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Abstract 
 
In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary 
value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave 
equation. We observe that this error estimates make finite element method increasingly powerful rather than 
other methods. 
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1. Introduction 
 
The wave equation based on rigorous a posteriori error 
estimates is a largely subject, despite the importance of 
these problems in the modeling of a number of physical 
phenomena. A posteriori have made every method in-
creasingly powerful; such that there are various ap-
proaches to a posteriori error estimates and it has new 
successfully applied to varied problems by several au-
thors (see Ainsworth and Tinsley Oden [1]; Asadzadeh 
[2]; Gergouli [3]; Johnson [4] and [5]). 

Gergouli et al. [3] and his teammates applied finite 
element method for linear wave equation and obtained a 
posteriori error estimates in L (L2) norm in Johnson 
proved existence solution for second order hyperbolic 
problems and used discontinuous Galerkin method for 
them and obtained a priori and a posteriori error esti-
mates. In this paper, we do new work and use streamline 
diffusion method (SD-method) for solving the linear 
second order hyperbolic initial-boundary value problem. 

Streamline diffusion methods (Asadzadeh [6]; Asadza- 
deh and Kowalczyk [7]; Eriksson and Johnson [8]; 
Brenner [9]; Dubois [10]; Fuhrer [11] ) perform slightly 
better than the standard finite element methods for 
smooth solutions and non-smooth solutions hyperbolic 
problems as a two-dimensional one which both is higher 
order accurate and has good stability properties. Due to 
the fact that artificial diffusion is added only in the char-
acteristic direction so that internal layers are not smeared 

out, while the added diffusion removes oscillations near 
boundary layers. 

We consider the linear second order hyperbolic initial 
boundary value problem (see Codina [12]; Haws, [13]; 
Gergoulus et al., [3]; Iraniparast [14]; Kalmenov [15]; in 
Sobolov space Adams [16]; Shermenew [17]) as follows: 
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Here, d  is a bounded open polygonal domain 

with boundary  and we have    1 2
0 0 1,u H u L    , 

a is a scalar-value function in  C   and 

  2 20, ;f L T L  .  

For (1), we use one variable changing and obtain a 
new problem. We apply SD-method for new problem 
and obtain a posteriori error estimates. A posteriori error 
bound provides a computable upper bound on the error in 
some norm using the computed finite element solution 
(see Ainsworth and Tinsley Oden [1]; Asadzadeh [2]; 
Burman [18]; Johnson and Szepessy [19]; Sandboge 
[20]). 

In order to make use of the theory of Semigroups we 
write the system (1) in the following abstract form: 
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Here, we assume  for  and tv u dx [0, ]t T , 
also: 
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where, I is identity matrix. 
The rest of this study is organized as follows. In Sec-

tion 2, we define slabs for space-time domain and obtain 
SD-method for (2) this slabs. In Section 3, we consider a 
posteriori error estimates for SD-method form of Section 
2 and obtain dual problem. In Section 4, we define in-
terpolation estimates for dual problem. In Section 5, we 
complete proof for a posteriori error estimates by using 
definitions in Section 4. 
 
2. The Streamline Diffusion Method 
 
In this section, we consider the SD-method for solving (2) 
that is based on using finite element over the space-time 
domain . To define this method, let 

0 1  be a subdivision of the time in-
terval  into intervals 

[0, ]T
Nt t    

[0, ]T
0 t T  

 1,n n n I t t 
, 1N  

, with time 
steps 1n n n ,  and introduce the 
corresponding space-time slabs, i.e.:  

k t t  0,1,n  

  1, : ,n nS x t x t t t    n          (3) 

for  . Further, for each n let  be a 
finite element subspace of 

0,1, , 1n N   nW
n  1 1

nH S H S , (see Ad-
ams, [16]) and let: 

  | 0,    0 ,  for  n n
nW w W w t t I       (4) 

We can formulate SD-method on the slab  for (2), 
as follows: 

nS

For , find such that: 0, , 1n N   nw W 
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     (5) 

where, Ch  with C  is a suitable chosen (suffi-
ciently small, see Johnson, [18]) positive constant and 
parameter h is defined in the following. Further, we de-

fine the following notations for (6): 

 , dT
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The terms including ,   in the above formula is a 
jump conditions which imposes a weakly enforced con-
tinuity condition across the slab interfaces, at tn and is the 
mechanism by which information is propagated from one 
slab to another. For more concisely, after summing over 
n, we may rewrite (5) as follow: 
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1
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For g w   and where the bilinear form  ., .B  and 
the linear form  .L
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For ,we define  such that be a triangulation 
of the slab n  into triangles K satisfying as usual the 
minimum angle condition (Ciarlet [21]) and assume that 
the parameter h is represented with the maximum di-
ameter of the triangles 

0h 
S

n
hT

n
hK T . We introduce: 

       
  

1 1 :

for , 0, 0 for

n
h n n kk

n
h n

W w H S H S w P K P K

T w t t I

    

  

k

 

where,  kP K  denotes the set of polynomials in K of 
degree less than or equal k and: 

1

0

N
n

h h
n

W W




  

Thus (6) can be formulated as follows: 
Find hw Wh  such that: 

   ,hB w g L g              (7) 

for hg W . Moreover, we know that the exact solution 
of (6) satisfies: 
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fo

  ,B w g L g  

r g w  and by use (6) and (7), we have the Galerkin 
ogonorth ality relation: 

 , 0B e g                  (8) 

where, 

. An a Posteriori Error Estimate for the 

 
 this section, we shall consider the following simplified 

 

(9) 

where, 
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  (10) 

and denotes the adjoint of the operator L defined in 
nd 

0F 
 con obtain a representation of sider the 

following auxiliary problem, referred to as the linearized 
dual problem: Find  such that:  
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*L  
(2) a  is a positive weight function. Note that this 
problem is computed “backward”, but there is a corre-
sponding change in sign. Further, we shall first introduce 
the following notation: 

 
2
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Multiplying (10) by e and integrating by parts and 
summing over n, we obtain the following error represen-
tation formula: 
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We have for by part integrating: 
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We define: 

According to (9), 
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Then in (12), by use (15) and (16), we have: 
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So that recalling (9) and using the Galerkin orthogo-
nality (8), we obtain: 
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where, is an interpolant of  The idea is

ate  u

tes for the Dual 

e  consider our interpolant  in (16) 
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. Interpolation Estima  4
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where, I is the identity operator. 
In the end of this section, we shall give a lemma for 

projection operators P, 
le
interpolation estimates by the 

aving the overall of I and II to next section. 
Lemma 1: There is a constant C such that for residual 
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Proof: (see Johnson and Szepessy [19] and Sa
[20]). 
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Below we shall estimate the terms I and II separately. 
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Splitting the interpolation error by writing 
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where we have used the fact that is constant in the 
time, (making the first integral zero) and then using in-
terpolation estimate (17) in the second integral. It re-
mains to estimate the terms II, to this end, we need the 
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The a posteriori error estimate now follows immedi-
ately after collecting the terms and using the definition of 
the stability factors (18) and (19).  

For 0   in (7), we can obtain a posteriori error es-
timates with similar way. 
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