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Abstract 
 
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect 
to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the 
smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the 
Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching 
lines and branching-off solutions of this equation are constructed and justified. Numerical examples are pre-
sented. 
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1. Introduction 
 
A variational problem about mean-square approximation 
of a real finite function by the modulus of double Fourier 
integral with use of smoothing functional [1] is studied. 
The nonuniqueness and branching of solutions is an es-
sential feature of nonlinear approximation problem. The 
problem of finding a set of branching points is insuffi-
ciently investigated nonlinear two-parameter spectral 
problem. The existence of connected components of the 
spectrum, which in the case of real parameters, similarly 
as in [2], are spectral lines, is essential difference of 
two-dimensional spectral problems compared with one- 
dimensional ones.  

The algorithms for finding the lines of possible bran- 
ching of solutions of the Hammerstein type nonlinear 
equation, which are based on implicit functions methods, 
are proposed and justified. The algorithms for numerical 
finding the optimal solutions of the approximation prob- 
lem are constructed and justified also. Numerical exam- 
ples are presented. 

Note that this class of problems are widely used at 
solving the inverse problems of radio physics, acoustics 
and so on [3,4]. 

2. Problem Formulation, Basic Equations 
and Relations 

 
Consider the linear integral operator 
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which is the double Fourier transform of function 
   2,U x y L G , dependent on the real two-dimen- 

sional parameter  1 2,c c c ,  0 ic    1,2i  1. 
Operator  acts from space  into the solid 
angle 

U  2L G
 2L  , where 2   is some limited domain 

in which a real continuous nonnegative and nonzero 
function  1 2,F s s  is given. In the spaces  2L G  and 

 2L   we introduce scalar products and generable by 
them norms 
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1Parameters c1, c2 are physical parameters of the object being investi-
gated. In particular, in the antennas synthesis problems these parame-
ters characterize the electrical sizes of aperture of radiating system and 
a solid angle in which the necessary energetic characteristic of radiation 
is given [4]. 
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Since the domain  is limited, the integral in 
(1) exists in the usual sense [5] for an arbitrary function 

. Here the function 

2G 

 2U L G  1 2, f s s  is continuous 
and quadratically integrable. 

Consider the problem about approximation of a real 
continuous and nonnegative function  1 2, F s s  in the 
domain   by the modulus of the Fourier integral (1). 
We shall formulate it as a minimization problem of the 
smoothing functional 
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Here the first summand describes the mean-square de-
viation of the modulus of the Fourier integral from the 
given function  1 2, F s s  in the domain  . The second 
summand imposes constraints on the norm of the Fourier 
integral prototype,   is a weight (regularizing) pa-
rameter. 

Equating the Hato differential of the functional (4) to 
zero and taking into account (1), we write the equation 
concerning the function U  that describes the fixed 
points  in the space :  U  2L G

 argi AUU A AU A Fe     ,     (5) 

where 

 
   1 1 2 21 2

1 2 1 22
, e d d

2π

i c xs c ysc c
A f f s s 



  s s  

is conjugate operator with A . 
Further we introduce to shorten records the following 

notations: 

 1 2,Q s s , , , . 1 2d d dQ s s  ,P x y d d dP x y

Taking into account that a set of zeros  N A  con-
sists only of zero element, and acting on both parts of (5) 
by operator A , we obtain equivalent to (5) equation 
with respect to function  1 2, f s s  in the space  G2L

i f

  

 argf AA f AA Fe      .    (6) 

Accordingly to the introduced above notations this 
equation in the expanded form takes the form  
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where 
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is a kernel dependent on the form of the domain . In 
the case of symmetric domain  (8) can be simplified. 
In particular, if the axis  is the axis of symmetry of 
the domain  and its upper and lower limits are de-
scribed, respectively, by the functions 

G
G

OX
G

 y x   at 
 1,1x  , the kernel (8) is real and it has the form  
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Lemma 1. Between solutions of Equations (5) and (6) 
there exists bijection, that is if  is the solution of (5) U

then f AU   is the solution of (6). On the contrary, if 
f  is the solution of (6) then  

  1 1 exp aU A f F f   
   rgi   is the solution 

of (5). 
Proof. Let U  be a solution of (5). Then 

 arg 0i AUU A A A Fe    
 

1 1U    . Acting on this 
equality by the operator A , we obtain 

 arg1 1 i AUAU AA AA Fe       0AU    . The ope- 
rator acts from the space  2L G  into the space  2L  , 
and a set of its zeros consists only of zero element. Then 
from the last identity follows that  2 AU f  L   is 
a solution of the equation 

 arg1 1 0i ff AA f AA Fe     
    , that is (6).  

On the contrary, let  2f L    be a solution of (6). 
The operator A  acts from the space  into the 
space 

 2L 
 2L G  [6], and the Hilbertian space 2L  coin-

cides with the space  [5]. From here follows, that 2L
A  acts from the space  into the space  2L   G2L . 

Taking into account that F  and f


 are continuous 
functions, the function exp argF i


f  is quadrati-

cally integrable in the domain . From here follows  

     1 1
2exp argf F i f L  

     . 

Thus,  

     1 1
2exp argA f F i f U L   

      G  

and the right part of (6) is a result of action of operator 
A  on the element U , that is 

   1 1 exp argAU AA f F i f f   
       . 

Thus owing to the fact that AU f   , we write this 
equality in the form  

   1 1 exp arg 0A U A AU A F i AU    
     . 

Since a set of zeros of operator A  consists only of 
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zero element we have 

  1 1 exp argU A AU A F i AU    
    



. 

So, 

   (10)   1 1 exp argU A f F i f   
   

solves (5). Lemma is proved.  
Using the general expression (8) for the kernel 
 , ,cK Q Q

   , , dcDf AA f K Q Q f Q Q



    
 we shall consider a self-adjoint operator 

    (11) 

and corresponding to it quadratic form for arbitrary func-
tion :    2f Q L 
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This equality to zero is achieved only as   0f Q  . 
From here follows that the operator  is nonnegative 
in  [7] and, respectively, in 

D
 2L   C  . Based on 

this property, the operator  retains the nonnegative 
functions cone 

D
 C K  invariant, that is  

[8].  
D K K

Since a set of values of operator A  is a set of con-
tinuous functions [5], belonging to the space  2L  , 

and a set of continuous functions in the domain  , is 
dense in the space 2  [5], we shall investigate the  L 
solutions of (6) in the space .  L 2

On the basis of decomplexification [7] we consider the 
complex space    as a direct sum 

      C C      of two real spaces of continuous 

functions in the domain  . The elements of this space 

have the form:    , T
f u v   , 

   Reu f C   ,    Imv f C   . Norms in 

these spaces we shall introduce as:  
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The Equation (6) in decomplexified space     we 
reduce to equivalent to it system of equations 
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Note,   are linear integral operators and 11B 21B

11 21B B . 
Denote a closed convex set of continuous functions as 

 MS    supposing that 
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where  

 
   

11
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C C

q I B  

   max , , dc
Q

M F Q K Q Q Q




    ,  (16) 

I is a unit operator in ( )C  . 

We show that operator 1 2  determined by  ,B
T

B B
(13) acts in the space 

Q ; (14) 

 . At first consider  ,B u v1 . 
The first component of this operator, defined by (14), is a 
linear integral operator with the kernel  , ,cK Q Q  
which is continuous on both arguments. Consequently, 

   11 :B C C    is a continuous operator [9]. 
Show that    12 : B    . Let  ,

T
f u v  be 

an arbitrary function belonging to    . For 
0 ic     1,2i   the kernel  is a con- , ,cK Q Q 
tinuous function with respect to its arguments in the 
closed domain     . Then according to the Cantor 
theorem [10]  , ,cK Q Q  is a uniformly continuous 
function in  . From here follows: at fixed  for 
any points 

c
 1 1,Q Q  and  2 2,Q Q  such that whenever 

   1 1 2 2, ,Q QQ Q   , then  

   1 1 2 2, , , ,c cK Q Q K Q Q
a

   , here  da F Q Q


  . 

On this basis we have  
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   (17) 

since 
 

   2 2
max 1
Q

u Q

u Q v Q




 
. Thus,  12 ,u B u v  
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is a continuous function and 12 : ( ) ( )B     . Ana- 
logously we show that 22 : ( ) ( )B     . 

Consider corresponding to (13) linear homogeneous 
equation  

     , , dcu Q K Q Q u Q Q


     .   (18) 

Above it is shown that the integral operator in the right 
part of (18) is self-adjoint and positively determined. 
Hence, its eigenvalues are real and nonnegative [9]. 
From here follows that  cannot be eigenvalue of (18). 
Then this equation has only zero solution u Q( ) 0 . 
Thus it is shown that necessary and sufficient condition 

for existence of inverse operator  is satis-   11
11I B



fied [11]. Since 21 11 , then B B   11
21I B

  exists 
too. Easily to show [12] that  
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From here follows, that  is a limited 
operator. 

 11
11I B



Using existence and limitations of the operators 
and   11I B

 11  11
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e write (13) in the form  
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Theorem 1. The operator  determined  1 2,B
T

B B
by (19) maps a closed convex s anach space et SM of the B

( )  in itself and it is completely continuous.  

Proof. Before it was shown that : ( ) B  ( ) . 

To prove the property of complete e  continuity of th

operator  1 2,B
T

B B  it is necessary to prove its com- 

pactness y [7]. We consider each of opera-and continuit
tors  1 ,B u v  and  2 ,B u v  in a system of Equations 
(19) a duct of mited (continuous) and non- s the pro  linear li

linear operators. Since   11I B
 ,   11I B11 21

  

are limited operators, then for complete continuity of the 

operator  1 2,B
T

B B  it is sufficient to show complete 

continuity s  of operator  12 ,B u v , 22 ( , )B u v . We shall 
show it on the example  12 ,v .B u  

Let  1 1 1,
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ctions  belonging to MS , and  or 1 0v  . It is 1 0u 
necessary to show, that  12 1 C

B f B f
12 2 0  s   a
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Thus, from equalities (20) and (21) follows 
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Therefore, is a continuous operator 

fro
 1 2,B

T
B B  

m     into    . 

Sho  a set unw that  of f ctions  satisfies 12w MS B S2Further for reduction of notations the dependence of functions u1, u2, 
Δu, Δv on the variable Q is omitted in (22) and (23) . co [5], that is nditions of the Arzela Theorem we show 
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that functions of a set wS  are uniformly bounded and 
equapotentially continuo Let  12 ,w B u v , where us. 
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where ( , )Tf u v  is an arbitrary function of a set SM.  
Thus r 1B  is completely continuous in the the operato  

first equation of system (19). Complete continuity of 
operator 2B  is proved analogously.  

Let , )T(f u v  be an arbitrary funct ion of a set S  
an

M

d ( , )T, ) (Tg h u B v . Show that the function ( , )Tg h  
belongs to a set MS . Using the inequalities 

Ax A x  a  nd 
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From these inequalities follows that B M MS S
tely contin

. So, 
the operator  1 2,B

T
B B  is comple uous 

mapping the clo et sed convex s ( )MS    into itself. 
The theorem is proved.  
As a corollary of Theorem 1 satisfaction of the 

Schauder principle conditions [7] in accordance to which 
the operator  1 2,B

T
B B  has a fixed point 

 ,
T

f u v   to a set , belonging MS , foll
(13) and, respectively ). Substituting 

 ,
T

ows. This 
point solves , (6
f u v    into (10), we obtain the solution of (5), 

tionary point of functional (4). 
Concerning the synthesis problems of lin

which is a sta
ear radiator 

for the case of one-dimensional domains   the solu-

tions of system of equations similar to (13) re investi-
gated, in particular, in [13]. The obtained there results 
show that nonuniquness and branching of solutions, de-
pendent on the size of physical parameters of the prob-
lem are characteristic for special case of equations of 
type (13) (when variables are separated). The results [13] 
can not be transferred directly to two-dimensional 
nonlinear integral equations of type (7). Here unlike the 
branching points [13] there exist branching lines of solu-
tions, and the problem of finding the branching lines is 
not enough investigated nonlinear two-parameter spectral 
problem. 
 

 a

. Equations of a Set of Branching Points 

 the case when the kernel of (7) determined by (8) is 

3
 
In
real, (7) in a space of real continuous functions  C   
has the form  
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   (23) 

Assuming in (23)  sign 1f Q   
tegral linear 

we obtain the sec-
ond kind Fredholm in equation with sym-
metric and even kernel  

        1 , , dcf Q K Q Q  f Q Q Q


   F .   (24) 

Here the right part  

     1Q  F , , dcF Q K Q Q Q


    

is a nonnegative function. It was shown that correspond-
ing to (24) homogeneous Equation (18) has only zero 
solution. From here follows that (24) has unique solution 

0 ( )f Q , belonging to the space ( )C   and 

0 ( ) 1Qsign f  , that is solution 0 ( )f Q  is nonnegative. 

Further we lution l  shall call the so 0 ( , )f Q c  as initia
so tion  lution of (7). Corresponding to it solu

   0 0, , ,c cu Q f Q
 0 , 0cv Q




 

we shall call as initial solution of a system of Equa-
tions (13).  

To find the branching lines and complex solutions of 
(7), which branch-off from the real solution  0 ,cf Q  

we consider the problem on finding such a se es t of valu

of parameters       0 0 0
1 2,c c c  and all distinct from 

 ,cf Q  solutio h satisfy the conditions  ns of (13), whic0

    0max , , 0,c cu Q f Q  

 max , 0,c

Q

Q
v Q











    (25) 
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as  0 0c c  . Conditions (25) mean that it is necessary 

to find small continuous solutions in   

      0, , ,c c cw Q u Q f Q  , 0    , ,c cQ v Q  , 

converging uniformly to zero as c
is necessary also to take into accou

 0c
nt th

. In addition, it 
e direction of 

convergence of vector  to
Put 

c   0c . 

 0 0
1 1 2 2,     c c c c              (26) 

and we shall find the de ired so tios lu n in the form  

     0
0, , , ,

   , , , .
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  v Q Qc

 u Q f Q w Qc c

Further we omit the dependence of functions 
 , ,w Q    and  , ,Q    on parameters   and   

for reduction of notations. 
Present some properties of integrands in (13). They are 

co
and (27) i t  i-

r series with respect to the 
fu

ntinuous functions of arguments. We substitute (26) 
n (13). Then in egrands expand in the un

formly convergence powe
nctional arguments w ,   and numerical parameters 
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  0  as a solu
f nonlinear equation
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Extracting in a system of Equations (29), (30) the lin-
ear members for  and w  , to find a set of branc

f the so
hing 
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f linear in r   

rated 
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(32) 
We shall call a set of values of parameter 

      0 0 0
1 2,c c c

neous Equations
tions as a set of
solution 

, at which the system of linear 
 (31), (32) has distinct from zero
 points of possible branching of initial 

homoge-
 solu-

 0 ,cf Q . Note that the system (31), (32) is 
ely the functions  and noncoherent relativ  w  . Prev
hown that equati of ty 31) has 

i-
ously it has been s on pe (
only a zero solution. Therefore the pr em ndiobl  of fi ng a 
set  of branching points under condition 0f Q ,c 0 , is 
reduced to equation  

   

      
 

1
0

0

, , , d ,
,

 









    



Q T

Q
F Q f Q K Q Q Q

f Q

c

c c
c

 

(33) 
that is to a nonlinear two-dimensional spectral problem 
[14,15]. The eigenvalues of this equatio  of n form a set
points of possible branching of solutions of a system of 
nonlinear Equations (29), (30). Corresponding eigen-
functions are used to construct the branching-off sol -u
tions of equations [16].  

Note, that construction and justification of conver-
gence of numerical algorithms to solve the nonlinear 
two-parametric spectral problem on eigenvalues (33) it is 
necessary to solve the corresponding auxiliary one-pa- 
rameter nonlinear spectral problem [14]. In this connec- 
tion at first we consider two-parameter nonlinear spectral 
problem on the general (operational) level in the Banach 
spaces. 
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 Nonlinear Spectral 4. Two-Dimensional
Problem  

 
4.1. Statement of the Problem. Existence 

Conditions of Descrete Spectrum of 
Operator-Function 

 
Note that different approaches are used to discretization 
of the original problems [7,14] at construction of the 
numerical algorithms to find the solutions of various 
typ r spectral problems. That is to say that es of nonlinea
original problems in the Banach functional spaces E  
are replaced by the corresponding problems in the fi-
nite- he 
ques mate solutions of 

iscretization problems to tions of initial prob-

dimensional spaces nE  ( n ). In addition t
tion of convergence of

 ex
 approxi
act solud

lems, whenever dim nE  , n   is important, 
since the input and approximated equations are consid-
ered in various spaces.  

Let E  be a complex Banach space,  1 2,    be 
a vector parameter belonging to the domain 

1 2     (open connected set) of the complex space 
2    . Here i i  , 

 :i i i i r      1,2i  , r  be some real con- 

stant. Consider the ctioperator-fun on 

   , : , E E  A L , which to each  1 2,     

as  thsigns e operator    1 2, ,E E  A L , where 

 ,E EL  is the space of bounded linear operators [7].  
 co

problem of  
Let us nsider the nonlinear two-parameter spectral 

the form

 1 2, 0x  A ,         (34) 

in which it is necessary to find the eigenvalues 
    0 0,   1 2  to them eigen-and corresponding 

vectors (0)x E (0)(x    0 0
1 2, 0)  such that    0 0x A .  

In pa n rticular, in view of (33), the operator-functio
 1 2,   is represented as  

  1 2, T  A

A

   1 2, :I   L ,E E .    (35) 

Here  1 2,T    is a linear completely contin
erator acti

uous op-
 the Bang in nach space  E C   and ana-

t on two-dimensional parameter 
 1 2,
lytically n depende
  , I  is a un

 Banach s
ique .  
paces  and also 

th

operator in 
Let the  E , E  

E
n n

e system ( )n np  P  of linear bounded operators 

nE  such that  

1,2,

:np E 
, ,

nn E E
p x x n x E        (36) 

be . Operato
 bo

 given rs np  are called conjunctive opera-
tors [7,14]. From the principle of uniform undedness 
[14] for p  the inequality follows n

 const np n  . 

very space E  the elemLet in e n nxent  be selected. 
Writing these elements in order to increase the numbers 
we shall form the sequence  nx .  

her approachUsing eit  scretizat on of ori
problem the operator-function

to di i ginal 
    ,E E  is , :  A L

approximated, respect ly, by the approximate opera-
tor-functions 

ive
   , : , n nE E  nA L , n . As a re-

sult, at each  1 2,     we obtain a sequence of 
operators ( , )n n nE EA L  which convergences to opera-
tor ( , )E EA L  at satisfaction of the orresponding 
conditions.  

Definition of various type  convergence of opera-
tors 

 c

s of

m (33) i f

In particular,
 described by (3

 disc

nA  to A  is given, in particular, in [14].  
Discretization of original proble , cho ce o  the 

spaces nE  and determination of operators :n np E E  
are realized in various ways.  the opera-
tor-function is 5) and E  is the separable 
(infinite-dimensional) Hilbertian space, one of the ap-
proaches to retization (34) consists in the following. 
Consider an arbitrary complete orthonormal in E  sys-
tem

 if

 of functions   1k k
x




. Each element x E  can be 

presen ed as series t  
1

k k
k

x c x


   where 


 ,x xk k

the Fou r coefficient of element 

c   is 

rie x . If T  1 2,    is a

ta

 
linear continuous operator, acting in the separable Hil-
bertian space it admits matrix represen tion [9]:  

    1 2 1 2 , 1
, ,M jk j k

T t   



 ,      (37) 

where     1 2 1 2, , ,jk k jt T x x    . In addition a se- 

quence of the Fourier coefficients lement of e
 1 2,y T x   is obtai a sequence rier ned from  of the Fou

coefficients of element x  as a result of multiplication 
of the matrix 1 2( , )MT    by coefficients o t f elemen x .  

Using the matrix representation of operator  1 2,MT    
the spectral problem (34) is formulated as 

    1 2 1 2, ,M M Mx T I x    0  A

IM is a unit matrix in the s

,    (38) 

where pace of sequences 

2l .Thus, the operators ( )T   and )MT (  are equiva-
lent in the sense that they to the same element x E  
assign one and the same element y E . But we obtain 
the Fourier coefficients of element  y x  as a result 
of action of or  T  on the element the operat M x . 
O s coincide,bviously, that eigenvalues of these operator  
that is the spectral problems (34) and (38) are equivalent. 
In this case we put that the finite dimensional spaces nE  
are generated by the bases   1k k

x


 ( n ) and to each 
n

element x E  the operators :n np E E  assign the 

element 
1

n

k k
k

x c x


   where  ,k kc x x . As a , 

operator 

result

 
nMT  approximated to s described  MT  i
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rix-fuby the finite-dimensional mat nction  

    1 2 1 2 , 1
, ,

n

n

M jk j k
T t   


 .    (39) 

Apply other methods of discretization to (34), in par-
ticular, the quadrature (cub proce  for the case ature) sses
of homog s integral equatio nge of deri-eneou ns and cha
vates by t nce analog fferential equa-heir differe ues in di
tions. We roximate o find approxi- obtain app problems t
mate the lues and eigenvectors matrix opera-eigenva  of 
tor-functions in the form 

 1 2, 0,    n nx n   A .  

Moreover, the problem of determination the eigenval-
ue



(41) 
If 

    (40) 

s is reduced to finding the roots of the determinant of 
n -th order that is the roots of equation 

 
     
     

1 2

11 1 2 12 1 2 1 1 2

21 1 2 22 1 2 2 1 2

,

, , ,

, , ,
det

 

     
     



 
 
  




 

n

n

n

a a a

a a a

    

0

, , ,     
  

  


 


 

1 1 2 2 1 2 1 2

                                                                  

 


n n nna a a

n

 1 2,n  A  has form of (35), then 

,

.

k

k

Note if the coefficients 

 
 
 

, 1 2

, 1 2

, 1 2

, ,
,

, 1,

j k

j k

j k

t j
a

t j

 
 

 

 
 

 

 1 2,ija  
 arguments, the

 are continuously 
differentiable functions of  partial deriva-
tives  1 2,n j     ( j 1, 2 ) 

vation [17]. 
are determined by the 

rules of determinant deri
der the auxiliary eter s

tral problem, ne cial case of (34). 
Assume that variable 

Consi nonlinear one-param
cessary later on, as a spe

pec-

2  in the operator-function 
 1 2, A  

ated function 
is expressed ome one-valued fferenti-by s di

 2 1z   mapping the subdomain 
omain 1, 1    into some subd 2, 2   . In the 

simplest case we put 2 1

 
   (   is some real pa-

ramete n operat unction 
    1 1 1, z

r). I troduce the or-f
  A A  for 1 1,  , which is reduction 

of the operator-function  1 2, A . We shall consider 
one-dimensional spectral problem 

 1 0x             (42) A

in which we assign to each value   1 1, z    
the operator     1 1, ,z E E   A L . Analogously to 
(40) we consider a approximate sequence of discrete 
problem of (42)  

 1, 0     z n       (43) 

Denote the spectrum of operator-function 

 , 1 ,n nx   A

 1 A  as 
 s A . Assume that   1,s   A .  

For the spectrum  s A of the prob

w

lem (34) the fol-
lowing theorem is valid. 

Theorem 2. Let the follo ing conditions be satisfied: 
1) operator-function    , : , E E  A L  is holo-

morphic, and  s  A ;  
2) operator-functions  , : E E  A L  ,n

y closed bounded s
n n

et 0

 are 
holomorphic and for an    
the following inequality  

   1 2x ,n c  
0

ma
  

A const  ( )n  is valid;  

3) operators     1 2, ,E EA L , 
   , ,n E E  A L  ( )1 2 n n n  are the Fredholm op-

erators with zero index for any  1 2,    ;  
4) spectrum   1,s   A  of func-

tions 
 and a sequence

 1 2n ,   are differentiable in the domain  ;  
5)     n A A  is stable for any 

   \ r s A A .  
Then the following statements are true:  
1) every point of spectrum    0

1 s  A

 
  is isolated, it 

is perator eigenvalue of the o   1 1 1, z    ,A A  the 

finite-dimensional eig ubspa
 c

ens ce    0
1N A  and the 

finite-dimensional root subspace t; orrespond to i

2) for each    0
1 s   A  there exists a sequence 

  0
1,n    ,ns A  0( )n n , s0

n 1, from uch that 
 0 0

1, 1n  ; 
3) each point        0 0 0,1 1 z    

 
is a spectrum 

int of the operator-function  1 2, A ; po
4) if in some 0 - neighborhood of the point 

       0 0 0
1 1, z      1 2

2

, 0n z 






, then in 

an ll  arbitrarily sma  -neigh
exists a conti uous differenti uncti

borhood of that point there 
n able f on 

 2, 1   , 1), that is i 
bicylindric  d

which is solution of (4 n some 
omain al

      0
0 1 2 0 1 1 2, :  0

1 2 2,            

th m of the 
operator-function 

ere exists a connected component of spectru
 2,N  ( 1 , 21 


A  are small real 

constants).  

ple

te spectr

Proof. The proof of Theorem is based on Theorems 1, 
2 [14, p. 68, 69] and on existence of implicit functions 
(see, exam , [18]). At first we show that the conditions 
of Theorem 1 [14, p. 68] concerning the existence of 
discre um of operator-function  1 A

rem.
 follow 

from the conditions of formulated Theo  Under the 
conditions of Theorem the operator  1 2, A  is Fred-
holm operator with zero index for each  1 2,   , 
and the operator-fu  , : ,E E   is holo- 
mo Fro

nction   A L
rphic. m here follows that at each 1 1,   the 

operator  1 A , as reduction of the operator  1 2, A , 
is also Fredholm operator with zero index, and the op-
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erator-function    1 1,: ,E E   A L  is holomorphic. 
So, for the operator-function  1 A  the conditions of 
Theorem 1 [14, p. 68] are satisfied, from which follows: 
each point  0

1 ( )s   A  is isolated, it is the eigenvalue 
of the operator 1( ) A , the finite-d al eigen-
subspace and finite root subspace corres , 

each point    0 0
1 1, z    is the spectrum 

point of th tor-function 

im
p

  0

ra

ension
ond to it. Thus

 

e ope  1 2, A . 
In addition, the conditions of Theorem 2 [14, p. 69] 

are satisfied for the operator-function 
   1 1,: ,E E   A L . From this t  follows: at 

n  larger than some 0 n   for each  
heorem

 0
1 s   A  

there exists a sequence 1,n    from  1, ,n ns   A  

such that  0
1, 1n  . Thus, each point  (0) (0)

1 2,    
     0 0

1 1, z   is the eigenvalue of operator-function 

   1 1,:  A tively, the eigen-,E EL  and, respec
value of operator-function    , :  

  n n

ence

,E E .

n  .  

A L
   0

 Since 

    (44) 
1, ,n ns  A is the root of (41), then from here follows that  

     0 0
1, 1,, 0,   nz  

From the converg  of sequence    0 s   A  to 
   0 s

1, ,n n

1   A  follows  arbitr that for an arily small num-
ber 0   there exists ber  such num  0N n  that 

   0 0
1,N 1 


      0 0

1, 1,, 0N N Nz    and 
  

.  

Let 1,  2  be independent variables in the domain 

, and           0 0
1 2 1 1z  be a spectrum

 operator-function 

0 0, ,       

point of the  1 2, A  belonging to 
   s s A A

functions 
. Under the conditions of Theorem the 
 1 2,n    are differentiable

z


bo
 in 

 and 
the neigh- 

rhood of the point       0 0 0
1 2 1,     0

1, 
  0N 

   0
1,, 0Nz 

  



. In addition t t 1,

2
N h

0 gs to 

e poin

    0
1, 1,,N Nz 

 
 belon  -vicinity o

. According to the Theorem ab

 of poi

1

f the t 

ere ex

 poin

 0   0
1 2, out implicit 

    0 0function in some neighborhood nt 1 2,
th ists the continuous differentiable function 

2 N

   

   
 


quation  1 2, 0N  


  , 

and  1, 1,n N z  

 tenc

, solving the e
  0 0

N
. From here fo

pectrum component of the

llows exis e 

of connected s or-func- 
tion 

 operat
   , : A ,E EL

 

 in some bicylindrical domain  

    0 0
0 1 2, 0 1 1 1 2 2 2: ,             , 

where 1ε , 2  are small real constants.  

oved. Theorem is pr
Comment. Note that in the case of real para 1meters   

and 2  the presence of a singular point in the equation 

 1 2,  0   [19] is one of the su s fficient criterion of 

action of condition   s A . The point satisf
    0 0

1 2,     is a singular point of the curve which is 

prese  , 0 nted by the equation 1 2   when 

           0 0
1 2

1

, 




0


, 

0 0
1 2, 

d the second 
2

0





, an

or re nonzero: der partial derivatives a

        
    

0 020 02
1 21 2

,,
0, 0,

     
2 2

1 2 
0 02

1 2, 

1 2

0
 

 
( )
 

. 
 




These derivatives and t r derivatihe third-orde ves are 
continuous in the neighborhood of the point 

    0 0
1 2,    . If in addition  

              2
0 0 0 02 2

1 2 1 2, ,         
 

0 02
1 2

2 2
1 2 1 2

,
0

 

   
  

     
 

, 

then the point     0 0
1 2,   is the second orde ot of r ro

equation 1 2( , ) 0 . Inside of a sufficiently small   

ra    0 0dius circle with center at point  1 2,   the left part 

of equation 1 2( , ) 0    becomes zero only at point 
(0) (0)

1 2( , ) (0) (0)
1 2( , )   is the i , i.e.  solated point of spectrum. 

 
4.2. Finding the Connected Components of a 

Spectrum 
 

 the exiThus, assuming stence of discrete spectrum 
  1,s   A  

robl
and solvi

em (42), set of the eigenv
ng an auxiliary one-dimensional 

spectral p we find a alues 
       0 0 0,1 1 z    , which also to the  belongs 

perator-funcspectrum of o tion    , : , E E  A L . To 
find the c cted comonne ponents of a spectrum in some 

neighborhoods of the points        0 0 0   1 1, z  

consider thewe  problem on finding the solutions of 
quation e  1 2, 0n    , as the problem on finding the 

implicitly given function  2 2 1    at satisfaction of 
   condition  0 0

1 2 2, 0n       (or  1 1 2    at 

    0 0satisfaction of condition 1 2 1, 0n      ), solv- 

ing the corresponding Cauchy problem 
    
    
0 0

1 2 12
,d n

0 0
2,1 1 2

d
n

  
   

 
 


,     (45) 
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ne-di
orm 

0
n

 . (47) 

alues of this problem 

n
 .  (48) 

Solving the problem (45), (46) in some neig

of the point 

co

     0 0
1 1z   .           (46) 

Corresponding (38) auxiliary o mensional spectral 
s the f

2

problem ha

  
n n

Obviously, the eigenv are the 

       
1 1 1 1, ,n n

M M Mz x T z I x    A

roots of equation  

     1 1 1det , 0
n nM M MT z I    

hborhood 
       1 2, i i iz   , we find the i -th 

nnected component of spectrum of the operator-func- 
tion  1 2,

nM  A . 
Return to finding the solutions of (33), in which
 are real spectral parameters. Let 

 c , 1

2c  1 2,  c , c c 

1 2c c c   , where   : 0
i ic i c i cc c r     . By 

direct check we set that for arbitrary values of parameters 
 1 2,  cc c   the func

is nctions, where 
f (7). Write the neces

tion  

  , ,c cQ f Q   ,       (0 0

 one of the eigenfu   is the ini-

49) 

 ,cf Q
sa

0

tial solution o ry in what follows 
equation  

   

        
0 , , ,

,






 


Q

0

d





 Q T

F Q f Q K Q Q
f Q

c c Q

c

c

0  (5 ) 

conjugate with (33). For arbitrary  1 2,  cc c   the 
fu

 
nction  

0  0 , ,c cQ F Q f Q         (51) 

is one of the eigenfunctions of (33).  
The existence of distinct from identical to zero solu-

tions of (33) for arbitrary  , c c   indicates that 
there i

1 2 c

nt of spectr
he condition 

. To satisfy th
, (51) from th

s a connected compone um, coinciding 
with the domain . So, t of Theorem 2: 

is no is condit
genfunct  (49) e kernel of in-

on 

 c

t satisfied
ions

  
cs A  

exclude ei
ion we 

tegral equation (33). Consider the equati

       , , ,c c c Q T Q Q     K dQ Q


 ,    (52) 

where 

     
   

   

0

0

0 0

0 0

, , , ,
,

, ,

Q Q K Q Q
f Q

Q Q 
 

 







c c

c c

K
.   (53) 

From the Schmidt Lemma [16, p. 132] follows that 
1

,F Q f Q  c

c

   is not characteristic value of (52) for any value 
 ,c c , that is    is not an eigenfun1 2

equation. 
0 ,cQ

eby the conne
n c  
cluded from

ction of this 
Ther cted component 

domai and corresponding to the function 
 is ex  the spectrum of operator. 

coinciding 
with th

0 ,cQ
e 

 

Using (8) we are sure that for the kernel of operator 
 cT  is fulfilled the inequality 

 

 
 

   

 
   

031 2
2 2 2

0

2

21 2
02

d
,2π

, d .
2π

Q
Q

c c
Q Q


 

 





  
 
 
 

2

2
2

, , d d

,1

Q Q Q Q

Qc c 
 

 

 

     
 





c

c

 

  c

c

K

Here     is the measure of the domain  . From 

e obtained inequality follows that  cT  is the Fred-th
holm [20]. Moreover, it is a  operator with zero index 
completely continuous operator in space  2L   [21].  

Functions entering in the kernel of th r (35), e operato
admit the analytic continuation into the complex domain 
c , if  and are assumed as complex parameters. 1c 2c  
Holom hy of rator-function orp  ope  1 2,c c A  

 ,c1 2
T c I  llows [14] from existence of partial fo

 
deri es vativ 1 2,c cA

ic
  1,2i   at arbitrary po t in

    0 0
1 2, cc c   owing to continuity of kernel  the 

 , ,c Q QK  according to a set of their variables in the 

domain c  and existence and continuity of 

partial d rivative  e s
 1 2,

i

c c

c




K
  1,2i  , what is easy to 

verify.  
52), 2 1c c , we shall consider the onPutting in ( e- 

dimensional o

        ,    (54) 

 spectral pr blem  

  1 1, , d  Q T c u Q Q c Q Q K
G

where  is   , , , , , Q Q c Q Q c c K K  . Since  T c1 1 1 1

f the operator ( )T c , from here follows that reduction o

 T c  is th olm operator with zero index for ane Fredh y 1

1 1,c  , and the operator-function 

     1: ,I E E    L  is holomorphic.  T  A

If   1
s  A , from holomorphy of operator-function 

and from the Fredholm property of the kernel 

   1 1 1, , , , , Q Q c Q Q c c K K  satisfaction of the con- 

ditions of Theorem 2 follows. In accordance with this 

Theorem every point    0c s   is i  it is1 solated and  the A

eigenv     0 0alue of (54). Respectively, the points 1 2,c c   

    0
1c  are eigenvalues of (540

1 ,c  ). To find the spec-

trum connected components ( s of 52) in the vicinitie

points  (0) (0)
1 2,c c  we solve the Cauchy problem (45) 

Copyright © 2011 SciRes.                                                                                  AM 



P. SAVENKO  ET  AL. 1086
 

 

an 46), usingd (  the found solutions of auxiliary problem 
(54) as initial conditions. 
 

ically the ei-
iary problem

(43). Consider

4.3. Numerical Finding the Eigenvalues of the 
Problem 

 
We shall construct algorithms to find numer
genvalues of (54) what corresponds to auxil  

 some convergent cubature process [14]  

       
1

d , 
n

jn jn n
j

x Q Q a x Q x n


     (55) 


with coefficients jna   and nodes jnQ   
( 1j n  ). We reject the remainder term  n x  in (55) 
nd replace integral in (52a ) by it. Giving the variable 

 
in th sional spaces 

Q  
us values inQ Q  ( 1i n  ), we have the homogeneo

system of linear algebraic equations concerning 
,u : 1 ,n nnu

     1 1
1

, , , 1  
n

n

in M n jn in jn jn
j

u T c u a Q Q c u i n


    K (56) 

where  u u Q . Solving the eigenvalue problem (56)in in

e finite-dimen  nE C  ,n  w
approxi alues, convergent to exact solutions 

 as 
Finding , in

These s tions of equation we denote as .  
Return to two-dimensional spectral prob

plying the (55) to (52), we obtain a system of lin
ns similar to

,

0n    (59) 

we consider as a problem on finding the impl
fu chy lem 
(4

e find 
mate eigenv

of the problem (54) .  
 the eigenvalues of (56) is reduced  particu-

lar, to finding the roots of equation  

    1 1det 0
nn M nc T c I    .     (57) 

olu

n 

 
1

ic
lem (52). Ap-

ear 
equatio  (56)  

   1 2 1 2
1

, ,

                                    

n

n

in M jn in jn jn
j

u T c c u a Q u


   K
 (58) 

 

,

               1 .

Q c c

i n 

Finding the solutions of equations  

    1 2 1 2, det ,
nn Mc c T c c I    

icitly given 
nction  2 2 1c c c , reducing it to the Cau  prob
5), (46). Since to each isolated root of this equation 

corresponds eigenvalue       

nditions 

  1 2 1 1, ,i i i ic c c c  of prob- 
lem (58) we use solutions of (57) as the initial co
(46). Thus, we determine the initial conditions (46) for 

the Cauchy problem as . If        
2 1 1
i i ic c c

 1 2 2, 0n c c c    then solving the problem (45) (46) 

in  the differentiable  each vicinity of points  
1

ic , we find

function  2 1ic c  which satisfies the condition 

    
1

i ic c

In the case, when     1 1,i ic c is  of  a real eigenvalue

the problem (57),  2 1ic c  are real differentiable 

functions describing in the vicinity of points     1 1,i ic c  

some smooth curves. T se thhat is, in this ca e equations 
(52) and (33) have a linear spectrum, respectively.  

Thus, solving the proble  (57) and (58), we find a setms  
of values of parameters   c   at which the bran-1 2 c,c  
ching of c tions of Equation (7) from the real omplex solu
initial solution  0f ,cQ  at 0  , 0   is possible. 

  U  Functional has sm on branching- aller values 

of he solution 

xamples

f solutions than on t  ,cf Q . 
 
5. Algorithm of Finding the Solutions of 

Nonlinear Equation. Numerical E   

0

 
Present one of iterative processes for numerical finding 
the solutions of system (13), based on the successive 
approximations method: 

   


1

1 1     1 21 22 , , 0,1, .n n nv I B B u v n 
   

11 1
1 1 12

1

, ,n n nu I B B u v 
 





  
 (60) 

Before it was shown that the inverse operators  

  1

1  .  

1
11I B

 ited.   and  21I B exist and are lim
11   

In the case of even on both arguments function 
 ,F 1 2s s  and symmetric domains G  and   at exe-

cution of iterative process (60) it is appropriate to use the 
invariance property of the integral operators B1(u,v) and 
B2(u,v) in the system (13) concerning the type of parity 
of functions u(s1,s2), v(s1,s2). Functions  and  hav-
ing some type of parity on the corresp ng a m
belong to the invariant sets  and  of 

u
ondi

klV

 v
rgu

the s
ent 

pace ijU
( )C   where the indices ta es 0  1. In 

pa
, , ,k li j  ke valu  or

rticular, if  1 2 01,u s s U  then 
 1 2,u s s     , 1 2,u s s    1 2,u s s . By the 1 s2, u s 

direct check w one are c t there are such inclu-vinced tha
sions: 

   
 

1 2, ,

B

 

 

ij kl ij ij kl kl

ij kl ij kl

B U V U B U V V

U V U V

 


   (61) 

From these relations, in particular, follows the possi-
bility of existence of fixed points of operator B  be-
longing to the corresponding invariant set, that is to solu-
tions of (13) and, respectively, ).  (7

Substitute into (10) the function  arg nf Q   

    arctg n nv Q u Q  f succes- obtained on the basis o

sive approximations (60). As a result we have a sequence 
of function values which we denote as {Un}. For this 
sequence the Theorem 4.3.2 and corollary 4.3.1 [4], and 
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the Theorem 4 from [22] are valid. From here follows 
that the sequence {Un} is relaxation for functional (7) 

and the numerical sequence   nU  is convergent.  

Consider the numerical examples of approximation of 
even on both arguments function 

     1 2 1 2, sin πs sin πsF s s   (Figure 1) in the domain 

  1 2 1 2, : 1, 1s s s s   . 

In Figure 2 in logarithmic scale the values of func-
tional  U , which it takes on different types of solu-
tions of system of (13) at change of the parameters 

1 2,c c  on the beams 2 10.8c c  are presented. The 
curve 1 corresponds to the initial solution  0 1 2,f s s .  

The curve 2 is a branching-off solution at point 
       o1 1, 2.345,1.876c c   with the pr rty 1 2 pe

  1 2 1arg , arg , 2f s s f s s   he analysis of  . From t
 

 

Figure 1. The function      1 2 1 2, sin πs sin πsF s s    

given in the domain   :1 2 1 2, 1,s s s s    .1  

 

 

F

Figure follows that branching-off solutions at point 
    1 1
1 2,c c  are more effective compared with initial solu- 

igure 2. The values of functional on initial and branching- 
off solutions. 

tion , since the functional 0f  U  accepts smaller 
valu  branching-off solutio n initial. es on ns than o

The points of possible branching of solutions of (7) 
(spectral lines of (33)) for given 

     1 2 1 2, sin πs sin πsF s s   are shown in Figure 3.  

 1 2,f s sFigures 4 and 5 present  and  1 2arg ,f s s  
of approximate function corresponding to the branch-
ing-off solution of system of Equations (13) at с1 = 8 and 
с2 = 6.4. 

Correspoding to this solution the functions  ,U x y  
and  arg ,U x y  of the Fourier integral prototype in a 
spatial image and image by the level lines are shown, 
respectively, in Figures 6 and 7. 

 

 

Figure 3. Points of possible branching of solutions (spectral 

lines) for given      1 2 1 2, sin πs sin πsF s s  . 

 

 

Figure 4. The modulus of approximation function. 
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Figure 5. The argument of approximation function. 

 

Figure 6. The amplitude of Fouier integral prototype. 
 

 

Figure 7. The argument of Fouier integral prototype. 

 ,U x y
e domain

As we see in these figures, the function  is a 
nonsymmetric relatively to the center of th  
along the axis , and  accepts the 
0 or in th ond ins of the dom

, t  is funct

G  
value 

ain 
OX

e corresp
ion 

 arg ,U x y
ing subdomaπ  

hatG  ,U x y  is real. 
 that the 

Thus, from
given symme

function 

 the 
tric analysis of Figures follows

 1 2,F s s  (even on both arguments) on the 

beam 2 10.8c c  at  is approximated effec-
tively b tim ce of nonsymmetrical by 
modul nteg ypes, that is the functions 

 1
1 1c c

al choi
ral protot

y the op
us Fourier i

 , .y  U x
 
6. To Selection of Parameter   
 
We shall present some argumentations concerning the 
choice of the weight parameter of regularization   in 
the optimization criteria (4). Many of works (see, [23-26  ])
are of 
so ly for l

 devoted to this question. Efficient algorithms 
lving this problem are developed main inear 

operator equations of the type 
Lu F               (62) 

with approximate right part F , in which a priori the 
ror er   is known. Th iled definition is given in eir deta

[23,25]. The principle of residual is the most applicable 
one in practice. Here we choose such number   for 
which acy the equality  with the necessary accur

Lu F              (63) 

is exec u  is a minimum point of smoothing func-uted (
tional defi d on UHne ) dependent on the parameter  . 
As shown in [1], the principle of residual (63) to deter-
mine the parameter   in the case of nonlinear operator 
L  can be applied when L  is a convex operator. Gen-
erally, the residual (63) may be discontinuous or on-n
monotonous function with respect to parameter  . 
Therefore Equation (62) can not have any solution or 
have a set of solutions.  

The error   is unknown a priori, as a rule, in the 
problems of nonlinear approximation. Decrease of pa-
rameter   in the functional (U) reduces the require-σα
ments to the norm U . As a result, the norm of the 
Fourier integral prototype minimizing the functional 
σα(U), inversely depend on  . At reduction   the 
accuracy of approximation in the limits of the d ain om
 , as rule, increases, but the value of function 
 1 2,f s s  outside this domain increases also.  
At concrete calculating the parameter   can be se-

lected on the basis of some physical argumentations a d 
numerical experiments. In particular, in the antenna syn-
thesis problems the rameter 

n

pa   can be selected from 
e satisfaction of equal en gy condition [4]  th er

   22

2 2
U F  .        (64) 

LL G 
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 (A numerical example of dependence of solutions of 7) 
on the value of parameter   at approximation of the 

function   1
1 2 2cos sin π

2

πs
,F s s s  is the proof of the 

above presented arguments. In Figure 8 are given the 
values o approximate function  f 1 2,f s s  in the sec-
tion 1 0s  . From the analysis of the Figure, we see that 
the quality of approximation of the given function on the 
interval 21 1s    increases hen parameter w   de- 

creases, while  20,f s  increases outside this interval.  

 
7.

the modulus of double Fourier transform
sm

i

 method of solving the tw

nlinear

i  s

ase of even by both arguments (one argument) function 

 Conclusions 
 
Note the main results and problems arising at investiga-
tions of the considered class of problems: 

1) The method of nonlinear approximation of finite 
nonnegative functions with respect to two variables by 

 with use the 
oothing functionals is developed in the work. 
2) It is shown that non-un queness and branching of 

solutions is characteristic for this class of problems. The 
numerical o-parametric nonlin-
ear spectral problem enabling to find the branching lines 
of solutions of Hammerstein type no  two-dimen- 
sional integral Equation (7) is proposed to study the 
non-uniqueness of solutions dependent on the value of 
parameters ,c c  entering the Fourier integral.  

3) At f solutions of system of Equation  (13) 
1 2

nding the
by the successive approximations method (60) in the 
c
 1 2,F s s  to obtain

ecessary to select th
 the solution of concrete type it is 
e initial approximation belonging to 

 
n
the corresponding invariant set of nonlinear operators 
 

 

Figure 8. The modulus of approximate function 

  2
1

1 2

π
, cos sinπ

2

s
F s s s  in the section 2 0s   correspond- 

ing to various regularization parameters  . 

1B , 
4)

2B
 Inve

 (61). 
stigations of branching of existing solutions de- 

pendent on physical parameters  entering the Fou-
rier integral are the main difficu lving this class of 
problems. As follows from the ted researches, in 
particular, in [4,13], for a spec

1 2,c c
lty at so
presen

ial case when 
     1 2 1 1 2 2,F s s F s F s 

tions with increase of pa
, the f existing solu-

 significantly 
quantity o

rameters 1 2,c c
increases. Note, that in many practical applications, par-
ticularly in the synthesis proble ing systems, ms of radiat
obtaining the best approximati ven function on to the gi
 1 2,F s s  at concrete values ters  is  of parame 1 2,c c

important. It allows to limit on estig  of eself to inv ations
few first points (lines) of branching.  

5) Obtaining the complete answer about exact qu tity 
of th pa-

dies. 
 

[1]

.11008

an
e of existing solutions of (7) at concrete values 

rameters ,c c  are the subject of separate stu1 2
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