
Applied Mathematics, 2012, 3, 1423-1429
http://dx.doi.org/10.4236/am.2012.330200 Published Online October 2012 (http://www.SciRP.org/journal/am)

A Modified Centered Climbing Algorithm for Linear
Programming

Ming-Fang Ding, Yanqun Liu, John Anthony Gear
School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia

Email: mingfang_ding@yahoo.cn

Received July 9, 2012; revised August 9, 2012; accepted August 16, 2012

ABSTRACT

In this paper, we propose a modified centered climbing algorithm (MCCA) for linear programs, which improves the
centered climbing algorithm (CCA) developed for linear programs recently. MCCA implements a specific climbing
scheme where a violated constraint is probed by means of the centered vector used by CCA. Computational comparison
is made with CCA and the simplex method. Numerical tests show that, on average CPU time, MCCA runs faster than
both CCA and the simplex method in terms of tested problems. In addition, a simple initialization technique is intro-
duced.

Keywords: Linear Programming; Ladder Method; Climbing Rules; Simplex Method

1. Introduction

In the last decades a variety of algorithms have been pro-
posed for solving linear programming (LP) problems (see,
e.g., [1-5]). However, so far there hasn’t been an avail-
able single best LP algorithm which is suitable for solv-
ing all types of LP problems. Considerable research is
still under way to find a faster LP algorithm.

Recently, a ladder method was developed in [5] for
solving general LP problems. In this method, the inclu-
sive normal cone is updated at each iteration by climbing
in the associated inclusive region (ladder) until the prob-
lem is solved. A climbing rule used to update the inclu-
sive normal cone is of crucial importance, directly de-
termining the performance of a ladder algorithm. The
climbing rule involves picking up a violated constraint
and dropping a constraint from the current inclusive cone.
Ladder algorithms applying various climbing rules were
proposed in [5,6]. In this paper, we present a new ladder
algorithm called “the Modified Centered Climbing Algo-
rithm (MCCA)”, where a specific climbing rule is em-
ployed by means of the centered vector used by CCA [5].
At each iteration, a violated constraint is selected whose
associated outer normal vector forms the minimum angle
with the centered vector. Computational results show that,
the proposed ladder algorithm has surprising superiority
to CCA as well as the simplex method in terms of aver-
age CPU time for randomly generated test problems. In
addition, the single artificial constraint technique is pre-
sented to initialize the ladder method for a certain class
of LP problems.

The paper is organized as follows. In the remaining of
this section, for the sake of readability, we introduce
concepts used in the ladder method. A new ladder algo-
rithm is proposed in Section 2, followed by an initializa-
tion technique of the ladder method in Section 3. In Sec-
tion 4, a specific example is provided to illustrate effec-
tiveness of the new algorithm. We report computational
results in Section 5, followed by a brief conclusion in
Section 6.

Consider the following linear programming problem:

(P): min Tc x

s.t. Ax b

where nx R is decision variables, m nA R with m ≥
n, c = [c1; c2; ···; cn] Rn (c ≠ 0), and b = [b1; b2; ···;
bm] Rm. Here, square brackets with entries separated
by semi-colons indicate column vectors. Throughout the
paper, we assume that rank(A) = n.

We denote the constraint index set {1, 2, ···, m} by .
Let J be an ordered subset of . Denote by J(i ↔ j) the
ordered subset with i-th entry of J replaced by

J
J

j J J .
The j-th row of A is denoted by aj. We denote by A(J) the
k × n submatrix with its j-th row as the ij-th row of A.
Also, denote by b(J) the k-vector with j-th element of b(J)
as the ij-th element of b. In addition, denotes the
Euclidean norm.

Before proceeding, we present the following defini-
tions developed in [5], which will be used in this pa-
per.

Definition 1 [5] Consider problem (P). Let

Copyright © 2012 SciRes. AM

M.-F. DING ET AL. 1424

 1 2= , , , nJ j j j J

, , ,T T T

 be an ordered subset. A convex
cone generated by n linearly independent vectors

1 2j j ja a a
n

, where
l
 1ja l n are rows of A, is

said to be an inclusive normal cone generated by J if it
contains the vector –c, where c is the objective vector.
The generated cone is denoted by N(J). If J generates an
inclusive cone, the set defined by

 = : , n
j jL J x R a x b for j J

is called the inclusive region or the ladder associated
with J. The corresponding ordered index set J is called
the generator of L(J), and the unique solution of A(J)x =
b(J), denoted by xJ, is called the base point of the ladder
L(J).

According to Theorem 2.2 in [5], problem (P) has an
optimal solution (if an optimal solution exists) if and
only if it has a feasible base point. A feasible base point
is exactly an optimal solution.

Definition 2 [5] A ladder L(J) of problem (P) is said to
be degenerate if at least one of its n edges is normal to
the objective vector c. Problem (P) is said to be non-
degenerate if it does not have a degenerate ladder.

Throughout the paper, we assume that problem (P) is
non-degenerate since it is shown in [5] that the degener-
ate case can be readily treated by imposing an appropri-
ate perturbation on the objective function of the original
problem without affecting the optimal solution of the
original problem. On the basis of the above assumption,
we give the following ladder algorithm.

2. The Modified Centered Climbing
Algorithm (MCCA)

Step 0 Initialization.
Start with a known ladder generator, which is denoted

by (Refer to [5] or the subse-
quent section for how to find such a generator if it is not
immediately available). Denote by

0

 0 0 0
0 1 2= , , , nJ j j j J

0 = Jx x the base
point associated with J0. Calculate the initial base point

 10
0 0=x A J b J

 .

Set k = 0 and . 1

Step 1 Check optimality.
=kD

Let 1= \ : >k k
k k j jV j J D a x b J .

 If =kV , exit with “the problem attains optimal-
ity”.

 Otherwise, go to Step 2.
Step 2 Updating the ladder.
2.1 Picking up a new index as a pick.

Let 1

1= 1J k nk
v A J

 ,

where 11 = 1;1; ;1 n
n R , and Jk

v is the center

vector of the current ladder L(Jk) [5]. Select as
a pick such that

kp V k

 = max
kk jp j V

t t

,

where

= . (1)
j Jk

j

j

a v
t

a

2.2 Try to find an index k as a drop such that k
dj J

 1 = k
k k d

kJ J j p is a ladder generator and the asso-
ciated base point k

1kx L J (See Procedure 2 in [5]
for how to identify).
 If such an index does not exist, exit with “the problem

is infeasible”.
 Otherwise, go to next step.

2.3 Let 1 = k
k k d

kJ J j p and . Cal-
culate the updated base point

 k
k dj=D

 11
1 1=k

k kx A J b J

 .

Set := 1k k . Go to Step 1.
Note that existence of an initial ladder (generator) im-

plies that the case of unboundedness can not occur (Refer
to Theorem 2.5 (d) in [5] for details). Step 2.1 constitutes
the main difference with respect to the previous ladder
algorithms. At each iteration, a violated constraint is se-
lected as a pick whose associated outer normal vector
forms the minimum angle with the centered vector. Be-
fore numerically examining its efficiency, we would like
to introduce the single artificial constraint technique to
construct an initial ladder for a certain class of LP prob-
lems.

3. Finding an Initial Ladder for LP
Problems with Bounded Variables

An initial ladder is required to get the ladder algorithm
started. To find a ladder L(J) is to find the associated
generator 1 2= , , , nJ j j j J , equivalently, to find n
independent outward normals jk

a

jk

 (k = 1, 2, ···, n) such
that there exist n constants 0 (k = 1, 2, ···, n)
satisfying

1
= .

n T
j jk k k

c a

Various approaches were developed in [5] to obtain an
initial ladder. In the following, we present an initializa-
tion technique for LP problems involving bounded vari-
ables.

3.1. Variables with Upper Bounds

In this subsection, we consider the case where variables
of problem (P) have upper bounds. Temporarily, we as-
sume that at least one component of c is positive. For

Copyright © 2012 SciRes. AM

M.-F. DING ET AL. 1425

convenience of discussion, write the problem as below:

(P1) 1 1 2 2min d d n nc x c x c x c x

11 1 12 2 1 1s.t. n na x a x a x b

21 1 22 2 2 2n na x a x a x b

 1 21 2 n mm n m n m n na x a x a x b n

1 1m nx b

2 2m nx b

d m nx b d

n mx b

With this assumption that c contains at least one posi-
tive component, it is easily seen that the index set {m – n +
1, m – n + 2, ···, m – n + d, ···, m} is not a ladder gen-
erator. In order to obtain a ladder for the above problem,
we add an artificial constraint

1

n

ii
x M

 ,

where M is a sufficiently large number. For clarity, dis-
play the problem with the additional constraint as below:

1 1 2 2min d d n nc x c x c x c x

11 1 12 2 1 1s.t. n na x a x a x b

21 1 22 2 2 2n na x a x a x b

 1 21 2 n mm n m n m n na x a x a x b n

1 1m nx b

2 2m nx b

d m nx b d

n mx b

1 2 nx x x M

Executing the following simple procedure, we can
readily find an initial ladder for the above problem. At
start, take J = {m – n + 1, m – n + 2, ···, m – n + d, ···,
m}. Let cd = max{ci} > 0 (1 ≤ d ≤ n). Take j = m – n + d
as a drop (the associated constraint is –xd ≤ bm – n + d) and
p = m + 1 a pick (the associated constraint is –x1 – x2
– ··· – xn ≤ M). It is easy to verify that J(j ↔ p) is a lad-
der generator of the above problem. Indeed, from

1 1

2 2

1 1

1 1

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0
=

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1

d d

d d

d d

n n

c

c

c

c

c

c

we have

 = 0 , =i d i d dc c i d c > 0

which implies J(j ↔ p) is a ladder generator of the above
problem.

3.2. Variables with Lower Bounds

In this subsection, we consider the case where variables
of problem (P) have lower bounds. For convenience of
discussion, we rewrite the problem in the following form:

(P2) 1 1 2 2min d d n nc x c x c x c x

11 1 12 2 1 1s.t. n na x a x a x b

21 1 22 2 2 2n na x a x a x b

 1 21 2 n mm n m n m n na x a x a x b n

1 1m nx b

2 2m nx b

d m nx b d

n mx b

Note that here we use the same notations in problem
(P2) as in (P1) for convenience. In this subsection, we
temporarily assume that c contains at least one negative
component. With this assumption, it is easy to be seen
that the index set {m – n + 1, m – n + 2, ···, m – n + d, ···,
m} is not a ladder generator. Adding an artificial con-
straint

1

n

ii
x M

min c x

, we get the following system:

1 1 2 2 d d n nc x c x c x

11 1 12 2 1 1s.t. n na x a x a x b

21 1 22 2 2 2n na x a x a x b

 1 21 2 n mm n m n m n na x a x a x b n

1 1m nx b

Copyright © 2012 SciRes. AM

M.-F. DING ET AL. 1426

2 2m nx b

d m nx b d

n mx b

1 2 nx x x M

1

Performing the similar procedure as the above subsection,
we can easily obtain an initial ladder for the above problem.
Initially, take J = {m – n + 1, m – n + 2, ···, m – n + d, ···,
m}. Let cd = min{ci} < 0 (1 ≤ d ≤ n). Take j = m – n + d as
a drop (the associated constraint is –xd ≤ bm–n+d) and p = m
+ 1 as a pick (the associated constraint is x1 + x2 + ··· + xn ≤
M). It is easy to verify that J(j ↔ p) is a ladder generator
of the above problem. In fact, from

1 1

2 2

1

1 1

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0
=

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1

d d

d d

d d

n n

c

c

c

c

c

c

> 0

3

we have

 = 0 , =i d i d dc c i d c

which implies J(j ↔ p) is a ladder generator of the above
problem.

If variables in an LP problem are bounded from both
below and above, that is, an LP problem contains n con-
straints taking the form of li ≤ xi ≤ ui (1 ≤ i ≤ n), where li
and ui denote the lower and upper bounds of xi and li < ui,
then after rewriting the above constraints as two con-
straints –xi ≤−li and xi ≤ ui we can follow the procedure in
either Subsection 3.1 or Subsection 3.2 to obtain an ini-
tial ladder for the problem.

4. A Specific Example

To illustrate the efficiency of the above ladder algorithm,
we use both the simplex method and MCCA to solve a
Klee-Minty problem [7,8].

Example 1 Consider the following Klee-Minty prob-
lem with n = 3

1 2min 100 10x x x

1s.t. 1x

1 220 100x x

1 2 3200 20 10,000x x x

1 2 3, , 0.x x x

On the one hand, we use the simplex method to solve
the above problem. Introducing the slack variables s1, s2,
s3 ≥ 0, write the above problem as the standard form

1 2min 100 10 3x x x

1 1s.t. = 1x s

1 2 220 = 100x x s

1 2 3 3200 20 = 10,000x x x s

1 2 3 1 2 3, , , , , 0x x x s s s

The tableau in Table 1 shows that the simplex method
with the most negative rule requires 2n – 1 = 23 – 1 = 7
iterations to attain the optimality.

On the other hand, we solve the same problem using
MCCA. Firstly we rewrite all constraints as ≤–type:

1 2min 100 10 3x x x

1s.t. 1x

1 220 100x x

1 2 3200 20 10,000x x x

1 0x

2 0x

3 0x

To find an initial ladder, we add an artificial constraint
x1 + x2 + x3 ≤ M. For clarity, write the problem with the
additional constraint as below.

1 2min 100 10 3x x x

1s.t. 1x

1 220 100x x

1 2 3200 20 10000x x x

1 0x

2 0x

3 0x

1 2 3x x x M

It is easy to verify that the index set {7, 5, 6} is an ini-
tial ladder generator (see Subsection 3.2). With the
known ladder generator at hand, it takes only two itera-
tions to reach an optimal solution for MCCA. For solu-
tion detail, see Table 2.

Clearly MCCA is much more efficient for solving the
above Klee-Minty problem. Firstly, our algorithm re-
quires no additional variables (slack, surplus and artifi-
cial variables). Secondly, the number of iterations is re-
duced greatly. In addition, we would like to stress that

Copyright © 2012 SciRes. AM

M.-F. DING ET AL.

Copyright © 2012 SciRes. AM

1427

Table 1. The tableau obtained from simplex for Example 1.

Iteration x1 x2 x3 s1 s2 s3 rhs

0 z –100 –10 –1 0 0 0 0

 s1 1 0 0 1 0 0 1

 s2 20 1 0 0 1 0 100

 s3 200 20 1 0 0 1 10,000

1 z 0 –10 –1 100 0 0 100

 x1 1 0 0 1 0 0 1

 s2 0 1 0 –20 1 0 80

 s3 0 20 1 –200 0 1 9800

2 z 0 0 –1 –100 10 0 900

 x1 1 0 0 1 0 0 1

 x2 0 1 0 –20 1 0 80

 s3 0 0 1 200 –20 1 8200

3 z 100 0 –1 0 10 0 1000

 s1 1 0 0 1 0 0 1

 x2 20 1 0 0 1 0 100

 s3 –200 0 1 0 –20 1 8000

4 z –100 0 0 0 –10 1 9000

 s1 1 0 0 1 0 0 1

 x2 20 1 0 0 1 0 100

 x3 –200 0 1 0 –20 1 8000

5 z 0 0 0 100 –10 1 9100

 x1 1 0 0 1 0 0 1

 x2 0 1 0 –20 1 0 80

 x3 0 0 1 200 –20 1 8200

6 z 0 10 0 –100 0 1 9900

 x1 1 0 0 1 0 0 1

 s2 0 1 0 –20 1 0 80

 x3 0 20 1 –200 0 1 9800

7 z 100 10 0 0 0 1 10,000

 s1 1 0 0 1 0 0 1

 s2 20 1 0 0 1 0 100

 x3 200 20 1 0 0 1 10,000

Table 2. The table obtained from MCCA for Example 1.

Iteration Ladder generator Base point Optimal value

0 {7,5,6} [M; 0; 0]

1 {7,5,3}
10,000 10,000 200

; 0;
199 199

M M

2 {4,5,3} [0; 0; 10,000] –10,000

M.-F. DING ET AL. 1428

although here we use an example with non-negativity
variables to illustrate the efficiency of our algorithm,
there is no non-negativity requirement for variables in
our problem form. Thus, our algorithm is suitable for a
wider range of LP problems.

5. Numerical Tests

In this section, we make computational tests to demon-
strate the efficiency of MCCA. The ladder algorithms
were coded in MATLAB 7.11.0. Test problems are ran-
domly generated in the same way as in [5], which is pre-
sented as below.

Example 2 [5] (Randomly generated feasible problem)
Generate a linear programming problem by specifying

m nA R , 1 2= ; ; ; n
nc c c c R , and

 1 2

1. Randomly generate and a vector
= ;b b b ; ; m

mb R
nc R

 in the following method.
nx R

such that components of c take values between –25 and
25, and components of x between 0 and 20.

2. Generate A and b by two steps.
(a) For 1 ≤ j ≤ n, the j-th row aj of A is

 = 2signT
j j ja c c e , where ej is the j-th row of the n ×

n identity matrix. Then, bj is defined by =j j jb a x ,
where γj is a random number in (0, 1).

(b) For n + 1 ≤ j ≤ m, randomly generate a row vector
 and a number j

n
j R R such that βj and all the

components of αj are between –25 and 25. If j jx ,
then the j-th row aj of A and the j-th element of b are de-
fined by aj = αj, bj = βj. Otherwise, they are defined by aj =
−αj, bj = −βj.

Tests were run on a desk-top computer (HP Intel(R)
Core(TM), i7-2600 CPU@3.40GHz, 3.39GHz, 3.24GB
of RAM) under Microsoft Windows XP operating system.
For comparison, the centered climbing algorithm (CCA)
[5] and the linprog solver in MATLAB optimization
toolbox (Version 5.1, (R2010b)) were used for solving
the same test problems. The medium-scale simplex algo-
rithm (SP) was implemented. Tables 3 and 4 present
computational results for 20 test problems with various
dimensions. The average CPU time is reported in sec-
onds. Since our algorithm and the simplex method actu-
ally work on problems with different forms and dimen-
sions, the number of iterations does not provide much
helpful information. Therefore, here we do not take the
comparison of iteration numbers into account.

Tables 3 and 4 reveal that, MCCA has the absolute
advantage over CCA as well as the simplex method for
tested problems. We would like to point out that in the
present code we adopt the traditional technique of the
inverse of matrix to calculate base points. If the advanced
numerical technique was incorporated into the current
code, the computational performance would promise
further improvement.

Table 3. Average CPU time (in seconds) for test problems in
Example 2 (m = 2n).

Size Algorithms

(m, n) MCCA CCA SP

(40. 20) 0.0843 0.0953 0.6406

(80, 40) 0.3937 0.4375 1.2609

(120, 60) 0.4921 0.5093 2.1656

(160, 80) 0.8484 1.2281 3.9640

(200, 100) 1.4312 1.775 7.0625

(240, 120) 2.4078 2.9609 10.3703

(280, 140) 4.4765 4.7421 18.5488

(320, 160) 6.6347 7.6992 28.5644

(360, 180) 10.9609 12.3066 42.7851

(400, 200) 16.1437 16.9937 61.7343

Table 4. Average CPU time (in seconds) for test problems in
Example 2 (m – n = 100).

Size Algorithms

(m, n) MCCA CCA SP

(600, 500) 35.8554 40.8424 126.6692

(650, 550) 44.75 57.9263 148.9732

(700, 600) 52.25 72.5273 185.5312

(750, 650) 62.2291 73.6718 225.5625

(800, 700) 75.7187 118.7760 239.6666

(850, 750) 97.3125 99.4531 240.1953

(900, 800) 94.9375 122.8281 252.8281

(950, 850) 112.5312 155.4531 280.9843

(1000, 900) 117.5937 147.9531 345.1093

6. Conclusion

A new ladder algorithm, termed “the Modified Centered
Climbing Algorithm”, was proposed in this paper. Com-
putational results demonstrated that the ladder algorithm
outperforms CCA as well as the simplex algorithm in
terms of average CPU time for randomly generated test
problems. In addition, the single artificial constraint
technique was presented to initialize the ladder method
for LP problems with bounded variables. An illustration
showed that this initialization technique is intuitive and
simple.

REFERENCES
[1] G. B. Dantzig, “Linear Programming and Extensions,”

Princeton University Press, Princeton, 1963.

[2] N. Karmarkar, “A New Polynomial-Time Algorithm for

Copyright © 2012 SciRes. AM

M.-F. DING ET AL. 1429

Linear Programming,” Combinatorica, Vol. 4, No. 4,
1984, pp. 373-395. doi:10.1145/800057.808695

[3] K. G. Murty and Y. Fathi, “A Feasible Direction Method
for Linear Programming,” Operations Research Letters,
Vol. 3, No. 3, 1984, pp. 121-127.
doi:10.1016/0167-6377(84)90003-8

[4] L. G. Khachian, “A Polynomial Algorithm in Linear Pro-
gramming,” Soviet Mathematics Doklady, Vol. 20, 1979,
pp. 191-194.

[5] Y. Liu, “An Exterior Point Linear Programming Method
Based on Inclusive Normal Cones,” Journal of Industrial

and Management Optimization, Vol. 6, No. 4, 2010, pp.
825-846. doi:10.3934/jimo.2010.6.825

[6] M.-F. Ding, Y. Liu and J. A. Gear, “An Improved Tar-
geted Climbing Algorithm for Linear Programs,” Nu-
merical Algebra, Control and Optimization (NACO), Vol.
1, No. 3, 2011, pp. 399-405. doi:10.3934/naco.2011.1.399

[7] R. J. Vanderbei, “Linear Programming: Foundations and
Extensions,” 3rd Edition, Springer, New York, 2008.

[8] V. Klee and G. J. Minty, “How Good Is the Simplex Al-
gorithm?” In: O. Shisha, Ed., Inequalities III, Academic
Press, New York, 1972, pp. 159-175.

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1016%2F0167-6377%2884%2990003-8
http://dx.doi.org/10.3934%2Fjimo.2010.6.825
http://dx.doi.org/10.3934%2Fnaco.2011.1.399

