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ABSTRACT 

For a satellite in an orbit of more than 1600 km in altitude, the effects of Sun and Moon on the orbit can’t be negligible. 
Working with mean orbital elements, the secular drift of the longitude of the ascending node and the sum of the argu-
ment of perigee and mean anomaly are set equal between two neighboring orbits to negate the separation over time due 
to the potential of the Earth and the third body effect. The expressions for the second order conditions that guarantee 
that the drift rates of two neighboring orbits are equal on the average are derived. To this end, the Hamiltonian was de-
veloped. The expressions for the non-vanishing time rate of change of canonical elements are obtained. 
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1. Introduction 

Formation flying is a key technology enabling a number 
of missions which a single satellite cannot accomplish: 
from remote sensing to astronomy. The relative motion, 
which shows no drift even in presence of a large distur-
bance, could be a very attractive solution. To maintain 
the formation and constellation, the relative drifts due to 
the perturbation between the spacecraft should be care-
fully considered. Invariant Relative Orbits shows no drift 
between the spacecraft due to the perturbation even if in 
presence of a large disturbance.  

The literature is wealth with works dealing with design- 
ing certain invariant relative orbits for spacecraft flying 
formations, and it seems worth to sketch some of the 
most relevant works. Schaub and Alfriend [1] presented a 
method to establish J2 invariant relative orbits for space- 
craft formation flying applications. They designed rela- 
tive orbit geometry using differences in mean orbit ele- 
ments. Two constraints on the three momenta element 
differences are derived. Zhang and Dai [2] removed the 
drifts by adjusting the semi-axis of the follower satellite 
and obtained a similar conclusion. By means of Routh 
transformation and dynamical system theory, Koon and 
Marsden [3] developed a method to find the 2J  invari- 
ant orbit. Then Li and Li [4] and Meng et al. [5] con- 
cluded, from the point of view of relative orbital ele- 
ments, that the drifts of relative orbit result from the or- 
bital inclination and right ascension of ascending node of 
the two satellites. Biggs and Becerra [6] proposed a me-  

thod to determinate the J2 invariant orbit with the leader’s 
orbit of zero inclination based on the targeting method in 
chaos dynamics. Abd El-Salam et al. [7] used the Ham- 
iltonian framework to construct an analytical method to 
design invariant relative constellation orbits due to the 
zonal harmonics 2J ; 3J ; 4J  up to the second order, 
assuming 2J  being of order 1. 

Our propose was to extend Schaub and Alfriend [1] 
and Abd El-Salam et al. [7] model by adding the effect 
of the third body which have important at high altitude. 
Using the Hamiltonian framework, the perturbations can 
be easily added. The Hamiltonian of the problem was 
constructed by considering the effect of the third body of 
 2

2J . The expressions for the time rate of change of 
the secular elements are obtained, second order condi-
tions are established between the differences in momenta 
elements (semi-major axis, eccentricity and inclination 
angle) that guarantee that the drift rates of two neighbor-
ing orbits are equal on the average. 

2. Hamiltonian Approach 

There are several ways to derive the equations of motion 
for any such system. We emphasized on the Hamiltonian 
structure for this system. The Hamiltonian formulation 
allows for additional conservative forces to be added to 
the Hamiltonian, thus the addition of complexity to the 
model can be incorporated with ease. Non-conservative 
forces can be added in the momenta equations of motion. 
The Hamiltonian equations of motion allows us to directly 
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use control and simulation techniques. 
Notations in the whole text, we use the well-known 

keplerian elements: the semi-major axis a, the eccentric- 
ity e, the inclination , the right ascension of ascending 
node , the argument of perigee 

i
  , and the mean 

anomaly M. We also use the true anomaly f and an in- 
termediary variable 21 e   . 

The Hamiltonian in the present framework can be 
written in the form 

21

2 tp U U                (1) 

where  is the force function due to the Earth’s gra-
vitational potential, and p is the canonical momentum  

U

vector and t  the disturbing function due to the effect 
of perturbing body. 

U

2.1. Influence of Oblateness Perturbations 

The actual shape of the Earth is that of an eggplant. The 
center of mass does not lie on the spin axis and neither 
the meridian nor the latitudinal contours are circles. The 
net result of this irregular shape is to produce a variation 
in the gravitational acceleration to that predicted using a 
point mass distribution. The Earth’s gravitational poten- 
tial is usually expressed by the following expression 
(Vinti’s potential) 
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where  is the equatorial radius of the Earth, eR

eµ g m  is the Earth’s gravitational parameter where  
g 
 , ,r
 is the gravitational constant;  

   are the geocentric coordinates of the satellite 
with   measured east of Greenwich; 

nmC  and  are harmonic coefficients; nmS
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nP   are associated Legendre Polynomials. 

In the potential function, the terms with 0m  , 
0 m n   and m n  correspond respectively to zonal, 
tesseral and sectorial harmonics. The Earth gravitational 
potential can be rewritten, up to second order in 2J , 
truncating the series at 4n  , as, Abd El-Salam et al. [7] 
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where  and sinS  i 2 3 4, ,J J J  is the zonal harmonic 
coefficients. 

2.2. Third Body Perturbation 

The effect of the third body in the motion of an artificial 
satellite have became particularly interesting now, when 
space debris imposes a serious threat to space activities. 
These perturbations are the most important mechanism of 
delivering major Earth orbiting objects into the regions 
where the atmosphere can start their decay. 

If it is assumed that the main body; Earth; with mass 

e  is fixed in the center of the reference system x-y. 
The perturbing body, with mass  is in an elliptic orbit 
with semi-major axis, , eccentricity , and mean mo- 

m
m

a e

tion n , given by the expression  2 3
en a g m m     , 

 and r r  are the radius vectors of the satellite and m  
(assuming 0r r  ), and   is the angle between these 
radius vectors. The disturbing function (using the tradi- 
tion expansion in Legendre polynomials) due to the third 
body is given by, Domingos et al. [8], 

 
3 22 2

23cos 1
2t

n a a r
U

r a

                 
    (3) 

where 
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Using the Delaunay canonical-variables  

defined by 
 , , , , ,l g h L G H

,l M Mean anomaly L a  

,g   Argument of the Perigee 21G L e L    

,h    Longitude of ascending node G cosH i  
Considering 2J  as a small parameter of the problem, 

the orders of magnitude, up to the second order, of the 
involved parameters are defined as follows: 

, and let us define the di-
mensionless parameters as 

   2 3 4; 1 ;J n  , J J
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The Hamiltonian, Equation (1) up to the second order, 
can now be expressed as a power series in 2J  as fol-
lows 

2
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2 where 0  represents the unperturbed part of the prob-
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Now we need to eliminate the short as well as the long 

periodic terms of the satellite motion in addition to the 
short periodic terms of the distance perturbing body. Us-
ing the perturbation technique based on Lie series and 
Lie transform, Kamel [9], the transformed Hamiltonian, 

for different orders 0, 1, 2 can be written as, Abd El- Sa-
lam et al. [7] and Domingos et al. [8]. 
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Using the Hamiltonian canonical equations of the mo-
tion, to write  , argument of mean latitude ( ) is the 
sum of the mean anomaly and the argument of perigee 
(i.e. l g   ), as 
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and the secular drift rates of the longitude of the ascending node, : h
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3. Constraints for Invariant Orbits 

In order to prevent two neighboring orbits from drifting 
apart, the average secular growth needs to be equal. Short  

period oscillations can be ignored here since these are 
only “temporary” deviations. The long period rates ap- 

 2
2Jpear secular over a few weeks and they are .  
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Since the mean angle quantities ,l g  and h  do t 
directly th, t

no
 contribute to the secular grow heir values can 

be chosen at will. However, the mean momenta values 
,L G and H (and therefore implicitly ,a e  and i ) must 

be carefully chosen to match the secular drift rates. To 
keep the satellites from drifting apart over time, it would 
be desirable to match all three rates  , ,l g h  . We impose 

the condition that the relative average drift rate of the 
angle between the radius vectors be zero. This results in 

i jh h i j                 (9) 

i j i j                 (10) 

Now   and  can be rewritten as h
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where the non-vanishing coefficients , ,nmt nmt nmt
h     

and h
nmt  are computed in Appendix I.  
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here we make use of the fact that w  , ,L i     and 
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the remaining two ta orbit element differences 
found through a numerical root solving technique. How-
ever, the analytical second order conditions provide rea-
sonably accurate solutions to these two constraints equa-
tions and provide a wealth of insight into the behavior of 
Earth potential and third body effect invariant relative 
orbits. 

The required derivatives can be evaluated as 

momen

 

    
2 2 4 5

4 3 1 4 22
L 4

1 0 1

3 4 3 3
!

n
nmt n t n nmt t

n m t

J
n L L

nL  
      

  

       cos mi

    
2 4 5

4 3 4 1 3 12

1 0 1

t 4n t cos
!

n
nmt n t n nmt t

n m t

J
L L

n          

  

    mi

   
2 4 5

4 3 4 32

1 1 1

t sin
!

n
nmt n t n nmt t

i
n m t

J
m L L m

n        

  


   i

     
2 2 4 5

4 3 2 42
LL 5

1 0 1

12 4 3 4 3 1 6 L cos
!

n
nmt n t n nmt t

n m t

J
n n L

nL  
     

  

         mi 

Copyright © 2012 SciRes.                                                                                  AM 



W. A. RAHOMA  ET  AL. 118 

       
2 4 5

4 3 4 2 3 22

1 0 1

t 4n t 4n 1 t t 1 cos
!

n
nmt n t n nmt t

n m t

J
L L

n         

  

       mi

   
2 4 5

2 4 3 4 32

1 0 1

t coscos
!

n
nmt n t n nmt t

ii
n m t

J
m L L m

n        

  


   i

     
2 4 5

4 3 1 4 1 2 12
L

1 0 1

4 3 t 4 3t cos
!

n
nmt n t n nmt t

n m t

J
n n L L mi

n           

  

      

    
2 4 5

4 3 4 1 3 12

1 1 1

t 4n t sin
!

n
nmt n t n nmt t

i
n m t

J
m L L

n         

  


    mi

    
2 4 5

4 3 1 4 22
L

1 1 1

4 3 3 sin
!

n
nmt n t n nmt t

i
n m t

J
m n L L mi

n        

  


    

and 

 

    
2 4 5

4 3 1 4 22
L

1 0 1

4 3 3 cos
!

n
nmt n t n nmt t
h h

n m t

J
h n L L

n
      

  

     mi

    
2 4 5

4 3 4 1 3 12

1 0 1

t 4n t cos
!

n
nmt n t n nmt t
h h

n m t

J
h L L

n        

  

   mi  

   
2 4 5

4 3 4 32

1 1 1

t sin
!

n
nmt n t n nmt t

i h h
n m t

J
h m L L

n
     

  


   mi

     
2 4 5

4 3 2 42
LL

1 0 1

4 3 4 3 1 6 L cos
!

n
nmt n t n nmt th h

n m t

J
h n n L mi

n
     

  

        

       
2 4 5

4 3 4 2 3 22

1 0 1

t 4n t 4n 1 t t 1 cos
!

n
nmt n t n nmt t
h h

n m t

J
h L L m

n        

  

       i

   
2 4 5

2 4 3 4 32

1 1 1

t cos
!

n
nmt n t n nmt t

ii h h
n m t

J
h m L L

n
     

  


   mi

     
2 4 5

4 3 1 4 1 2 12
L

1 0 1

4 3 t 4 3t cos
!

n
nmt n t n nmt t
h h

n m t

J
h n n L L

n         

  

      mi

    
2 4 5

4 3 4 1 3 12

1 1 1

t 4n t sin
!

n
nmt n t n nmt t

i h h
n m t

J
h m L L

n        

  


    mi

    
2 4 5

4 3 1 4 22
L h

1 1 1

4 3 3 sin
!

n
nmt n t n nmt t

i h
n m t

J
h m n L L

n
      

  


    mi

where 

 

x x

 



  and 
2

xx x x

 

 

  with , ,x L i . 

To enforce equal drift rates i  and between neighboring orbits, we must set ih    and h    equal to zero in ex-
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Equations (15) and (16) are two simultaneous nonlin-

braic equations in three unknowns, namely 
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1 2 LL  (16) by and then subtracting yields 
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algebraic equation of fourth degree in   only in the 
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4. Solution of the Quartic Equation (18) 

 as The roots of the quartic Equation (18) can be written
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. Conclusion 

Accurate modeling of relative motion dynamics for ini-
tial conditions close to the leader satellite is essential for 
flying formation. Therefore, the solutions of interest are 
restricted to a specific set of initial conditions that lead to 
periodic motion, such that the satellites do not drift apart. 

his paper showed an analytical expression to secular 
drift rates due to oblate Earth model, truncating its poten- 

tial series at 
 
5

T

4J , and third body effect and set it equal 
between two hboring o its. It followed the same 
steps used be in Abd El-S lam et al. [7] for the Earth 
model so the lculation of Abd El-Salam et al. [7] and 
Schaub and Alfriend [1] is a ecial case from this cal-

h

 neig
fore 
 ca

culations. The variation in t

rb
a

sp
e inclination ( i ) can be 

chosen at nominal inclination, and the varia-
tions in both t e eccentricity (

will for the 
h e ) and sem ajor axis  i-m
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( a ) from their nominal values are set to zero. Noted 
nt conditions are not justified near 

Using 
that these constrai
critical inclination angle. 

the 
  instead of  to e

avoid the singularity when 0e   but for 0e   the 
nonsingular elements must be used. Future developments 
of this approach to the formation flying problem include 
another perturbation forces like solar radiation and luni-
solar effects. 
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