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ABSTRACT 

In this paper first we prove common fixed point theorems for compatible and weakly compatible maps. Secondly, we 
prove common fixed point theorems for weakly compatible maps along with property (E.A.) and (CLRg) property 
respectively. 
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1. Introduction 

In 1922, Banach proved a common fixed-point theorem 
which ensures under appropriate conditions, the exis- 
tence and uniqueness of a fixed-point. This theorem has 
many applications, but suffers from one drawback—the 
definition requires that T be continuous throughout X. 
There then follows a flood of papers involving contrac-
tive definition that do not require the continuity of T. 
This result was further generalized and extended in vari-
ous ways by many authors. This theorem provides a 
technique for solving a variety of applied problems in 
mathematical sciences and engineering. 

In 1963, Gahler [1] introduced the concept of 2-metric 
spaces and claimed that a 2-metric is a generalization of 
the usual notion of a metric, but some authors proved that 
there is no relation between these two functions. Geo- 
metrically, a 2-metric d represents the area of a triangle 
whose vertices are x, y and z. Hsiao [2] have showed that 
contraction-like conditions on the operators in 2-metric 
spaces imply either the space is trivial or the operator is 
trivial. 

In 1984, Dhage [3] introduced the concept of D-met- 
ric spaces. The situation for a D-metric space is quite 
different from 2-metric spaces. Geometrically, a D-met- 
ric D(x, y, z) represent the perimeter of the triangle with 
vertices x, y and z in R2.  

Recently, Mustafa and Sims [4] had shown that most 
of the results concerning Dhage’s D-metric spaces are 
invalid and they introduced an improved version of the 
generalized metric space structure and called it as G-  

metric spaces. For more details on G-metric spaces one 
can refer to the papers [4-7]. 

Now we give preliminaries and basic definitions which 
are used throughout the paper. 

In 2006, Mustafa and Sims [5] introduced the concept 
of G-metric spaces as follows: 

Definition 1.1.  -Let X be a non empty set and
: bea function

satisfying thefollowing conditions :

G X X X   
 

   
   
     

       
 

       
 

1 , , 0 if ,

2 0 , , for all , with ,

3 , , , , for all , ,

with ,

4 , , , , , ,

symmetry in all variables ,

5 , , , , , , for all

, , , rectangleinequality .

G G x y z x y z

G G x x y x y X x y

G G x x y G x y z x y z X

z y

G G x y z G x z y G y z x

G G x y z G x a a G a y z

x y z a X

  

 

 



  

 





 

 

The function G is called a generalized metric or more 
specifically, a G-metric on X, and the pair (X, G) is called 
a G-metric space. 

Let (X, G) be a G-metric space, {xn} a sequence of 
points in X. we say that {xn} is G-convergent to x if 

 
,
lim , , 0n m

m n
G x x x


 , i.e., for each   > 0 there exists an  

N such that  , ,n mG x x x <  for all m, n ≥ N. We call x 
the limit of the sequence and write 

or lim .n n
n

x x x


  x  *Corresponding author. 
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Proposition 1.1. Let (X, G) be a G-metric space. Then 
the following are equivalent: 

 
 
 
 

1) is convergent to ,

2) , , 0 as ,

3) , , 0 as ,

4) , , 0 as , .

n

n n

n

m n

x G x

G x x x n

G x x x n

G x x x m n

 

 

 

 

Definition 1.2. Let (X, G) be a G-metric space. A se-
quence {xn} is called G-Cauchy if, for each 0 >  there 
exist an  (set of positive integers) such that 

. 
N

 lx <, , for all , ,n mG x x n m l N
Proposition 1.2. In a G-metric space (X, G) the fol-

lowing are equivalent: 
1) The sequence {xn} is G-Cauchy, 
2) for each 0 >  there exists an  (set of posi-

tive integers) such that  
N

 , , for all , ,n m lG x x x n m l N < . 
Proposition 1.3. Let (X, G) be a G-metric space. Then 

the function G(x, y, z) is jointly continuous in all three of 
its variables. 

Definition 1.3. A G-metric space (X, G) is called a 
symmetric G-metric space if G(x, y, y) = G(y, x, x) for all x, 
y in X. 

Proposition 1.4. Every G-metric space  , X G  de-
fines a metric space  , GX d  by 

     
 

   
 

     

1) , , , , , for all , .

If , is a symmetric G-metric space, then

2) , 2 , , for all , .

However, if , is not symmetric, then it follows

from the metric properties that

3
3) , , , 3 , ,

2
for all ,

G

G

G

d x y G x y y G y x x x y X

X G

d x y G x y y x y X

X G

G

G x y y d x y G x y y

x y

  

 



 

.X

 

Proposition 1.5. A G-metric space  ,X G  is G- 
complete if and only if  , G X d  is a complete metric 
space. 

Proposition 1.6. Let  , X G  be a G-metric space. 
Then, for any x, y, z, a in X it follows that: 

 
     
   
     
       

1) if , , 0, then ,

2) , , , , , , ,

3) , , 2 , , ,

4) , , , , , , ,

5) , , 2 3 , , , , , , .

G x y z x y z

G x y z G x x y G x x z

G x y y G y x x

G x y z G x a z G a y z

G x y z G x a a G y a a G z a a

  

 



 

  

 

There has been a considerable interest to study com- 
mon fixed point for a pair (or family) of mappings satis- 
fying contractive conditions in metric spaces. Now, it is 
obvious that a fixed point of any map on metric spaces is 

a common fixed point of that map and identity map on 
the space. Several interesting and elegant results were 
obtained in this direction by various authors. It was the 
turning point in the “fixed point arena” when the notion 
of commutativity was used by Jungck [8] to obtain com- 
mon fixed point theorems. While proving his result, 
Jungck [8] replaced identity map with a continuous map. 
Theorem 1.1 [8]. Let T be a continuous mapping of a 
complete metric space  ,X d  into itself. Then T has a 
fixed point in X if there exist 

 
   

   

0,1 and a mapping : which

commutes with and satisfies

and , , for all , .

S X X

T S X

d Sx Sy d Tx Ty x y X





 



 

T X  

From this result, it can be seen that a metrical common 
fixed point theorem generally involves conditions on 
commutativity, continuity, completeness and suitable 
containment of ranges of the involved maps besides an 
appropriate contraction condition and many authors in 
this domain are aimed at weakening one or more of these 
conditions. 

In particular, now we look in the context of common 
fixed point theorems in G-metric spaces. Start with the 
following contraction conditions: 

Let T be a mapping from a complete metric space 
 ,X G  into itself and consider the following conditions:  

   
 

, , , ,

for all , , , where 0,1 ,

G Tx Ty Tz G x y z

x y z X







 
       (1.1) 

It is clear that every self mapping T of X satisfying 
condition (1.1) is continuous. Now we focus to genera- 
lize the condition (1.1) for a pair of self maps S and T of 
X in the following way: 

   
 

, , , ,

for all , , , where 0,1 ,

G Sx Sy Sz G Tx Ty Tz

x y z X







 
       (1.2) 

To prove the existence of common fixed points for 
(1.2), it is necessary to add additional assumptions such 
as construction of the sequence {xn} and some mecha- 
nism to obtain common fixed point. Most of the theo- 
rems in literature have followed a similar pattern of maps: 
1) contraction; 2) continuity of functions (either one or 
both); and 3) commuting pair of mappings were given. In 
some cases condition 2) can be relaxed but condition 1) 
and 3) are unavoidable. 

In 1986, Jungck [9] introduced the concept of com-
patibility in metric spaces as follows: 

Two self-mappings f and g of a metric space  ,X d  
are said to be compatible if 

   lim , 0, whenever is a

sequence in such that lim lim

for some .

n n n
n

n n
n n

d fgx gfx x

X fx gx t

t X



 



 


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2. Compatible Maps 

Recently, Choudhury et al. [10] introduced the notion of 
compatible maps in G-metric space as follows: 

Let f and g be self maps of a G-metric space  ,X G . 
The maps f and g are said to be compatible map if there 
exists a sequence  

   

 

such that lim , , 0

or , , 0, whenever

is a sequence in such that

n n n
n

n n n n

x G fgx gfx gfx

G gfx fgx fgx x

X




  
n

 

lim lim for some .n n
n n

fx gx t t
 

   X  

Example 2.1. 

 Let 1,1 and let be the -metric on

defined as follows :

X G G  X
 

   
 

 
 

 

, , | | | | | |

for all , , . Then , is a -metric

space. Define and 4. Consider

the sequence 1 . Clearly

lim , , 0 and lim

li
n

m 0 implies and g are compatible maps.

n

n n n n
n n

n

G x y z x y y z z x

x y z X X G G

f x x gx x

x n

G fgx gfx gfx fx

gx f
 



     



 



 





 

Now we come to our main result for a pair of com-
patible maps. 

Theorem 2.1. Let  ,X G  be a complete G-metric 
space. Let f and g be self mappings of X satisfying the 
following conditions: 

     
 
2.1 ,

2.2 or is continuous,

f x g x

f g


 

   
    
    
     
 

2.3  , ,

, , , , , , , , ,

, , , , , , , , ,
max

, , , , , , , , ,

, ,

G fx fy fz

G gx gy gz G gx fx fx G gx fy fy

G gx fz fz G gy fy fy G gy fx fx
k

G gy fz fz G gz fz fz G gz fx fx

G gz fy fy

 
 
   
 

 






 

for all , , , where 0 1 4.x y z X k    
Then f and g have a unique common fixed point in X 

provided f and g are compatible maps. 
Proof. Let 0x  be an arbitrary point in X. By (2.1), 

one can choose a point  

1 0 1in such that . In generalx X fx gx  

1 1one can choose such that ,

0,1, 2,
n n nx y fx

n
  

 

From (2.3), we have 

   
   
  
  
   
  

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1

2.4 , ,

, , , , , ,

, , , , , ,

max , , , , , ,

, , , , , ,

, , , , ,

n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

G fx fx fx

G gx gx gx G gx fx fx

G gx fx fx G gx fx fx

k G gx fx fx G gx fx fx

G gx fx fx G gx fx fx

G gx fx fx G gx fx fx

 

 

   

   

     

  




 









1







 
 



 

or 

   
   

1 1 1

1 1 1 1 1

, , max , ,

, , , , ,

n n n n n n

n n n n n n

G y y y k G y y y

G y y y G y y y

  

    

 ,
 

Case 1. 

   
   

1 1 1

1 1 1

If max , , , , , ,

, , , ,

n n n n n n

n n n n n n

G y y y G y y y

G y y y G y y y

  

        

1
 

then, using (2.3), we get 
   1 1 1, , , ,n n n n n nG y y y kG y y y   , Continuing in the 

same way, we have 

   
 

1 1 0 1 1, , , , . Therefore,

for all , , and by 5 , we have

n
n n nG y y y k G y y y

n m N n m G

  

 
 

   
  

   


 

1 1

1 2 2 1

1 1
0 1 1

0 1 1

, , , ,

, , , ,

... , ,

, , .
1

n m m n n n

n n n m m m

n n m

n

G y y y G y y y

G y y y G y y y

k k k G y y y

k
G y y y

k

 

   

 



  

   





 

Letting as , , we haven m   

   lim , , 0. Thus is a

Cauchy sequence in .

n m m n
n

G y y y y G

X


 
 

Case 2. 

   
   

1 1 1

1 1 1 1 1

If max , , , , , ,

, , , ,

n n n n n n

n n n n n n

G y y y G y y y

G y y y G y y y

  

          

1
. 

From (2.3) and using (G5) , one obtains 

  
   

1 1 1 1 1

1 1

, , , ,

, , + , ,

n n n n n n

n n n n n n

G y y y kG y y y

k G y y y G y y y

    

 






1

 

implies 

   1 1 1, , , ,
1n n n n n n

k
G y y y G y y y

k  


,  

   1 1 1. ., , , , , , where

and 1as 0 1 4
1

n n n n n ni e G y y y qG y y y

k
q q k

k

  

   


 ngx
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In view of Case 1, we have  ny  is G-Cauchy se- 
quence in X. 

Case 3. 

 
   

1 1 1

1 1 1 1

If max , , , ( , , ),

, , , ,

n n n n n n

n n n n n n

G y y y G y y y

G y y y G y y y

  

         

1



 

then, from (2.3), one obtains 

  1 1 1 1, , , ,

a contradiction as 1 4.
n n n n n nG y y y kG y y y

k
   


 

Hence in all cases the sequence  ny  is a G-Cauchy 
sequence in X. 

Since (X,G) is complete G-metric space, therefore,  
there exists a point  such that u X lim n

n
y u


 , we 

have .  Since one of the  1lim limn n n
n n

y f gx  
lim
n

x


  u

maps f or g is continuous, for definiteness one can as-
sume that g is continuous, therefore  
lim lim .n n
n n

gfx ggx gu
 

 

lim ,
n

G gfx fgx


lim .n
n

 Further, f and g are compatible, 

therefore,  implies    0,n n nfgx

fgx gu


  Now we claim that gu = u, from (2.3), 

we have 

 
  
   
   
   
   

, , max

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , ,

n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

G fgx fx fx k

G ggx gx gx G ggx fgx fgx

G ggx fx fx G ggx fx fx

G gx fx fx G gx fgx fgx

G gx fx fx G gx fx fx

G gx fgx fgx G gx fx fx



 






 
 



.










 

Proceeding limit as , and using Proposition 1.6, 
we have  

n 

    
    

 

, , max , , , , ,

max , , , 2 , ,

2 , , , a contradiction as 1 4

G gu u u k G gu u u G u gu gu

k G gu u u G gu u u

k G gu u u k





 

 

Hence gu = u, next we will show that gu = fu = u, for 
this purpose we put x = xn, y = z = u in (2.3), we have 

 
    
     
     
 

, , max

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, ,

n

n n n n n

n n

n n

G fx fu fu k

G gx gu gu G gx fx fx G gx fu fu

G gx fu fu G gu fu fu G gu fx fx

G gu fu fu G gu fu fu G gu fx fx

G gu fu fu



 
 
 
 
 
 



n



 

Proceeding limit as , we have n 
  , , , , , au fu contradiction as 1 4G u fu fu k G u f k 



 
Hence fu = gu = u. Thus u is a common fixed point of 

f and g.  
Uniqueness. We assume that  be another 

common fixed point of f and g. Then  
1u u

 1, , 0 andG u u u   

   
    
    
     
 

1 1

1 1 1 1 1

1 1

1 1

, , , , max

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, ,

G u u u G fu fu fu k

G gu gu gu G gu fu fu G gu fu fu

G gu fu fu G gu fu fu G gu fu fu

G gu fu fu G gu fu fu G gu fu fu

G gu fu fu

 


1

 
 
 
 
 
 
 

 

By using Proposition 1.6, we have   

      
    

 

1 1

1 1

1

, , max , , , , ,

max , , , 2 , ,

2 , , , a contradiction as 1 4.

G u u u k G u u u G u u u

k G u u u G u u u

k G u u u k





 

1 1

 

This demands that 1 .u u  Hence uniqueness follows. 
Example 2.2. Let X = [−1, 1] and let G be the G-metric 

on X defined as follows: 

   , ,

for all , , .

G x y z x y y z z x

x y z X

     


 

   
   

Then , is a -metric space. Define

9 and . Then

X G G f x

x gx x f X g X



 
 

Also, inequality (2.3) holds for all x, y, z in X and 0 is 
the unique common fixed point of f and g. 

Corollary 2.1. Let (X, G) be a complete G-metric space 
and let f and g be compatible mapping of X satisfying (2.1), 
(2.2) and  the following condition: 

  , , , ,G fx fy fz qG gx gy gz   

for every x, y, z in X and 0 < q < 1.  
Then f and g have a unique common fixed point in X. 
Proof: Proof follows easily from Theorem 2.1. 

3. Weakly Compatible Maps 

In 1996, Jungck [11] introduce the notion of weakly 
compatible mappings as follows: 

Definition 3.1. Two maps f and g are said to be weakly 
compatible if they commute at coincidence points. 

Example 3.1. Let X = [0, 3]. 

   

 
 
 

 
 
 

Define , : 0,3 0,3 by

if 0,1 3 0,1
;

3if 1,3 3 1,3

f g

x x x if x
f x g x

x i



     
   

 

 f x

  

Then for any  1,x 3 , x is a coincidence point and fgx 
= gfx, showing that f, g are weakly compatible maps on [0, 
3]. 

Theorem 3.1. Let f and g be weakly compatible self 
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maps of a G-metric space (X, G) satisfying (2.1) and (2.3) 
and the following condition: 

(3.1) any one of the subspace f(X) or g(X) is complete; 
Then f and g have a unique common fixed point in X. 

Proof. From Theorem 2.1, we conclude that {yn} is a 
G-Cauchy sequence in X. Since either f(X) or g(X) is 
complete, for definiteness assume that g(X) is complete 
subspace of X then the subsequence of {yn} must get a 
limit in g(X). Call it be t. Let ug−1t. Then gu = t as {yn} 
is a G-Cauchy sequence containing a convergent subse-
quence, therefore the sequence {yn} also convergent im-
plying thereby the convergence of subsequence of the 
convergent sequence. Now we show that fu = t. 

On setting x = xn, y = u and z = u, in (2.3), we have  

 
    
     
     
 

, , max

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, ,

n

n n n n n

n

n n

G fx fu fu k

G gx gu gu G gx fx fx G gx fu fu

G gx fu fu G gu fu fu G gu fx fx

G gu fu fu G gu fu fu G gu fx fx

G gu fu fu



 
 




 


n n 





 

Pr oceeding lim as , we haveit n 
   

 
, , , , , a contradiG t fu fu k G t fu fu ction as 1 4.k    

Hence fu = g u = t. Thus u is a coincident point of f and g. 
Since f and g are weakly compatible, it follows that fgu = 
gfu, i.e., ft = gt. 

We now show that ft = t. Suppose that ft t , there-
fore  Now put on setting x = t, y = u, z = u, 
in (2.3), we have 

 , , 0.G ft t t 

 
     
    
    
 

, ,

, , , , , , , , ,

, , , , , , , , ,
max

, , , , , , , , ,

, ,

G ft fu fu

G gt gu gu G gt ft ft G gt fu fu

G gt fu fu G gu fu fu G gu ft ft
k

G gu fu fu G gu fu fu G gu ft ft

G gu fu fu

 
 
   
 
 
 




 

By using Proposition 1.6, we have 

      
    

 

, , max , , , , ,

max , , , 2 , ,

2 , , , a contradiction as 1 4

G ft t t k G ft t t G t ft ft

k G ft t t G ft t t

k G ft t t k





 

 

This demands that ft = t = gt, i.e., t is common fixed 
point of f and g. Uniqueness follows easily. 

4. Property (E.A.) in G-Metric Spaces 

Recently, Amari and Moutawakil [12] introduced a gen-
eralization of non compatible maps as property (E.A.) in 
metric spaces as follows: 

Definition 4.1. Let A and S be two self-maps of a met-
ric space (X, d) .The pair (A, S) is said to satisfy property 

(E.A.), if there exists a sequence{xn} in X such that  
lim lim for some .n n
n n

Ax Sx t t
 

X    

In similar mode, we use property (E.A.) in G-metric 
spaces. 

Example 4.1 [12]. Let  

 0, . Define , : and
4

3 1
for all . Consider . Clearly

4
lim lim 0.

n

n n
n n

x
X S T X X by Tx

x
Sx x X x

n
Sx Tx

 

   

  

 

 

Then S and T satisfy property (E.A.). 
Example 4.2 [12]. Let 

 2, . Define , : by

1 and 2 1 for all .

X S T X

Tx x Sx x x X

  

    

X
 

Suppose that the property (E.A.) holds. Then, there 
exists in X a sequence  nx satisfying  
lim lim me .n n
n n

Sx Tx z z X
 

for so    Therefore,  

lim lim for some .n n
n n

Sx Tx z z X
 

    

1
lim 1 and lim . Thus, 1,

2n n
n n

z
x z x z

 


     a contra-  

diction, since 1 is not contained in X. Hence S and T do 
not satisfy property (E.A.).  

Notice that weakly compatible and property (E.A.) are 
independent to each other (for detail see, [13]). 

Example 4.3. Let X    and  ,X d
by

 be the usual 
metric space. Define  , :f g X X

   

     

     

0, 0,1 ,
; , the greatest integer

1, 0 and 1

that is less than or equal to , for all . Consider

a sequence 1 1 , 2 in 1,2 , then we have

lim 1 lim . Similarly for the sequence

1 1 , 2 in 0,1 , th

n

n n
n n

n

if x
fx gx x

if x x

x x X

x n n

fx gx

y n n
 

  
 



  

 

   en we have

lim 0 lim .n n
n n

fy gy
 

 

 

Thus the pair (f, g) satisfies property (E.A.). However, 
f and g are not weakly compatible as each 

   1 20,1 and 1, 2u u   are coincidence points of f and 
g, where they do not commute. Moreover, they commute 
at x = 0, 1, 2, ... but none of these points are coincidence 
points of f and g. Thus we can conclude that, property 
(E.A.) does not imply weak compatibility. 

Now we prove a common fixed point theorem for a 
pair of weakly compatible maps along with property 
(E.A.). 

Theorem 4.1. Let f and g be self maps of a G-metric 
space (X, G) satisfying (2.3) and the following con- 
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ditions: 
(4.1) f and g satisfy property (E.A.), 
(4.2) g(X) is a closed subspace of X. 
Then f and g have a unique common fixed point in X 

provided f and g are weakly compatible self maps. 
Proof. Since f and g satisfy property (E.A.), therefore, 

there exists a sequence  nx  in X such that  

 lim lim for some . Since

is a closed subspace of , therefore, lim

lim for some .

n n
n n

n
n

n
n

fx gx u u X g X

X fx u

ga gx a X u ga X

 





  

 

    

 

 We claim that . From 2.3 , we havefa ga u   

 
    
     
     
 

, , max

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, ,

n

n n n n n

n

n n

G fx fa fa k

G gx ga ga G gx fx fx G gx fa fa

G gx fa fa G ga fa fa G ga fx fx

G ga fa fa G ga fa fa G ga fx fx

G ga fa fa



 




 
 


n n






 

Pr oceeding limit as , we haven 
   

 
, , , , , a contradiG u fa fa k G u fa fa ction as 1 4k  . 

Hence fa = ga = u. Thus u is a coincident point of f and g. 
Since f and g are weakly compatible maps. 

Rest of the proof follows easily from Theorem 3.1. 
Corollary 4.1. Let f and g be self maps of a G-metric 

space (X, G) satisfying (4.1) and (4.2) and the following 
condition: 

   , , , , for all , ,

and 0 1.

G fx fy fz qG gx gy gz x y z X

q

 

 
 

Then f and g have a unique common fixed point in X 
provided f and g be weakly compatible self maps.  

Proof. Proof follows easily from Theorem 4.1. 
Example4.1. 

 Let 0,2 and let be the -metric on

defined as follows :

X G G X
 

   

 
 
 

 
 
 

Define , ,

and , : as follows :

0, 0,1 , 0, 0,1 ,
;

1, 1,2 . 2, 1, 2 .

Consider 1 . Clearly lim lim 0.n n
n n

G x y z x y y z z x

f g X X

if x if x
f x g x

if x if x

x n fx gx
 

     



     
   

  n 



 

Then f and g satisfy property (E.A.). Also f(X) = {0, 1} 
and g(X) = {0, 2}. 

Here we note that neither f(X) is contained in g(X) nor 
g(X) is contained in f(X) and Corollary 4.1 holds for 
1/2 ≤ q < 1. 

Remark 4.1. It can be observed that a pair of maps 

enjoying property (E.A.) relaxes the required contain- 
ment of range of one mapping into the range of other 
which is utilized to construct the sequence of joint iter- 
ates. Moreover, it buys containment of ranges without 
any continuity requirements besides minimizes the com- 
mutativity conditions of the maps to the commutativity at 
their points of coincidence and it also allows replacing 
the completeness requirement of the space with a more 
natural condition of closeness of the range. 

5. (CLRg) Property in G-Metric Spaces 

Recently, Sintunavarat and Kumam [14] introduced a 
new property which is so called “Common Limit in the 
Range of g property” (i.e., (CLRg ) property) and defined 
as follow: 

Definition 5.1 [14]. Suppose that  ,X d  is a metric 
space and , :f g X X . Two mappings f and g are said 
to satisfy the common limit in the range of g property if 
there exists a sequence  nx  in X such that 

lim lim for some .n n
n n

fx gx gx x
 

X    

The common limit in the range of g property will be 
denoted by the (CLRg) property. 

Example 5.1 [14]. 

 

 

 

Let 0, be the usual mrtric space. Define

, : by 1 and 2 for all

1
. Consider the sequence 1 .

Since lim lim 1 2,

therefore, & satisfy CLRg property.

n

n n
n n

X

f g X X fx x gx x

x X x
n

fx gx g

f g
 

 

   

    
 

  

  

Example 5.2 [14]. 

 

 

 

0, be the usual mrtric space. Define

3
, : by and for all

4 4
1

. Consider the sequence .

Since lim lim 0 0,

therefore, & satisfy CLRg property.

n

n n
n n

Let X

x x
f g X X fx gx

x X x
n

fx gx g

f g
 

 

  

    
 

  

 

In similar mode, we use (CLRg) property in G-metric 
spaces. 

Theorem 5.1. Let f and g be self maps of a G-metric 
space (X, G) satisfying (2.3) and the following condition: 
(5.1) f and g satisfy (CLRg) property, 

Then f and g have a unique common fixed point in X 
provided f and g are weakly compatible maps. 

Proof. Since f and g satisfy (CLRg) property, therefore, 
there exists a sequence  nx  in X such that 

Copyright © 2012 SciRes.                                                                                  AM 



A. RANI  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

1134 

lim lim for some , .n n
n n

fx gx ga u a u
 

    X

n n







 

 We claim that . From 2.3 , we havefa ga u   

 
    
     
     
 

, , max

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, ,

n

n n n n n

n

n n

G fx fa fa k

G gx ga ga G gx fx fx G gx fa fa

G gx fa fa G ga fa fa G ga fx fx

G ga fa fa G ga fa fa G ga fx fx

G ga fa fa











 




 

Pr oceeding limit as , we haven 
   

 
, , , , , a contraG u fa fa k G u fa fa diction as 4k 1  

Hence fa = ga = u. Thus u is a coincident point of f and g. 
Since f and g are weakly compatible maps. 

Rest of the Proof follows easily from Theorem 3.1. 
Remark 5.1. We note that (CLRg) property relaxes 

the condition of closeness of range. 
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