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Abstract 
 
We present algorithms for computing the differential geometry properties of Frenet apparatus  

and higher-order derivatives of intersection curves of implicit and parametric surfaces in 3 for transversal 
and tangential intersection. This work is considered as a continuation to Ye and Maekawa [1]. We obtain a 
classification of the singularities on the intersection curve. Some examples are given and plotted. 
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1. Introduction 
 
The intersection problem is a fundamental process needed 
in modeling complex shapes in CAD/CAM system. It is 
useful in the representation of the design of complex ob-
jects, in computer animation and in NC machining for 
trimming off the region bounded by the self-intersection 
curves of offset surfaces. It is also essential to Boolean 
operations necessary in the creation of boundary repre-
sentation in solid modeling [1]. The numerical marching 
method is the most widely used method for computing 
intersection curves in . The Marching method in-
volves generation of sequences of points of an intersec-
tion curve in the direction prescribed by the local differ-
ential geometry [2,3]. Willmore [4] described how to ob-
tain the unit tangent, the unit principal normal, the unit 
binormal, the curvature and the torsion of the transversal 
intersection curve of two implicit surfaces [5]. Kruppa [6] 
explained that the tangential direction of the intersection 
curve at a tangential intersection point corresponds to the 
direction from the intersection point towards the intersec-
tion of the Dupin indicatrices of the two surfaces. Hart-
mann [7] provided formulas for computing the curvature 
of the transversal intersection curves for all types of in-
tersection problems in Euclidean 2-space. Kriezis et al. [8] 
determined the marching direction for tangential intersec-
tion curves based on the fact that the determinant of the 
Hessian matrix of the oriented distance function is zero. 
Luo et al. [9] presented a method to trace such tangential 

intersection curves for parametric-parametric surfaces 
employing the marching method. The marching direction 
is obtained by solving an undetermined system based on 
the equilibrium of the differentiation of the two normal 
vectors and the projection of the Taylor expansion of the 
two surfaces onto the normal vector at the intersection 
point. Ye and Maekawa [1] presented algorithms for 
computing all the differential geometry properties of both 
transversal and tangentially intersection curves of two 
parametric surfaces. They described how to obtain these 
properties for two implicit surfaces or parametric-implicit 
surfaces. They also gave algorithms to evaluate the 
higher-order derivative of the intersection curves. Aléssio 
[10] studied the differential geometry properties of inter-
section curves of three implicit surfaces in  for trans-
versal intersection, using the implicit function theorem.  

3

4

In this study, we present algorithms for computing the 
deferential geometry properties of both transversal and 
tangentially intersection curves of implicit and Paramet-
ric surfaces in  as an extension to the works of [1]. 3

This paper is organized as follows: Section 2 briefly 
introduces some notations, definitions and reviews of 
differential geometry properties of curves and surfaces in 

. Section 3 derives the formulas to compute the prop-
erties for the transversal intersection. Section 4 derives 
the formulas to compute the properties for the tangential 
intersection. Some examples of transversal and tangen-
tially intersection are given and plotted in Section 5. Fi-
nally, conclusion is given in Section 6.  
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2. Geometric Preliminaries [1, 11-13] 
 
Let us first introduce some notation and definitions. The 
scalar product and cross product of two vectors  and  
are expressed as 

a c
,a c  and  respectively. The ,a c

length of the vector  is a , .a a a  

 
2.1. Differential Geometry of the Curves in  3

 
Let  be a regular curve in  with arc-length 
parameterization, 

3: Iα   3

        1 2 3, ,s x s x s x sα         (2.1) 

The notation for the differentiation of the curve  in 

relation to the arc length s is 

α

  d
,

d

α
s

s
 α   

2d

d 2
,

α
s

s
 α  

 
3

3

d

d

α
s

s
 α . Then from elementary differential geometry, 

we have 

 s α t                   (2.2) 

 s κ α n                 (2.3) 

 2 ,κ s   α α              (2.4) 

where  is the unit tangent vector field and t α  is the 
curvature vector. The factor  is the curvature and  is 
the unit principal normal vector. The unit binormal vector 

 is defined as 

κ n

b

 s  b t n

b

                 (2.5) 

The vectors  are called collectively the Frenet- 
Serret frame. The Frenet–Serret formulas along α  are 
given by 

, , ,t n b

 
 
 

,

,

.

s κ

s κ τ

s τ

 

   

  

t n

n t

b n

            (2.6) 

where  is the torsion which is given by τ

,
τ

κ




b α
                  (2.7) 

provided that the curvature does not vanish.  
 
2.2. Differential Geometry of the Parametric 

Surfaces in  
3

 
Assume that  is a regular parametric surface. In 

other words where 

 1 2,u vR

1 2 R R



0, ( 1,2r
r

r
u


 


R
R )  de-

note to partial derivatives of the surface . The unit sur-

face normal vector field of the surface  is given by 

R

R

1 2

1 2





R R

N
R R

                 (2.8) 

The first fundamental form coefficients of the surface 
 are given by R

, ; , 1, 2pq p qg p q R R           (2.9) 

The second fundamental form coefficients of the surface 
R  are given by 

11 11 12 12 22 22, , , , ,L L L  R N R N R N   (2.10) 

Let   ,ru s  1,2r   in the 1 2u u -plane defines a curve 
on the surface  which can be written as R

    21 ,s u s uα R s

2u

          (2.11) 

Then the three derivatives of the curve  are given by α

1 1 2u   Rα R              (2.12) 

  11 1 12 1 2 22 2 1 1 2 22u u u u2 2
u u        R R R Rα R

222u u

 

(2.13) 

  
  

   

3 3

1 2 111 1 2

11 1 1 12 1 2 1 2 22 2 2

2 2

112 1 2 122 1

1 2

2

3

3 3

u u u u u u u

u u u u

u u

u

     

          

 









α R R R

R R R

R R

R

    (2.14) 

The projection of the curvature vector  onto the unit 
normal vector field of the surface  is given by 

α
R

   2 21 2
11 1 12 1 2u u  22 2

1 2

, 2L u L L u     


R R

R R
α  

(2.15) 
 
2.3. Differential Geometry of the Implicit  

Surfaces in  3

 
Assume that  1 2 3, , 0f x x x   is a regular implicit sur-

face. In other words 0 f , where  1 2 3, ,f f f f  is 

the gradient vector of the surface f , p
p

f
f

x





, then the 

unit surface normal vector field of the surface f  is given 
by 





f

N
f

                 (2.16) 

Let 

       1 2 3, ,s x s x s sa x        (2.17) 

be a curve on the surface f  with constraint 

 1 2 3, , 0f x x x   then we have 
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1 2 3

1 2 3

1 2 3

, , ,

, , ,

, , .

x x x

x x x

x x x





  
  
   

α

α

α

              (2.18) 

1 1 2 2 3 3

d
0

d

f
f x f x f x

s
             (2.19) 

     



2
22 2

11 1 22 2 33 32

12 1 2 13 1 3 23 2 3

1 1 2 2 3 3

d

d
2

0

f



f x f x f x
s

f x x f x x f x x

f x f x f x

   

       
     



     (2.20) 

 
The projection of the curvature vector  onto the unit 

normal vector field of the surface 
α

f  is given by 

2 2 2
1 2 3

,
η

f f f

 


 




f
α

f
        (2.21) 

where 

     
 

22 2

11 1 22 2 33 3

12 1 2 13 1 3 23 2 32

η f x f x f x

f x x f x x f x x

   

       


 

 
3. Transversal Intersection Curves  
 
Consider the intersecting implicit and parametric surfaces 

 and  1 2 3, , 0f x x x   1 2, ;R u uR
0,f  R R

  

3 2 4  such that, 1 2 . Then the 
intersection curve of these surfaces can be viewed as a 
curve on both surfaces as 

1 1 2c ,u c 
0 c u c 

          1 2 3 1 2 3s , s , s ; , , 0,s x x x f x x x α  

      1 2 1 1 2 3 2 4s , s ; , .s u u c u c c u c  α R  



 

Then we have 

      1 2s , s , 1,2,3i
i s  x R u u i  

where  Then the surface       1 2 3
1 2s , s , , .u u R R RR

f  can be expressed as 

   1 2 3
1 2, , ,h u u f R R R 0           (3.1) 

Thus the intersection curve is given by 

        1 2 1 2

1 1 2 3 2 4

s , s ; , 0,

,

s u u h u u

c u c c u c

 

   

Rα
    (3.2) 

 
3.1. Tangential Direction 
 
Differentiation (3.1) yields 

1 21 2 0h hu u                 (3.3) 

where ,i
i

h
h

u





 then we have 

1
2

2
2 1,u u

h
h

h



 0             (3.4) 

Since α  is the unit tangent vector field of the curve 
(3.2), then we have 

2 2211 11 2 ,u u u u      R R R Rα 1

1

        (3.5) 

which can be written as 

   1 1

2 2

11 12 222 2g 2g gu u u u            (3.6) 

Substituting (3.4) into (3.6) yields 

    
    

1
2 2 2

2 2 11 1 2 12 1 221

2

1
2 2 2

1 2 11 1 2 12 1 22

g 2 ,

g 2

h h h h g h g

h h h h g h

u

u g









  

    .

     (3.7) 

The unit tangent vector field of the intersection curve is 
given by substituting (3.7) into (2.12) as follows 

2 1 1 2;
ζ

h h  
ζ

t ζ R R          (3.8) 

 
3.2. Curvature and Curvature Vector 
 
The curvature vector is given by differentiation (3.8) 
with respect to s as follows  

   
    

2

3

1 2 2

2 11 1 22 1 2
12

2 12 1 22 1 1 12 2 11 2

,

2h h h h

h h h h h h h h



 


   

   


ζ ζ ζ ζ ζ

ζ

ζ ζ R R

R

α

R

R

      (3.9) 

The unit principal normal vector field, the curvature 
and the unit binormal vector are given by using (2.3) (2.4) 
and (2.5) as follows 

2

2

2

3

2

2

,
,

,

,
,

,
.

,

κ

 


 

 


 
 

 

ζ ζ ζ ζ ζ
n

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ

ζ ζ ζ ζ ζζ
b

ζ ζ ζ ζ ζ ζ

       (3.10) 

 
3.3. Torsion and Higher-Order Derivatives 
 
Equation (3.7) can be written as 
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2
1 2

1,
h

u
h

u  
 

ζ ζ
             (3.11) 

Differentiation (3.13) we obtain 


 

12 22
1 2

11 12
2

12 1 2 11 11 2 1 12

22 1 2 12 12 2 1

1 2

2 1 2

1

222

,
,

,
,

.

ζ

h h
u

h h

h h h h

h h h

u u

u u

u

uh

u

 
    

 
 

 
    
 
 

    

   

 

  





ζ ζ

ζ ζζ

ζ ζ

ζ ζ

ζ R R R R

R R R R



   (3.12) 

Differentiation (3.12) we obtain 

 

 

   

212 22 112
1 12

2 2

12

4 3 2 2

2 22

2 1

122 222
3

11 12
2 1 2

2 2 11111 122

1

1 2 2 2

2

31 2

,

, , ,
2

,2
,

,

,

u u

u

u u u

h h h
u u

h

hh h

h

u

u

u u

h
u

hh h
u

u

 
     

 
 
    
    
 
 


  

      
 
 




 



   



   

ζ ζ

ζ ζ ζζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ

ζ ζ ζ

ζ ζ

ζ ζ ζ

ζ ζ

ζ ζ ζ

 
 

 

 

2

12

4 3 2 2

1 12 1 2 11 11 2 1 12

22 1 2 12 12 2 1 22

2 112 1 12 11 2 111

111 2 11 12 1 112

2 222 1 22 12 2 122

1

1

2

22 2 12 22

2

1

2

, , ,
2 ,

2

2

2

2

h

u h h h h

h h h h

h h h

h h h

h h h

h
u

h

u

u

u

 2   
    
 
 

    
   

  
     











 




ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ R R R R

R R R R

R R R

R R R

R R R

R R 1 222

122 1 112 2 22 11

11 22 2 112 1 12
1 2

2

2
2 .

2

h

h h h

h h
u u

h

 
  

 
   

     

R

R R R

R R R



 

(3.13) 
Substituting 1 11 2 2 and 2  into (2.14) we 

obtain the third-order derivative vector of the intersection 
curve. Hence the torsion can be obtained by (2.7). 

,, ,,u u uuu    u

We can compute all higher-order derivatives of the in-
tersection curve by a similar way. 
 
4. Tangentially Intersection Curves 
 
Assume that the surfaces  and  1 2 3, , 0f x x x 

 1 2,R u uR ; 1 1 2 3 2 4,c u c c u c   
P

 are intersecting 
tangentially at a point  on the curve (3.2) then the unit 
surface normal vector field of both surfaces are parallel to 
each other. In other words 

1 2

1 2


 

 
R Rf

f R R
 

which can be written as 

 1 2
1 2

,A A


    

f

f R R
R R

       (4.1) 

Then we can write 

 

 

2 3 3 2
1 1 2 1 2

3 1 1 3
2 1 2 1 2

1 2 2 1
3 1 2 1 2

,

,

.

 

 

 

f R R R R

f R R R R

f R R R R

A

A

A

           (4.2) 

Since       1 2, , 1,2,s u s u s iix R 3,

u

i 

i

then we have 

1 1 2 2
i iu  x R R                (4.3) 

 
4.1. Tangential Direction 
 
Projecting the curvature vector  onto the two unit nor-
mal vectors of both surfaces yields 

α

1 2

1 2

, ,


  
 

 α
R R

f R R


α

f
      (4.4) 

Using (2.15) (2.21) and (4.4) we obtain 

     
 

    

22 2

11 1 22 2 33 3

12 1 2 13 1 3 23 2 3

2 '
1 2 11 1 12 1 2

2

22 2

2 f f

2 u

f x f x f x

f x x x x x x

A L u L u L u

   

    

 
 
   

     








R R

  (4.5) 

Substituting (4.3) into (4.5) yields 
2

11 12 22
1 1

2
2 2

2a a 0, 0
u u

u u
a u

    
      




      (4.6) 

where  

   
   

   
   

 

2 21 2
11 1 2 11 11 1 22 1

23 1 2 2 3 1
33 1 12 1 1 23 1 1 13 1 1

2 21 2
1 2 11 22

23 1 2 2 3 1
33 12 23 1

22 22 2 2

2 2 2 2 2 23

1 1 2 2
1 2 11 22

3 3 1 2 2
3

2

12 12 1 2 1 2

1
1 2 1 23 12 2 1

2 ,

2 ,

a A L f f

f f f f

a A L f f

f f f f

a A L f f

f f

f

   

   

   

   

   

  



R R R R

R R R R R R

R R R R

R R R R R R

R R R R R R

R R R R R R

   2 3 3 2 1 3 3 1
23 1 2 1 2 13 1 2 1 2f .  R R R R R R R R

3

3

R

R  
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R

] ,

R

This can be written in a matrix form as follows 

T
ij ij i j  a fR R H             (4.7) 

where  

 and

1 2 3 T
1 2 3[ ], [ij ij ij ijf f f R R R  f R

1 2 3 T[ ]i i i iR R R
11 12 13

12 22 23

13 23 33

f f f

f f f

f f f

 
   
  

H

.

 is the 

Hessian matrix of the surface f  Solving (4.6) for 1

2

u

u




 

yields 

2
12 12 11 22

1 2
11

(a )
,

a a
u Bu B

a

  
  

a
     (4.8) 

Substituting (3.7) and (4.7) into (4.8) we obtain 

 

 

1
2 2

1 11 12 22

1
2 2

2 11 12 22

2

2 .

u B B g Bg g

u B g Bg g





   

   

       (4.9) 

Then the unit tangent vector field of the intersection 
curve is given by  

1 2

1 2

B

B





R R

t
R R

              (4.10) 

From the previous formulas, it is easy to see that, there 
are four distinct cases for the solution of (4.6) depending 
upon the discriminant  these cases are 
as the following [1]  

 2

12 11 22Δ ,a a a 

Lemma 1. The point  is a branch point of the inter-
section curve (3.2) if  and there is another intersec-
tion branch crossing the curve (3.2) at that point.  

P
0Δ

Lemma 2. The surfaces  and  intersect at the 
point  and at its neighborhood, if  and 

f h
Δ P 0

     2 2 2

11 12 22 0.a a a   (Tangential intersection curve).  

Lemma 3. The point  is an isolated contact point of 
the surfaces 

P
f  and , if h Δ 0 .  

Lemma 4. The surfaces f  and  have contact of at 
least second order at the point , if . 
(Higher-order contact point).  

h
P 11 12 22 0a a a  

 
4.2. Curvature and Curvature Vector 
 
Differentiation (4.6) and using (4.9) we obtain 

 
 

1 2 1

2
11 12 22

1 2 11 12
11 12

,

2
; 0

u Bu a

a B a B a
a u a B a

a B a

  

   
   


,

.

   (4.11) 

where 

 

 

T T T
1 1 1 1 1

T T T
2 2 2 2

11 12 13

1 2 3 12 22 23

13 23 33

( )

,

H H H ,

ij ij ij i j j

ij i j i j i j

i i i

i i i i

i i i

a u

u

f f f

f f f

f f f

     

    

 
    
  

t HR fR R HR R HR

fR R HR R HR R QR

Q t H

 

(4.11) 

Since the curvature vector is perpendicular to the tangent  
vector, then we have ,  α α 0 . Using (2.12) (2.13) and 

(4.9) we obtain 

2 1 3 2 4a u a u a                (4.13) 

where 

  


2 11 12 3 12 22

2 3 2
4 2 11 1 12 1

12 2 22 1 22 2 11 2

, ,

, 2B ,

2 , , , ,

a Bg g a Bg g

a u B

B B

   

  

   

R R R R

R R R R R R R R

 

Solving the linear system (4.11) and (4.13) yields 

3 4 4
1

3 2

4 1 2
2

3 2

,

B

a a a B
u

a a B

a a a
u

a a

 


 


              (4.14) 

The curvature vector of the intersection curve is obtained  
by substituting 11, ,uu u2 ,    and  into (2.13). 2u

 
4.3. Torsion 
 
If we have a branch point, then we can compute the torsion 
by taking the limit of the torsion of transversal intersection 
curve at this point. If we have tangential intersection curve, 
then we can compute 1u  and  by differentiation 12u u  
and 2.u Substituting 11 1 2 2,, , , uu u uu   , and 2 into (2.14) 
we obtain the third-order derivative vector of the intersec-
tion curve. Then we can obtain the torsion by using (2.7). 

u

 
5. Examples  
 
Example 1. Consider the intersection of the implicit and 
the parametric surfaces 

 

2 2
1 2

1 2 2 2

9 0,

,3sin ,3cos ; 0 2

f x x

u u u u

   

   R 
      (5.1) 

as shown in Figure 1. 
Transversal intersection: Using (3.1) yields 

2 2
1 29cos 0h u u               (5.2) 
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The intersection curves

P (0, 1, 0) 

 

Figure 1. Transversal and tangential intersection. 
 
Differentiation (5.1) and (5.2) we obtain 

 

  
 
 

1 2 2 2 1

22 2 11 12 111

222 2

1 2 2

22 2 2

222 2 2

2 , 9sin 2 , 1,0,0 ,

18cos 2 , 0,

36sin 2 ,

1,0,0 , 3 0,cos , sin ,

3 0,sin sin u ,cos ,

3 0,cos cos u , sin .

h u h u

h u h h h

h u

u u

u

u

  

   
 

  

 

  

R

R R

R

R

2

     (5.3) 

Using (3.8) and (5.2), we obtain 

2 1 1 2

2 2 2
2 2

2

sin tan
, ,

1 sin u 3 1 sin 3 1 sin

cos 0.

u u u u

u u

u

  
    



t
2

,
  (5.4) 

Using (3.12) and (5.2), hence 
 2 2 1 2 1 2

1 2 2 2

2 2 2
2 2 2 2

2
2 2

3
1 2

2
2

18sin cos , 6 cos ,6 sin ,

2 cos 2 6sin 2 6cos 2
, ,

cos 1 sin 1 sin 1 sin

18cos 1 sin ,

72 sin
, .

1 sin

u u u u u u

u u u u

u u u u

u u

u u

u

 

     
    

 

 


ζ

ζ

ζ

ζ ζ

,

 

(5.5) 
Using (2.4), (2.5), (3.12), (3.13) and (5.4) then we have 

     

 
 

 

1 2
2 22 2 2

2 2

1 2

2 2 2
2 2

3
2 2

2

1 2 2 2

2
2

2sin cos
, ,

9 1 sin 3 1 sin 3 1 sin

2 sin cos
, ,

3 2 1 sin 1 sin 2 1 sin

2
1 sin ,

3

cos 2sin tan 1
,0, .

23 2 1 sin

u u

u u u

u u u

u u u

κ u

u u u u

u




2

2

2

2

2

,

,

u          
    
    

 

   
  

α

n

b



 

(5.6) 

Using (3.15) and (3.16) hence 

2 1
1 22 2

2 2

1 2
1 22 2 2 2

2 2

sin
, ,

1 sin u 9cos 1 sin

sin cos
, .

9(1 sin ) 9(1 sin )

u u
u u

u

u u
u u

u u

  
 

   
 

2

2

u

u
    (5.7) 

Using (3.17) and (5.7) hence 

 
 

 

2
2 2

1 7
2 2

2

1 2 2 2 2
2 7

2 2
2

sin 2 3cos
,

9 1 sin

(2sin tan cos cos 2 )
.

81 1 sin

u u
u

u

u u u u u
u

u

 




  


      (5.8) 

Using (2.7) and (2.14) yields 

   
 

2 2
2 2 1 1 2

7 7
2 22 2

2 2

2 2
2 2 2 2 2

7
2 2

2

3(2 3cos )sin 2u 6u sin
, ,

27(1 sin ) 27(1 sin )

4 sin cos sin 1 sin sin

27 1 sin

u u u

u u

u u u u u

u


    

  


    

 

α

 

(5.9) 





1 2 2 22
2

2 3 4
2 2 2 2 2 2

5 3
2 2 1 2 2 1 2 2

2 4
1 2 2 1 2 2

2
4 tan 4sin 10cos sin

4 2cos u

4cos sin 7cos sin cos sin

cos sin 2 cos sin 3 cos sin

2 cos tan 6 cos tan

u u u u u

u u u u u u

u u u u u u u u

u u u u u u

 
  



  

  

 

2



 

(5.10) 

Tangentially intersection: The surfaces are intersect-
ing tangentially at the points . Consider the  0, 1,0P 

point  1 0,1,0 ,P  using (4.7) (4.8) (4.9) and (5.3), then we 
have 

1 2 3

1 2

2, 0, 18,

1
3, , .

2 3

a a a

B u u
1

2

   

     
     (5.11) 

Then  this means that the point  is a branch 

point (Figure 1). From (4.10) and (5.11), we obtain 

Δ 0, 1P

1 1
,0,

2 2


  
 

t

             (5.12) 

Using (2.13) and (4.14) hence 
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21

1
0,1,0 ,

6
1

0, 1,0 , ,
6

1 1
,

0,

0, .
2 2

u u

κ

  

 

 



 
  
 

n

b

α



     (5.13) 

Using (5.10) at , we obtain 1 0,1,0P 





2

4
2 22π

22

2 2
1 2 2 2 2

3 3
1 2 2 2 2

5
2 2 2 2 1 2

4
1 2 2 1 2 2

1
lim 4 2 sin 2 cos sin

4 2cos

2 2 cos tan 4 2 cos sin

3 2 cos sin 7 2 cos sin

10 2 cos sin 2 cos sin 4 2 tan

2 2 cos sin 6 2 cos tan

0

u

u u
u

u u u u u

u u u u u

u u u u u u

u u u u u u





  



 

 

 

 



2u

 

 

(5.14) 
Example 2. Consider the intersection of the implicit and 

the parametric surfaces 

 

2 2 2
1 2 3

1 2 2 2

9 0,

R ,3sin ,3cos , 0 2

f x x x

u u u u

    
 

     (5.15) 

as shown in Figure 2. 
At 1 , 0x     1 2/ / . f R R

0,
 Using (4.7) and (5.15), 

we have Δ  this means that the surfaces are intersect-
ing tangentially in a curve as (Figure 2). Then from (4.8) 
and (4.9), we have 



1 2

1
0, 0,

3
u uB               (5.16) 

Using (4.10) we have 

 20,cos , sinu u t 2

2

           (5.17) 

Using (5.16) hence 

11 20, 0u uu u               (5.18) 

Using (2.4) and (2.13) hence the curvature vector and the 
curvature are given by 

 
1 0x   

 

Figure 2. Tangential intersection. 

P (0, 3, 0)  

 

Figure 3. Tangential intersection. 
 

 

 

2 2

2 2

1
0,sin ,cos ,

3
1

0, sin , cos ,
3

u u

u u κ

  

   

α

n

     (5.19) 

Using (2.5) (2.7)and (2.14) hence 

 

 
2 2

1
0, cos ,sin ,

9
1,0,0 , 0.

u u

τ

  

  

α

b
        (5.20) 

Example 3. Consider the intersection of the implicit and 
the parametric surfaces 

 

2 2
1 2

1 2

( 6) 9 0,

,3 3sin ,3cos .

f x x

u u

    

 R 2u
      (5.21) 

as shown in Figure 3. 
At the point  0,3,0P ,    1 2/ / . f R R

0,
 Using (4.7) 

and (5.21), we have Δ   this means that the point  
is an isolated tangential contact point (Figure 3). 

P

Example 4. Consider the intersection of the implicit 
and the parametric surfaces 

    
2 2 2
3 1 2

2 2 2
1 2 2 1 1 2

0,

1 , 1 ,

f x x x

u u u u u u

   

    R 3 .
     (5.22) 

as shown in Figure 4. 
 

P (1, 0, 1)     

 

Figure 4. Transversal intersection. 
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At the point  1,0,1 ,f RP S   S





 on the intersection 

curve (Figure 4), we have 

   
     
    

1 11 111

2 22 12

112 122 222

1 11 22 222

2 12 122 112

1,0,2 , 0,0,2 , 24,

0, 2,0 , 2,0,0 , 0, 2,0 ,

0, 2,0 , 2,0,0 , 0,0, 6 ,

2, 10, 12,

0, 24, 0.

h

h h h h

h h h h

  

    

    

    
    

R R

R R R

R R R  

(5.23) 

Using (3.8) and (5.23), we obtain 

0,1,0t                  (5.24) 

Using (3.12) (3.13) and (5.23) we obtain 

 2,0,3 ,

2 3
( ,0, ), 13

13 13
κ

 

 

α

n .
       (5.25) 

Using (2.5) (2.7) (2.14) (3.17) and (5.25) we obtain 

3 3
, 19, ,

4 4

3 2
,0, , .

5213 13
τ

     
 

 
  
 

α

b
3


     (5.26) 

 
6. Conclusions 
 
Algorithms for computing the differential geometry prop-
erties of intersection curves of implicit and parametric sur-
faces in  are given for transversal and tangential inter-
section. This paper is an extension to the works of Ye and 
Maekawa [1]. They gave algorithms to compute the dif-
ferential geometry properties of intersection curves be-
tween two parametric surfaces then they applied it on a 
simple example for implicit and parametric surfaces inter-
section. This paper presented direct and simple formulas to 
compute all differential geometry properties, which may 
reduce the time it takes to calculate those properties. The 
types of singularities on the intersection curve are charac-
terized. The questions of how to exploit and extend these 
algorithms to compute the differential geometry properties 
of intersection curves between three surfaces in , can 
be topics of future research. 

3

4
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