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Abstract 
 
The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and q-Horn’s 
matrix function of two complex variables. The radius of regularity on this function is given when the positive 

integers p and q are greater than one, an integral representation of 
2
( , , , ; ; , )H

qp A A B B C z w   is obtained, recur-

rence relations are established. Finally, we obtain a higher order partial differential equation satisfied by the 
p and q-Horn’s matrix function. 
 
Keywords: Hypergeometric Matrix functions, p and q-Horn’s Matrix Function, Contiguous Relations, 
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1. Introduction 
 
Many special functions encountered in mathematical 
physics, theoretical physics, engineering and probability 
theory are special cases of hypergeometric functions [1]. 
Hypergeometric series in one and more variables occur 
naturally in a wide variety of problems in applied mathe- 
matics, statistics [2-4], and operations research and so on 
[5]. In [6,7], the hypergeometric matrix function has 
been introduced as a matrix power series and an integral 
representation. Moreover, Jódar and Cortés introduced, 
studied the hypergeometric matrix function ( , ; ; )F A B C z , 
the hypergeometric matrix differential equation in [8] 
and the explicit closed form general solution of it has 
been given in [9]. Upadhyaya and Dhami have earlier 
studied the generalized Horn’s functions of matrix argu- 
ments with real positive definite matrices as arguments 
[10] and this function 7H  also [11], while the author 
has earlier studied the Horn’s matrix function H2 of two 
complex variables under differential operators [7]. In [12, 
13], extension to the matrix function framework of the 
classical families of p-Kummer’s matrix functions and p 
and q-Appell matrix functions have been proposed. 

Our purpose here is to introduce and study an exten- 
sion of the matrix functions of two variables. This paper 
is organized as follows: Section 2 contains the definition 
of the p and q-Horn’s matrix function of two variables, 
its radius of regularity and integral relation of the p and 
q-Horn’s matrix function is given. Some matrix recu- 

rrence relations are established in Section 3. Finally, the 
effect of differential operator on this function is investi- 
gated and p and q-Horn’s matrix partial differential equ- 
ation are obtained in Section 4. 

Throughout this paper 0  will denote the complex 
plane cut along the negative real axis. The spectrum of a 
matrix 

D

A  in N NC  , denoted by ( )A  is the set of its 
eigenvalues of A . If A  is a matrix in N NC  , its two- 
norm denoted by 

2
A  is defined by [14]  

2
2

0
2

sup
x

Ax
A

x
  

where for a vector  in y NC ,  
1
2

2

Ty y y is the Eu-  

clidean norm of y. 
If f(z) and g(z) are holomorphic functions of complex 

variables z, defined in an open set  of the complex 
plane, and if 


A  and  are a matrix in B N NC   with 

( )A    and ( )B    also and if AB BA , then 
from the properties of the matrix functional calculus [15], 
it follows that 

( ) ( ) ( ) ( ).f A g B g B f A         (1.1) 

The reciprocal gamma function denoted by 

1 1
( )

( )
z

z
 


 is an entire function of the complex vari- 

able . Then for any matrix z A  in N NC 

1( )
, the image of 

 acting on A denoted by 1 ( )z A  is a welldefined 
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matrix. Furthermore, if   

is invertible for every 

non negative integer

A nI

n


     (1.2) 

where I  is the identity matrix in N NC  , then ( )A  is 
invertible, its inverse coincides with 1( )A  and one 
gets [8] 

1
0

( ) ( ) ( ( 1) )

( ) ( ); 1;( )

n

.

A A A I A n I

A nI A n A I

   

     


     (1.3) 

Jódar and Cortés have proved in [16], that 
1( ) lim( 1)![( ) ] .A

n
n

A n A n


          (1.4) 

Let P and Q be two positive stable matrices in N NC  . 
The gamma matrix function ( )P  and the beta matrix 
function  have been defined in [16], as follows ( , )B P Q

( ) ln

0
( ) d ;t P I P I P I tP e t t t e

          (1.5) 

and 
1

0
( , ) (1 ) d .P I Q IB P Q t t t           (1.6) 

Let P and Q be commuting matrices in N NC   such 
that the matrices  and  are 
invertible for every integer . Then according to [8], 
we have 

,   P nI Q nI 
0n 

P Q n  I

  1
( , ) ( ) ( ) .B P Q P Q P Q


    

2. Definition of p and q-Horn’s Matrix 
Function 

 
Suppose that p and q are positive integers. The p and q- 
Horn’s matrix function

2
( , , , ; ; , )H

p q A A B B C z w   of two 
complex variables is written in the form 

2

1
-

, 0

( , , , ; ; , )

( ) ( ') ( ) ( ') [( ) ]
=

( )!( )!

H
p q

m nm n m n n m

m n

A A B B C z w

A A B B C
z w

pm qn





 


   (2.1) 

where  and , ,( , ) m n
m n m nU z w V z w

1

,

( ) ( ) ( ) ( ) [( ) ]

( )!( )!
m n m n n m

m n

A A B B C
V

pm qn


  

 . 

For simplicity, we can write the 
2
( , , , ; ; , )H

qp A A B B C z w 
, , ; ; , )

 

in the form ,
2H

p q

2
( ,H

p q A+ I A B B C z w   in the 

form
2
( )H

p q A  , ,
2
( , , , ; ; , )H

p q A A B B C + I z w  in the 

form
2
( )H Cp q  . 

We begin the study of this function by calculating its 
radius of regularity R of such function for this purpose 
we recall relation (1.3.10) of [17,18] and keeping in 

mind that 2
,1 2

m n

m n


  . We define the radius of re- 

gularity of the function
2
( , , , ; ; , )H

p q A A B B C z w   as      (1.7) 

 
1

,

,

1
1

,

1
limsup

( ) ( ) ( ) ( ) [( ) ]
limsup

( )!( )!

( ) ( ) ( ) ( ) ( ')
limsup ( 1)!( ) ( 1)! ( 1)!

( 1)! ( 1)! ( 1)!

m n
m n

m n m n

m n
m n m n n m

m n m n

A A B
A A Bm n m n

m n

V

R

A A B B C

pm qn

m n A m A n B n B
m n m n m m n n

m n m n







 

 


 

    


 

 
 
 
 

  
 
 
 


     

   

B

1 1
1

,

1 1
1 1 1 1

,

( 1)
( 1)!

[( ) ] 1
( 1)!

( 1)! ( )!( )!

( ) ( ) ( ') ( ) ( ) ( 1)!( 1)!( 1)!
limsup

( )!( )!( )

n

C m n m n
B Cm

m n

m n m n

A A C B B
m n m n

n
n

m C
n m m

m pm qn

C A A B B m n n n

pm qnm n m n





  
 

     

   


!



 
       

          
         

 

where 
2 2

,

, , 0;

1,                            , 0.

m n

m n

m n m n
m n

m n

m n



             




 

Using Stirling formula and take m n  is a positive integer, then 
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1

1
( 1)

( 1)

1

1

( 1)

1 ( 1)!( 1)!( 1)!
limsup [ ( 1)] ( )

( )!( )!

1
2π( 1) 2π

( 1)!( 1)!( 1)!
limsup limsup

( )!( )!
2π

n
A A C B B n

n

n n

n

p n
n n

n n n n
n n n

R p n qn

n n
n n

n n n n e

p n qn p n
p n

e










 





 


   



 



 

    
   

 

             
   

 
 

   

 

1
2( 1) ( 1)

1 2

1 1

1 1 1

1
( 1)

2π

1 1
limsup 0.

n n

qn

q p q pn

n
n

e

qn
qn

e

n n n

n q p




 

 
  





 


 




  

    
  

       

 
   

  
 
 

 

 
Summarizing, the following result has been established. 

As a conclusion, we get the following result. 
Theorem 2.1. Let A , A , ,  and  be ma-

trices in 
B B C

N NC 
 such that C mI  are invertible for all 

integer . Then, the p and q-Horn’s matrix function 
is an entire function in the case that, at least, one of the 
integers p and q are greater than one. 

0m 

If , then the function is convergence in 1p q 
z r , w s  and  in [5,19]. ( 1)r s 1

 
Integral form of the p and q-Horn Matrix 
Function 
Suppose that A  and  are matrices in the space C

N NC   of the square complex matrices, such that 
A C CA   , A , and  are positive stable ma- 

trices. 
C C A

By (1.3), (1.4) and (1.7) one gets 

 
   

   

1

1 1

1 - -1 1 ( -1)

0

( ) ( )

( ) ( )

( ) ( ) 1 d .

m m

C A IA m I

A C

A mI C A C mI

A C A C t t t



 

  



       

      

 (2.2) 

Substituting from (2.1) and (2.2), we see that 

 

2

, 0

11 1 ( 1)

0

1 1

1 -
030

( , , , ; ; , ) 

( ) ( ) ( ')
=

( )!( )!

( ) ( ) ( ) (1 ) d

( ) ( ) ( )

( , , ; -; , ) d .1

H

F

p q

m nm n n n

m n

A m I C A I

p qC A IA I

A A B B C z w

A B B
z w

pm qn

A C A C t t t

A C A C

t A B B zt wt






      

 

  

 

     

     

 





 t

 

Therefore, the following result has been established. 
Theorem 2.2. Let A , A , ,  and  be ma-

trices in 
B B C

N NC  . Then the p and q-Horn’s matrix function 
of two complex variables satisfies the following integral 
form 

 

2

1 1

1 -
030

( , , , ; ; , )

= ( ') ( ') ( )

( , , ; -; , ) d1

H

F

p q

p qC A IA I

A A B B C z w

A C A C

t A B Bt

 

  

 

   

  zt w t

   (2.3) 

where 

 
3 0

, 0

( ) ( ) ( )
( , , ; -; , )  = ( )

( )!( )!F
p q m nm n n n

m n

A B B
A B B zt w zt w

pm qn







  . 

 
3. Matrix Recurrence Relations 
 
Some recurrence relation are carried out on the p and 
q-Horn’s matrix function. In this connection the following 
contiguous functions relations follow, directly by increas- 
ing or decreasing one in original relation 

2

1

, 0

1

, 0

1

1
,

, 0

(A+)

( ) ( ') ( ) ( ') [( ) ]

( )!( )!

( ( ) )

( ) ( ) ( ) ( ) [( ) ]

( )!( )!

( ( ) ) ( , )

H
p q

m nm n m n n m

m n

m n

m n m n n m

m n
m n

A I A B B C
z w

pm qn

A A m n I

A I A B B C

pm qn

A A m n I U z w






















  

 


  







 (3.1) 

and 

1

2
, 0

1
,

, 0

( ) ( ) ( ) ( ) [( ) ]
(A )

( )!( )!

( )[( ( 1) )] ( , ).

H
p q m nm n m n n m

m n

m n
m n

A I A B B C
z w

pm qn

A I A m n I U z w











 
 

    




 

(3.2) 

Similarly 
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,

 

    

 

    

 

1
,2

, 0

1

,2
, 0

1
,2

, 0

1

,2
, 0

1
,2

, 0

2

( +) ( , ),

( ) 1 ( , )

( +) ( , ),

( ) 1 ( , ),

( +) ( , ),

( )

H

H

H

H

H

H

p q
m n

m n

p q
m n

m n

p q
m n

m n

p q
m n

m n

p q
m n

m n

p q

A A A mI U z w

A A I A m I U z w

B B B nI U z w

B B I B n I U z w

B B B nI U z w

B






 








 








   

        

 

      

   

 











    

 

    

1

,
, 0

1
,2

, 0

1

,2
, 0

1 (

(C+) ( , ),

(C ) 1 ( , ).

H

H

m n
m n

p q
m n

m n

p q
m n

m n

B I B n I U z w

C C mI U z w

C I C m I U z w

 








 



     

 

      







, ),

 

(3.3) 
 
4. The p and q-Horn’s Matrix Function 

under the Differential Operator 
 
Consider the differential operator D on the p and q-Horn’s 
matrix function of two complex variables, defined in [7, 
17] as 

1 2 , , 1

1, otherwise

d d m n
D

  


 

where 1d z
z





 and 2d w

w





. This operator has the 

property . ( )m n m nDz w m n z w 
p qFor the  and -Horn’s matrix function the fol-

lowing relations hold 

  

2

, 0

1

22 2

( )

( ) ( ) ( ) ( ) [( ) ]

( )!( )!

( ) 2

H

H H

p q

m n

m nm n m n n m

q qpp

DI A

A m n I

A A B B C
z w

pm qn

A dA










  

 


  


  (4.1) 

and 

 

 

1 2

1
-

, 0

2

( ) ( ) ( ) ( ) [( ) ]

( )!( )!

( ).

H

H

p q

m nm n m n n m

m n

qp

d I A

A A B B C
A mI z w

pm qn

AA







 
 

 

  

(4.2) 

By the same way, we have 

 

 

 

2 2 2

2 2 2

1 2 2

( ),

( ),

( )( )

H H

H H

H H

p q qp

p q qp

p q qp

Bd I B B

Bd I B B

Cd I C I C I

 

   

    .

  (4.3) 

From (4.1), (4.2) and (4.3), we get 

 

 

22 2 2

2 2

22 2 2

2 2

( ) 2

                       ( ' ) ( ),

( ) 2

                    ( ' ) ( ).

H H H

H H

H H H

H H

p q q qpp

q qp p

p q q qpp

q qp p

AA A B dA

A BA B

AA A B dA

A BA B

    

   

    

    

  (4.4) 

From (4.1), (4.3) and (4.4), we have 

 

 

 

22 2 2

2 2 2

22 2 2

2 2 2

( ) 2

 ( ) ( ),( )

( ) 2

( ) ( )

H H H

H H H

H H H

H H H

p q q qpp

q q qp p p

p q q qpp

p q q qp p

AA B C dA

C BC I B

AA B C dA

C BC I B

   

.

    

    

    

2

,

H
q

 

(4.5) 

Also from (4.2), (4.3) and (4.4), we see that 

 

 

 

 

 

2

2 2

2 2 2

2

2 2

2 2 2

( ) ( ) ,

( ) ( )

( ) ( )

  ( ) ( ' ).

H

H H

H H H

H

H H

H H H

p q

pq qp p

p q q qp p

p q

pq qp

q q qp pp

A C

A CC IA

B BB B B B

A C B B

A CC IA

B BB B

 

    

     

   

   

   

 

(4.6) 

Now, we append this section by introducing the dif- 

ferential operator  1d z
z





 and 2d w

w





  to the en- 

tire functions in successive manner as follows; 
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p q
1 1 1 1 2 2 2 2 2

1

1, 0

0, 1

1 2 1 1 2 1
... ...

( ) ( ) ( ) ( ) [( ) ]1 2 1
...

( )!( )!

1

H

m nm n m n n m

m n

m n

p q
d d d d d d d d

p p p q q q

A A B B Cp
m m m m z w

p p p pm qn

n n
q




 



 

           
                

          

     
       

    

 
  

 




1

1

1, 0

0, 1

( ) ( ) ( ) ( ) [( ) ]2 1
...

( )!( )!

( ) ( ) ( ) ( ) [( ) ]1 1 2 1
...

( )!( )!

1 1 2
.

m nm n m n n m

m nm n m n n m
p

m n

q
m n

A A B B Cq
n n z w

q q pm qn

A A B B Cpm pm pm p
mp z w

p p p pm qnp

qn qn
nq

q qq







 



 

    
    

   

        
     

    

   
   

  




1

1 1

1, 0 0, 1

1 1

, 0

( ) ( ) ( ) ( ) [( ) ]1
..

( )!( )!

( ) ( ) ( ) ( ) [( ) ] ( ) ( ) ( ) ( ) [( ) ]1 1

( )!( )! ( )!( )!

( ) ( ) ( )1

m nm n m n n m

m n m nm n m n n m m n m n n m
p q

m n m n

m n m
p

m n

A A B B Cqn q
z w

q pm qn

A A B B C A A B B C
z w z w

pm p qn pm qn qp q

A A B

p




  
 

   


  



   
 
 

   
 

 




 



 

  

1 1
1 11 1 1 1

, 0

1
1 1 1 1

, 0

, 0

( ) [( ) ] ( ) ( ) ( ) ( ) [( ) ]1

( )!( )! ( )!( )!

( ) ( ) ( ) ( ) [( ) ]
( ( 1) )( )

( )!( )!

1

m n m nn n m m n m n n m
q

m n

m nm n m n n m
p

m n

q
m n

B C A A B B C
z w z w

pm qn pm qnq

A A B B Cz
A m n I A mI C mI z w

pm qnp

w
A m n I

q

 
     



     







  


 
       

   






1
( )( )B nI B nI


    

 

 

   

1

1 1 1

11
2 2

( ) ( ) ( ) ( ) ( )

( )!( )!

( , , , ; ; , ) ( , , , ; ; ,( ) H H

m n m n n m m n

p q qp
p q

A A B B C
z w

pm qn

z w
)AA A A B B C z w A I A A B B CC BB

p q


   



 

               z w

 

i.e., 

   

1 1 1 1 2 2 2 2 2

11
2 2

1 2 1 1 2 1
... ...

( , , , ; ; , ) ( , , , ; ; ,( )

H

H H

p q

p q qp
p q

p q
d d d d d d d d

p p p q q q

z w
)AA A A B B C z w A I A A B B CC BB

p q



           
                

          

               z w

 

We can written the
2
( , , , ; ; , )H

p q A A B B C z w  , then 

   

  

p q
1 1 1 1 1 2 2 2 2 2 2

1

1, 0 0, 1

1 2 1 1 2 1
... ...

1 ( ) ( ) ( ) ( ') [( ) ] ( 1)( ) ( ') ( ) (1 1

( )!( )!

H

m n m n n m m n m n m n
p q

m n m n

p q
d d d d d I C I d d d d d I I

p p p q q q

C m I A A B B C n A A B
z w

pm p qnp q

 
 

   

           
                   

          

  
 

 

        

1

p q
1 2 1 2 1 2 2

') [( ) ]

( )!( )!

2
.H

m nn m

p p q q

B C
z w

pm qn q

z z w w
DI A d I A d d I A DI A d I d I A d I

p p q q





 
           

 

 

 
Therefore, the following result has been established. 
Theorem 4.1. Let A , A , ,  and C be matrices 

in 
B B

N NC  . Then the
2
( , , , ; ; , )H

p q A A B B C z w  is a solu-
tion for the following differential equation 
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   1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 2

1 2 1 1 2 1
... ...

2
( )( ) ( ') ( ) ( )

0.

H
p q

p p q q

p q
d d d d d I C I d d d d d I I

p p p q q q

z z w w
DI A d I A d d I A DI A d I d I A d I

p p q q

           
                   

         


         




      (4.7) 
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