [40] that: With Ni bulk, deformation of ma-
terial depends greatly on the direction of strain and the intensity of applied 
pressure. Komandari et al. [41] [42], Park et al. [43] [44] stretched nanowires in 
different directions and Wu [45] [46], Golovnev [47] studied the mechanical 
properties of Cu nanowires and determined relationship between temperatures. 
Dimensions are always proportional to deformation, and Lin Yuan and col-
leagues [48] examined monoclinic mechanics at different temperatures. The re-
sults show, we cannot predict the deformation of materials at high temperatures 
and high heating rates [49] [50] [51] [52]. Therefore, study a number of factors 
affecting the microstructure, and mechanics of nano-sized nanomaterials, will 
contribute to the fabrication of new materials [53]. In this paper, we focus on the 
influence of factors such as atomic number, temperature, microstructure and 
mechanical properties and termination; and the relationship among size, stress 
and number of structural units FCC, HCP, BCC, and Amor. 

2. Research Methodology 

Ni samples with N = 4000, 5324, 6912 và 8778 atoms (respectively Ni4000, Ni5324, 
Ni6912, Ni8788) is placed in cubic with FCC structure at 0 K temperature and in-
terruption radius 3.0 Å. After that increase temperature from 0 K up 2000 K and 
lower temperature from 2000 K down 1100, 900, 700, 500 and 300 K with heat-
ing rate is 4 × 1012 K/s and process of thermal annealing with 0.0, 6 × 104, 12 × 
104, 20 × 104 moving step, displacement time is 2fs (corresponding with 0.0, 120, 
240, 400 fs) break initial state to study microstructure in new states. In particu-
lar, the process of increasing temperature (lower temperature) the follows 
Nosé-Hoover relation [54] [55] [56]. To perform this process, we used molecular 
dynamics (MD) simulations with interactive embedding Sutton-Chen (1) and 
periodic boundary conditions [57]-[62]. 
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= Φ − Φ = =             
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With: rij is distance between two atoms i, j; a is parameter with dimension of 
length; ρi is atomic density i; Etot is total energy of the system; Φ(rij) is energy 
between two atoms i, j; F(ρi) is interaction force on atom i; rc is radius discon-
nect, ε is energy; C, m, n, N is constant. With ε = 7.3767meV, C = 84.745, n = 10, 
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m = 5 và a = 3.52 Å selected for accurate results on microstructure of materials 
at different temperatures. 

Previously, interactive embedding Sutton-Chen has been used extensively to 
study phase transition in metals [63] [64] [65] [66] [67]. In addition, study mi-
crostructure of materials we use Common Neighbor Analysis methods (CNA) 
[68] [69] [70]. To study mechanical properties of Ni, we used z-axis deformation 
method (2) to determine the relationship between stress and strain. 
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Here, mi is mass of atom i, ivα  is velocity of atom i along axis α and Fij is in-
teraction force between atom i and atom j, rij is distance between atom i, j, and 
rij,α is vector in α axis from atom i to atom j, Vi is volume of atom i. Where E is 
stress, G is slipping and µ is deformation coefficient, α is factor deformation, εzz 
is deformation z-axis; σxx, σyy, σzz is stress according to x, y, z, and σαβ is stress 
model. Deformation is determined by the work [71] [72]. 

3. Results and Discussion 
3.1. The Influence of the Atomic Number 

The microstructure of Ni4000, Ni5324, Ni6912, Ni8788 at temperature 300 K, deter-
mined by radial distribution function (RDF), resulting in Figure 1. 

The Ni4000 has the first peak of RDF prevail with valuable is 2.45 Å that shows 
sample Ni bulk do not far order exist that always exist near order (Figure 1(a)) 
and have average coordination number is 12 (Figure 1(b)). When increasing 
atoms number then first peak height of RDF decreased from 7.35 (Ni4000) down 
5.76 (Ni6912) and increased 7.61 (Ni8788) leading to increased atomic density. The 
first peak of RDF increases and decreases do not follow specific rules. The min-
imum value at Ni6912, due to in material has microstructural units existence, re-
sults show in the second peak of RDF. The second position peak varies of RDF 
from 3.45 to 3.55Å reaching and a maximum value at 3.55Å. The first peak 
height RDF Ni bulk sample smaller nanoparticles, second peak position Ni bulk 
larger nanoparticles. These results are entirely consistent with Ni nanoparticles 
[73]. Confirm this, we use simulation method, resulting in Figure 2 and Table 1 

The results show that Ni4000 at 300 K has three types of structures: FCC, HCP, 
Amor (Figure 2(e), Figure 2(g), Figure 2(i)). When increasing N from 4000 to 
5324, 6912 and 8788 atoms then number units of FCC, HCP increased, Amor 
decrease (Figures 2(a)-(c)) and Table 1. However, with Ni6912 sample shows has 
four types structures of FCC, HCP, BCC, Amor (Figure 2(e), Figure 2(g), Fig-
ure 2(h), Figure 2(i)). When increases atoms number lead to a density of atoms 
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increases, increasing units number of FCC, HCP, BCC and decrease units num-
ber Amor in the sample. The main cause leading to the appearance of number 
units structural of BCC is due to the size effect. The appearance of structural 

 
Table 1. Number of atoms has structural units at 300 K.  

Samp (atom) 4000 5324 6912 8788 

FCC 2044 3154 4017 4886 

HCP 1943 1816 2025 3887 

BCC 0 0 14 0 

Amor 13 354 8 15 

 

 
(a)                                        (b) 

Figure 1. Radial distribution function (a); average coordination number (b) with differ-
ent atomic numbers at temperature 300 K. 
 

    
(a)                             (b)                             (c)                          (d) 

    
(e)                             (f)                             (g)                          (h) 

FCC Structure                  HCP Structure                      BCC Structure               Amor Structure 

Figure 2. New state of sample 4000 atoms (a); 5324 atoms (b); 6912 atoms (c); 8788 atoms (d) at temperature 300 K and structural 
shape in the sample (e); (g); (h); (i). 

https://doi.org/10.4236/ampc.2018.84012


N. T. Dung, N. C. Cuong 
 

 

DOI: 10.4236/ampc.2018.84012 181 Advances in Materials Physics and Chemistry 
 

units FCC, HCP, Amor consistent with the results [74] [75] [76] [77], unit 
number of BCC structure fit with Brewer [78]. With the emergence of BCC 
structure units, number at sample Ni6912 is astonished by scientists. However, 
these results should be checked and assessed for accuracy by results of Centro-
symmetry Parameters [79] [80], Bond Angle Analysis [81], Bond Order [82] and 
another method to solve this problem. To study the influence of atomic number 
up mechanical properties of sample Ni bulk we used z-axis distortion method to 
determine the relationship between stress and strain of sample. The results are 
shown in Figure 3 and Table 2. 

The results show, with Ni4000 sample has stress value of E = 173.04 GPa. When 
N increases from 4000 to 5324, 6912, 8788 atoms then E increases from 173.04 to 
194.76 GPa and decreases to 189.83GPa and reaches a maximum value of 194.76 
 

 
Figure 3. Relationship between deformation and stress of samples with different atomic 
numbers. 
 
Table 2. Characteristics mechanical properties of Ni bulk samples at temperature 300 K. 

sample (atoms) 
Deformation 

coefficient 
Stress Young 

module E (GPa) 
Slipping module 

G (GPa) 
Experimental results 

at 20˚C E (GPa) 

4000 0.9454 173.04 66.04 200 [83] 

5324 0.0069 181.07 69.11  

6912 0.03237 194.76 74.33  

8788 0.2004 189.83 72.45  
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GPa at Ni6912 (Figure 3(b)). This result is consistent with influence atoms num-
ber on microstructure and number structural units. With Ni6912 structure ap-
pears BCC and increase structure number FCC, HCP, BCC is greatest. That 
raises the question: Is there a link between atoms number, structural units num-
ber and stress value of the material. To answer this question, previous studies 
have examined the effect of porosity on mechanical properties of materials by 
equation Voigt [84], Spriggs [85] and correlation function Hashin-Strikman 
[84]. Besides, under influence of external forces leading to change of shape when 
the structural units number in crystal lattice changes: Ito and est [86] assume 
that size of empty hole increases when deformation increases lead to stress de-
creases. The results were consistent with experimental results, at 293 K with E = 
200 Gpa [56], Slipping G = 79.6 GPa, deformation coefficient α = 0.31. This 
shows that influence of atoms number on microstructure leads to appearance 
BCC structure at Ni6912 to increase stress E. 

3.2. Effect of Temperature 

The microstructural, mechanical properties of Ni6912 bulk at 1100, 900, 700, 500 
and 300 K are shown in Figure 4. 

The results show that at 1100 K on sample there existed only 13 atoms has 
HCP structure (Figure 4(a1)). The first peak of radial distribution function g(r) 
is 3.4 Å (Figure 4(a2)) and stress E = 0 and slope G = 0 (Figure 4(a3)). When 
temperature lowered 900, 700, 500 and 300 K then structure units number FCC, 
HCP and BCC increased sharply lead to Amor structure units number decrease 
resulting (Figures 4(b1)-4(e1)), g(r) increased sharply from 3.4 Å up 5.82 Å 
(Figures 4(b2)-4(e2)) and E, G increased from 0.0 up 194.76 GPa, 74.33 Gpa 
(Figures 4(b3)-4(e3)). However, phase transition from liquid to amorphous 
states lead to structure units number of structural, g(r), E and G increased. The 
obtained results show that at 900 K is transition temperature (Tm) of Ni6912 bulk. 
This result is consistent with Ni4000 bulk has crystalline temperature is 800 K 
[32], Ni5324 nanoparticles have Tm = 800 K [73] and when N increases then Tm 
increasing [30]. In addition, phase transition temperature depends not only on 
number of atoms but also on shape and size [35] such as: Wen et al. assume that 
melting temperature Tm of Ni nanowires is inversely proportional with size D 
[31] and Trong Dung Nguyen assumes that for Ni nanoparticles then D is pro-
portional with N−1/3, E is inverse with N and confirm that transition temperature 
of sample is not applicable to nanoparticles [73]. The other side, when tempera-
ture decreases then E, G increase [87]-[91] as by deformation of z-axis, E = 171 
GPa [92]. This confirms when temperature decreases then E increases and de-
termination at 900K is phase transition temperature of Ni6912 bulk. 

3.3. The Effect of Crystallization 

The energy, size, number of structural units, radial distribution function, E and 
G of Ni6912 bulk after incubation time are shown in Table 3, Figure 5. 
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Figure 4. The number of the structural units, microstructure and mechanical of Ni6912 bulk at different temperatures. 
 

Table 3. Energy, size of Ni6912 bulk after different incubation time. 

Tempering time (fs) 0.0 120 240 400 

Energy Etot (eV) −1097.37 −1097.22 −1099.69 −1099.49 

Size D (nm) 8.209 8.085 8.075 8.075 

 
The results show that at 0.0 fs then energy of sample is −1097.37 eV, size is 

8.209 nm, structural units number are 56 FCC, 75 HCP, g(r) = 3.59 Å, E = G = 0 
GPa. When increases the heating time up 120, 240, 400 fs then energy, size de-
creases leading structural units number FCC, HCP increases, g(r) increases, E 
and G increase. This result is consistent with simulation results of Ni5324 nano-
particles [73]. On the other hand, when increasing tempering time then E, G of 
sample increases. After 400 fs heating time then deformation coefficient α = 
0.01299 and stress E = 200.31 GPa, G = 76.46 GPa (Figure 5(d3)). These results 
simulation are consistent with results of the experiment [83]. This confirms that 
there is a great influence of atoms number, temperature and thermal time on 
microstructure and mechanical properties of Ni bulk. 

4. Conclusion 

The Ni4000, Ni5324, Ni6912, Ni8788 samples were prepared by molecular dynamics 
simulation and z-axis compression. The results showed that when increasing 
atomic number (decreasing temperature and increasing incubation time) then 
RDF height decreases (increasing) leading to structural unit number FCC, HCP, 
BCC, E, G, and mechanical properties increase. The influence of atomic number, 
temperature, tempering time on microstructure and mechanical properties in 
the material structure exists in FCC, HCP, and BCC. Based on results shown, 
sample Ni bulk with a higher atomic number, lower temperature, and higher ther-
mal incubation time than sample Ni bulk will has more balanced and stable. With 
samples Ni bulk has an atomic number, temperature and different heating time 
then structural unit number FCC and HCP changes are still dominant mainly in 
FCC structure while structure units number BCC is very small. When increasing N  
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(a1)                                       (b1) 

  
(c1)                                       (d1) 

 
(a2)                                       (b2) 

  
(c2)                                       (d2) 
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(a3)                                       (b3) 

 
(c3)                                       (d3) 

Figure 5. Structural unit number, radial distribution function, mechanical of Ni6912 bulk 
after different heating time. 
 
from 4000 to 8788 atoms then g(r) decreases, structure units number FCC and 
HCP increase as α, E, G increase. At Ni6912 add structure BCC lead to E reach 
maximum value, this suggests that addition of BCC structure increases entropy. 
This is an indispensable basis for the balance of Ni bulk also when decreasing 
temperature and increasing incubation time lead to stress increases, is due to in 
structure units number FCC and HCP increase. The results are based on theo-
retical foundations of structural units number FCC, HCP, and BCC. Amors are 
unclear and should be encouraged in further studies. 
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