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ABSTRACT 

In this paper, we propose a modified centered climbing algorithm (MCCA) for linear programs, which improves the 
centered climbing algorithm (CCA) developed for linear programs recently. MCCA implements a specific climbing 
scheme where a violated constraint is probed by means of the centered vector used by CCA. Computational comparison 
is made with CCA and the simplex method. Numerical tests show that, on average CPU time, MCCA runs faster than 
both CCA and the simplex method in terms of tested problems. In addition, a simple initialization technique is intro-
duced. 
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1. Introduction 

In the last decades a variety of algorithms have been pro- 
posed for solving linear programming (LP) problems (see, 
e.g., [1-5]). However, so far there hasn’t been an avail-
able single best LP algorithm which is suitable for solv-
ing all types of LP problems. Considerable research is 
still under way to find a faster LP algorithm. 

Recently, a ladder method was developed in [5] for 
solving general LP problems. In this method, the inclu-
sive normal cone is updated at each iteration by climbing 
in the associated inclusive region (ladder) until the prob-
lem is solved. A climbing rule used to update the inclu-
sive normal cone is of crucial importance, directly de-
termining the performance of a ladder algorithm. The 
climbing rule involves picking up a violated constraint 
and dropping a constraint from the current inclusive cone. 
Ladder algorithms applying various climbing rules were 
proposed in [5,6]. In this paper, we present a new ladder 
algorithm called “the Modified Centered Climbing Algo-
rithm (MCCA)”, where a specific climbing rule is em-
ployed by means of the centered vector used by CCA [5]. 
At each iteration, a violated constraint is selected whose 
associated outer normal vector forms the minimum angle 
with the centered vector. Computational results show that, 
the proposed ladder algorithm has surprising superiority 
to CCA as well as the simplex method in terms of aver-
age CPU time for randomly generated test problems. In 
addition, the single artificial constraint technique is pre-
sented to initialize the ladder method for a certain class 
of LP problems. 

The paper is organized as follows. In the remaining of 
this section, for the sake of readability, we introduce 
concepts used in the ladder method. A new ladder algo-
rithm is proposed in Section 2, followed by an initializa-
tion technique of the ladder method in Section 3. In Sec-
tion 4, a specific example is provided to illustrate effec-
tiveness of the new algorithm. We report computational 
results in Section 5, followed by a brief conclusion in 
Section 6. 

Consider the following linear programming problem: 

(P):                 min Tc x

s.t.   Ax b  

where nx R  is decision variables, m nA R   with m ≥ 
n, c = [c1; c2; ···; cn]   Rn (c ≠ 0), and b = [b1; b2; ···; 
bm]   Rm. Here, square brackets with entries separated 
by semi-colons indicate column vectors. Throughout the 
paper, we assume that rank(A) = n. 

We denote the constraint index set {1, 2, ···, m} by . 
Let J be an ordered subset of . Denote by J(i ↔ j) the 
ordered subset with i-th entry of J replaced by 

J
J

j J J . 
The j-th row of A is denoted by aj. We denote by A(J) the 
k × n submatrix with its j-th row as the ij-th row of A. 
Also, denote by b(J) the k-vector with j-th element of b(J) 
as the ij-th element of b. In addition,   denotes the 
Euclidean norm. 

Before proceeding, we present the following defini-
tions developed in [5], which will be used in this pa-
per. 

Definition 1 [5] Consider problem (P). Let 
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 1 2= , , , nJ j j j  J

, , ,T T T

 be an ordered subset. A convex 
cone generated by n linearly independent vectors 

1 2j j ja a a
n

, where 
l
 1ja l n   are rows of A, is 

said to be an inclusive normal cone generated by J if it 
contains the vector –c, where c is the objective vector. 
The generated cone is denoted by N(J). If J generates an 
inclusive cone, the set defined by 

   = : ,  n
j jL J x R a x b for j J    

is called the inclusive region or the ladder associated 
with J. The corresponding ordered index set J is called 
the generator of L(J), and the unique solution of A(J)x = 
b(J), denoted by xJ, is called the base point of the ladder 
L(J). 

According to Theorem 2.2 in [5], problem (P) has an 
optimal solution (if an optimal solution exists) if and 
only if it has a feasible base point. A feasible base point 
is exactly an optimal solution. 

Definition 2 [5] A ladder L(J) of problem (P) is said to 
be degenerate if at least one of its n edges is normal to 
the objective vector c. Problem (P) is said to be non- 
degenerate if it does not have a degenerate ladder. 

Throughout the paper, we assume that problem (P) is 
non-degenerate since it is shown in [5] that the degener-
ate case can be readily treated by imposing an appropri-
ate perturbation on the objective function of the original 
problem without affecting the optimal solution of the 
original problem. On the basis of the above assumption, 
we give the following ladder algorithm. 

2. The Modified Centered Climbing  
Algorithm (MCCA) 

Step 0 Initialization. 
Start with a known ladder generator, which is denoted 

by  (Refer to [5] or the subse-
quent section for how to find such a generator if it is not 
immediately available). Denote by 

0

 0 0 0
0 1 2= , , , nJ j j j  J

0 = Jx x  the base 
point associated with J0. Calculate the initial base point 

   10
0 0=x A J b J


   . 

Set k = 0 and . 1

Step 1 Check optimality. 
=kD  

Let   1= \ : >k k
k k j jV j J D a x b J . 

 If =kV  , exit with “the problem attains optimal-
ity”. 

 Otherwise, go to Step 2. 
Step 2 Updating the ladder. 
2.1 Picking up a new index as a pick. 

Let             1

1= 1J k nk
v A J



    , 

where  11 = 1;1; ;1 n
n R  , and Jk

v  is the center 

vector of the current ladder L(Jk) [5]. Select  as 
a pick such that 

kp V k

 = max 
kk jp j V

t t


, 

where 

= .                  (1) 
j Jk

j

j

a v
t

a

2.2 Try to find an index k  as a drop such that k
dj J

 1 = k
k k d

kJ J j p   is a ladder generator and the asso-
ciated base point  k

1kx L J   (See Procedure 2 in [5] 
for how to identify). 
 If such an index does not exist, exit with “the problem 

is infeasible”. 
 Otherwise, go to next step. 

2.3 Let  1 = k
k k d

kJ J j p   and . Cal-
culate the updated base point 

 k
k dj=D

   11
1 1=k

k kx A J b J


    . 

Set := 1k k  . Go to Step 1. 
Note that existence of an initial ladder (generator) im-

plies that the case of unboundedness can not occur (Refer 
to Theorem 2.5 (d) in [5] for details). Step 2.1 constitutes 
the main difference with respect to the previous ladder 
algorithms. At each iteration, a violated constraint is se-
lected as a pick whose associated outer normal vector 
forms the minimum angle with the centered vector. Be-
fore numerically examining its efficiency, we would like 
to introduce the single artificial constraint technique to 
construct an initial ladder for a certain class of LP prob-
lems. 

3. Finding an Initial Ladder for LP  
Problems with Bounded Variables 

An initial ladder is required to get the ladder algorithm 
started. To find a ladder L(J) is to find the associated 
generator  1 2= , , , nJ j j j  J , equivalently, to find n 
independent outward normals jk

a

jk

 (k = 1, 2, ···, n) such 
that there exist n constants 0    (k = 1, 2, ···, n) 
satisfying 

1
= .

n T
j jk k k

c a


   

Various approaches were developed in [5] to obtain an 
initial ladder. In the following, we present an initializa-
tion technique for LP problems involving bounded vari-
ables. 

3.1. Variables with Upper Bounds 

In this subsection, we consider the case where variables 
of problem (P) have upper bounds. Temporarily, we as-
sume that at least one component of c is positive. For 
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convenience of discussion, write the problem as below: 

(P1)     1 1 2 2min  d d n nc x c x c x c x     

11 1 12 2 1 1s.t.   n na x a x a x b     

21 1 22 2 2 2n na x a x a x b     

  

     1 21 2 n mm n m n m n na x a x a x b n          

1 1m nx b    

2 2m nx b    

  

d m nx b d   

  

n mx b  

With this assumption that c contains at least one posi-
tive component, it is easily seen that the index set {m – n + 
1, m – n + 2, ···, m – n + d, ···, m} is not a ladder gen-
erator. In order to obtain a ladder for the above problem, 
we add an artificial constraint 

1

n

ii
x M


  , 

where M is a sufficiently large number. For clarity, dis-
play the problem with the additional constraint as below: 

1 1 2 2min    d d n nc x c x c x c x     
 

11 1 12 2 1 1s.t.   n na x a x a x b     

21 1 22 2 2 2n na x a x a x b     

  

     1 21 2 n mm n m n m n na x a x a x b n          

1 1m nx b    

2 2m nx b    

  

d m nx b d   

  

n mx b  

1 2 nx x x     M  

Executing the following simple procedure, we can 
readily find an initial ladder for the above problem. At 
start, take J = {m – n + 1, m – n + 2, ···, m – n + d, ···, 
m}. Let cd = max{ci} > 0 (1 ≤ d ≤ n). Take j = m – n + d 
as a drop (the associated constraint is –xd ≤ bm – n + d) and 
p = m + 1 a pick (the associated constraint is –x1 – x2 
– ··· – xn ≤ M). It is easy to verify that J(j ↔ p) is a lad-
der generator of the above problem. Indeed, from 

1 1

2 2

1 1

1 1

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0
=

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1

d d

d d

d d

n n

c

c

c

c

c

c










 

 

    
    
    
    
   




    
    
   




    
    
   




       

 
 

        
 
 
 

        
  

 

we have 

 = 0 ,   =i d i d dc c i d c    > 0  

which implies J(j ↔ p) is a ladder generator of the above 
problem. 

3.2. Variables with Lower Bounds 

In this subsection, we consider the case where variables 
of problem (P) have lower bounds. For convenience of 
discussion, we rewrite the problem in the following form: 

(P2)     1 1 2 2min  d d n nc x c x c x c x       

11 1 12 2 1 1s.t.   n na x a x a x b     

21 1 22 2 2 2n na x a x a x b     

  

     1 21 2 n mm n m n m n na x a x a x b n          

1 1m nx b     

2 2m nx b     

  

d m nx b  d   

  

n mx b   

Note that here we use the same notations in problem 
(P2) as in (P1) for convenience. In this subsection, we 
temporarily assume that c contains at least one negative 
component. With this assumption, it is easy to be seen 
that the index set {m – n + 1, m – n + 2, ···, m – n + d, ···, 
m} is not a ladder generator. Adding an artificial con-
straint 

1

n

ii
x M




min  c x

, we get the following system: 

1 1 2 2 d d n nc x c x c x       

11 1 12 2 1 1s.t.   n na x a x a x b     

21 1 22 2 2 2n na x a x a x b     

  

     1 21 2 n mm n m n m n na x a x a x b n          

1 1m nx b     
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2 2m nx b     

  

d m nx b d    

  

n mx b   

1 2 nx x x    M

1

 

Performing the similar procedure as the above subsection, 
we can easily obtain an initial ladder for the above problem. 
Initially, take J = {m – n + 1, m – n + 2, ···, m – n + d, ···, 
m}. Let cd = min{ci} < 0 (1 ≤ d ≤ n). Take j = m – n + d as 
a drop (the associated constraint is –xd ≤ bm–n+d) and p = m 
+ 1 as a pick (the associated constraint is x1 + x2 + ··· + xn ≤ 
M). It is easy to verify that J(j ↔ p) is a ladder generator 
of the above problem. In fact, from 

1 1

2 2

1

1 1

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0
=

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1

d d

d d

d d

n n

c

c

c

c

c

c










 

 

  
      
   
   

       
   

   
   
   

      

 
 

        
 
 
 

        
 














> 0

3

 

we have 

 = 0 ,   =i d i d dc c i d c       

which implies J(j ↔ p) is a ladder generator of the above 
problem. 

If variables in an LP problem are bounded from both 
below and above, that is, an LP problem contains n con-
straints taking the form of li ≤ xi ≤ ui (1 ≤ i ≤ n), where li 
and ui denote the lower and upper bounds of xi and li < ui, 
then after rewriting the above constraints as two con-
straints –xi ≤−li and xi ≤ ui we can follow the procedure in 
either Subsection 3.1 or Subsection 3.2 to obtain an ini-
tial ladder for the problem. 

4. A Specific Example 

To illustrate the efficiency of the above ladder algorithm, 
we use both the simplex method and MCCA to solve a 
Klee-Minty problem [7,8]. 

Example 1 Consider the following Klee-Minty prob-
lem with n = 3  

1 2min  100 10x x x    

1s.t.  1x   

1 220 100x x   

1 2 3200 20 10,000x x x    

1 2 3, , 0.x x x   

On the one hand, we use the simplex method to solve 
the above problem. Introducing the slack variables s1, s2, 
s3 ≥ 0, write the above problem as the standard form 

1 2min  100 10 3x x x    

1 1s.t.   = 1x s  

1 2 220 = 100x x s   

1 2 3 3200 20   = 10,000x x x s    

1 2 3 1 2 3, , , , , 0x x x s s s   

The tableau in Table 1 shows that the simplex method 
with the most negative rule requires 2n – 1 = 23 – 1 = 7 
iterations to attain the optimality. 

On the other hand, we solve the same problem using 
MCCA. Firstly we rewrite all constraints as ≤–type: 

1 2min  100 10 3x x x    

1s.t.  1x   

1 220 100x x   

1 2 3200 20 10,000x x x    

1 0x   

2 0x   

3 0x   

To find an initial ladder, we add an artificial constraint 
x1 + x2 + x3 ≤ M. For clarity, write the problem with the 
additional constraint as below. 

1 2min  100 10 3x x x    

1s.t.  1x   

1 220 100x x   

1 2 3200 20 10000x x x    

1 0x   

2 0x   

3 0x   

1 2 3x x x M    

It is easy to verify that the index set {7, 5, 6} is an ini-
tial ladder generator (see Subsection 3.2). With the 
known ladder generator at hand, it takes only two itera-
tions to reach an optimal solution for MCCA. For solu-
tion detail, see Table 2. 

Clearly MCCA is much more efficient for solving the 
above Klee-Minty problem. Firstly, our algorithm re-
quires no additional variables (slack, surplus and artifi-
cial variables). Secondly, the number of iterations is re-
duced greatly. In addition, we would like to stress that  
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Table 1. The tableau obtained from simplex for Example 1. 

Iteration  x1 x2 x3 s1 s2 s3 rhs 

0 z –100 –10 –1 0 0 0 0 

 s1 1 0 0 1 0 0 1 

 s2 20 1 0 0 1 0 100 

 s3 200 20 1 0 0 1 10,000 

1 z 0 –10 –1 100 0 0 100 

 x1 1 0 0 1 0 0 1 

 s2 0 1 0 –20 1 0 80 

 s3 0 20 1 –200 0 1 9800 

2 z 0 0 –1 –100 10 0 900 

 x1 1 0 0 1 0 0 1 

 x2 0 1 0 –20 1 0 80 

 s3 0 0 1 200 –20 1 8200 

3 z 100 0 –1 0 10 0 1000 

 s1 1 0 0 1 0 0 1 

 x2 20 1 0 0 1 0 100 

 s3 –200 0 1 0 –20 1 8000 

4 z –100 0 0 0 –10 1 9000 

 s1 1 0 0 1 0 0 1 

 x2 20 1 0 0 1 0 100 

 x3 –200 0 1 0 –20 1 8000 

5 z 0 0 0 100 –10 1 9100 

 x1 1 0 0 1 0 0 1 

 x2 0 1 0 –20 1 0 80 

 x3 0 0 1 200 –20 1 8200 

6 z 0 10 0 –100 0 1 9900 

 x1 1 0 0 1 0 0 1 

 s2 0 1 0 –20 1 0 80 

 x3 0 20 1 –200 0 1 9800 

7 z 100 10 0 0 0 1 10,000 

 s1 1 0 0 1 0 0 1 

 s2 20 1 0 0 1 0 100 

 x3 200 20 1 0 0 1 10,000 

 
Table 2. The table obtained from MCCA for Example 1. 

Iteration Ladder generator Base point Optimal value 

0 {7,5,6} [M; 0; 0]  

1 {7,5,3} 
10,000 10,000 200

; 0;
199 199

M M   
  

  

2 {4,5,3} [0; 0; 10,000] –10,000 
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although here we use an example with non-negativity 
variables to illustrate the efficiency of our algorithm, 
there is no non-negativity requirement for variables in 
our problem form. Thus, our algorithm is suitable for a 
wider range of LP problems. 

5. Numerical Tests 

In this section, we make computational tests to demon-
strate the efficiency of MCCA. The ladder algorithms 
were coded in MATLAB 7.11.0. Test problems are ran-
domly generated in the same way as in [5], which is pre-
sented as below. 

Example 2 [5] (Randomly generated feasible problem) 
Generate a linear programming problem by specifying 

m nA R  ,  1 2= ; ; ; n
nc c c c R , and  

 1 2

1. Randomly generate  and a vector 
= ;b b b ; ; m

mb R
nc R

 in the following method. 
nx R  

such that components of c take values between –25 and 
25, and components of x  between 0 and 20. 

2. Generate A and b by two steps. 
(a) For 1 ≤ j ≤ n, the j-th row aj of A is 

 = 2signT
j j ja c c  e , where ej is the j-th row of the n × 

n identity matrix. Then, bj is defined by =j j jb a x  , 
where γj is a random number in (0, 1). 

(b) For n + 1 ≤ j ≤ m, randomly generate a row vector 
 and a number j

n
j R  R   such that βj and all the 

components of αj are between –25 and 25. If j jx  , 
then the j-th row aj of A and the j-th element of b are de-
fined by aj = αj, bj = βj. Otherwise, they are defined by aj = 
−αj, bj = −βj. 

Tests were run on a desk-top computer (HP Intel(R) 
Core(TM), i7-2600 CPU@3.40GHz, 3.39GHz, 3.24GB 
of RAM) under Microsoft Windows XP operating system. 
For comparison, the centered climbing algorithm (CCA) 
[5] and the linprog solver in MATLAB optimization 
toolbox (Version 5.1, (R2010b)) were used for solving 
the same test problems. The medium-scale simplex algo-
rithm (SP) was implemented. Tables 3 and 4 present 
computational results for 20 test problems with various 
dimensions. The average CPU time is reported in sec-
onds. Since our algorithm and the simplex method actu-
ally work on problems with different forms and dimen-
sions, the number of iterations does not provide much 
helpful information. Therefore, here we do not take the 
comparison of iteration numbers into account. 

Tables 3 and 4 reveal that, MCCA has the absolute 
advantage over CCA as well as the simplex method for 
tested problems. We would like to point out that in the 
present code we adopt the traditional technique of the 
inverse of matrix to calculate base points. If the advanced 
numerical technique was incorporated into the current 
code, the computational performance would promise 
further improvement. 

Table 3. Average CPU time (in seconds) for test problems in 
Example 2 (m = 2n). 

Size Algorithms 

(m, n) MCCA CCA SP 

(40. 20) 0.0843 0.0953 0.6406 

(80, 40) 0.3937 0.4375 1.2609 

(120, 60) 0.4921 0.5093 2.1656 

(160, 80) 0.8484 1.2281 3.9640 

(200, 100) 1.4312 1.775 7.0625 

(240, 120) 2.4078 2.9609 10.3703 

(280, 140) 4.4765 4.7421 18.5488 

(320, 160) 6.6347 7.6992 28.5644 

(360, 180) 10.9609 12.3066 42.7851 

(400, 200) 16.1437 16.9937 61.7343 

 
Table 4. Average CPU time (in seconds) for test problems in 
Example 2 (m – n = 100). 

Size Algorithms 

(m, n) MCCA CCA SP 

(600, 500) 35.8554 40.8424 126.6692 

(650, 550) 44.75 57.9263 148.9732 

(700, 600) 52.25 72.5273 185.5312 

(750, 650) 62.2291 73.6718 225.5625 

(800, 700) 75.7187 118.7760 239.6666 

(850, 750) 97.3125 99.4531 240.1953 

(900, 800) 94.9375 122.8281 252.8281 

(950, 850) 112.5312 155.4531 280.9843 

(1000, 900) 117.5937 147.9531 345.1093 

6. Conclusion 

A new ladder algorithm, termed “the Modified Centered 
Climbing Algorithm”, was proposed in this paper. Com-
putational results demonstrated that the ladder algorithm 
outperforms CCA as well as the simplex algorithm in 
terms of average CPU time for randomly generated test 
problems. In addition, the single artificial constraint 
technique was presented to initialize the ladder method 
for LP problems with bounded variables. An illustration 
showed that this initialization technique is intuitive and 
simple. 
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