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Abstract 
 
In this paper we introduce a numerically stable method for determining the stability of n-DOF system with-
out computing eigenvalues. In this sense, at first we reduce the second-order system to a standard eigenvalue 
problem with symmetric tridiagonal form. Then we compute the exact inertia by using an algorithm based on 
floating point arithmetic [1]. Numerical tests report the effectiveness of these methods. 
 
Keywords: n-DOF System, Inertia, Stability, Lanczos 

1. Introduction 
 
The matrix second-order system 

      = 0x t x t x t M C K   

with real coefficient matrices ,  and M C K  arises in 
a wide variety practical applications such as in the 
mechanical vibrations, and structural design analysis. 
Many important characteristic of physical and engi- 
neering systems, such as stability and inertia can often be 
determined only by knowing the nature and location of 
the eigenvalues. It is well known that the stability of a 
physical system modeled by a system of differential 
equation is determined just by knowing if the eigen- 
values of the system matrix have all negative real parts. 
In many engineering applications, it may not be enough 
to determine if the system is stable . A problem more 
general than the stability problem is the inertia problem. 
The inertia of a matrix (denoted by ) is the triplet 
of the numbers of the eigenvalues of 

[2]

In( )A
A  with positive, 

negative and zero real parts. There are reliable algo- 
rithms to compute the inertia and stability of a n-DOF 
system with viscous damping. Some of these algorithms 
are numerically unstable and are primarily of theoretical 
interest . Another group of these methods are not 
practical for system of large numbers of degrees of 
freedom. The following are the usual computational 
approaches for determining the inertia of a nonsymmetric 
matrix 

[3]

A . 
1) Compute the eigenvalues of A  explicitly.  
2) Compute the characteristic polynomial of A  and 

then apply the well-known Routh-Hurwitz criterion.  
3) Solve the Lyapunov equation  

T = XA A X C  

The second approach is usually discarded as a 
numerical approach [2  and the last approach is 
counterproductive. Thus, the only viable way, from a 
numerical viewpoint, of determining the inertia of a 
matrix, is to compute explicitly its eigenvalues. Carlson 
and Datta described a computational method for deter- 
mining the inertia of a nonsymmetric matrix . The 
method is based on the implicit solution of a special 
Lyapunov equation. But this method is not practical for 
large and sparse matrices . The paper is organized as 
follows. In Section 2, we introduce some important 
theorems and applications of inertia ans stability problem. 
Then we describe two new methods for computing the 
inertia of a large sparse nonsymmetric matrix in Sections 
3 and 4. Finally, the conclusion are given in the last 
section. 

]

[4,5]

[2]

 
2. Inertia and Stability 
 
Theorem 2.1. A homogeneous system of differential 
equation with constant coefficients of the form  

  = x t x tA             (2.1) 

is asymptotically stable if and only if all the eigenvalues 
of A  have negative real parts.  

Proof. see[2 .  ]
Definition 2.2. A matrix A  is called a stable matrix 
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if all of the eigenvalues of A  have negative real parts. 
Knowing that the system  is asymptotically 

stable if and only if 
(2.1)

A  is a stable matrix. 
Definition 2.3. The inertia of a matrix order , is the 

triplet where
n

   , ,  A A   A   A ,   A and 
 A are, respectively, the number of eigenvalues of A  

with positive, negative and zero real parts.  
Not that       = n  A A A  , and A  is a 

stable matrix if and only if   = 0, ,0In nA . 

Definition 2.4. The second order differential equations 

      = 0x t x t M C K x t

2 

       (2.2) 

is asymptotically stable(that is, ), if 
and only if all the eigenvalues of the quadratic pencil  

  0 0x t as t P P

  =p  M C K         (2.3) 

have negative real parts. Similarly, by the inertia of the 
quadratic pencil (2.  is defined to be the triplet of the 
numbers of eigenvalues of 

3)
 p   with positive, nega- 

tive, and zero real parts.  
Remark 2.5. The effective numerical methods for the 

quadratic eigenvalue problem are still not well deve- 
loped, especially for large and sparse problems that 
arise in practical applications. In case of general dam- 
ping, assuming that the solutions are of the form 

= e ty x , where  is a constant vector, we will have 
the quadratic eigenvalue problem 

x

 M C

1 1

2 = 0x  K         (2.4) 

that we can rewrite (2.3) as  

0 I x x

M K M C x x


  

    
             

 

or  

=u A

I

u               (2.5) 

where 

1 1

0
=

M K M  D

 
    

A   =
x

x

 
  
 

u  

Thus we have reduced the quadratic eigenvalue 
problem  to the  standard eigenvalue pro- 
blem , on the other hand, for determining the 
stability of , we can compute 

(2.3)
(2.5)

(2.

2n 2

2)  In A  in stead of 

p  In  .  

Example 2.6. Consider the 4-story building of equal 
rigid and equal interstory stiffness. The floors and roof 
are represented by lumped masses 1  to 4  and 1k  
to  are equivalent spring constants of columns that 

act as springs in parallel with viscous damper 1  to 4 . 
The equations of motion for the system, in matrix form, 
can be written as 

m m

4k

c c

      = 0y t y t y t M C K         (2.6) 

where , C ,M K are, respectively, mass matrix, damping 
matrix and stiffness matrix represented in follow: 

= (5.53, 4.93, 4.925,4.94)diagM  

25.4091 19.5165 0

19.5165 39.9733 15.2036
=

0 15.2036 35.6427 1 965

0 0 15.1965 35 3

 
 
  
   
  

C

0

0

5.1

.475

0

0

5.430

.430

(2.6)

 

39.3665 19.8015 0

19.8015 39.6122 19.8107
=

0 19.8107 45.2413 2 6

0 0 25.4306 25 6

 
 
  
   
  

K  

We would like to study the stability  with 
determining the inertia of  p   or  In A  
where 

1 1

0
=

I

M K M D 

 
    

A  

      = = 0,8,0In p In A  thus the system n -DOF  

(2.6) is stable. 
Now by removing 1K  we have 

      = = 0,7,1In p In A . On the other hand the 

structure loses its stability.  
Remark 2.7. According to the example , in the 

case that the degree of freedom is small, the stability of 
-DO

(2.6)

n F system and  In A  can be routinely determine. 
However for system of large numbers of degrees of 
freedom the available methods can be costly. Specially 
that we would like to determine the In  A  without 
computing the eigenvalues.  
 
3. Shifted Lanczos Process 
 
In this Section we provide a stable numerically method 
for determination of a nonsymmetric matrix. Our scheme 
is first to reduce a given matrix A  to a symmetric 
tridiagonal form with a Lanczos process, and then com- 
pute the exact inertia of a symmetric matrix by a floating 
point algorithm . [5]

Step 1. (Lanczos process): Given vectors 1  and 1  
such that , this process provide a tridiagonal 

v w
T
1 1 = 1v w

Copyright © 2011 SciRes.                                                                                  AM 
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







n

matrix  of the form  nT

1,...n

 1,

1 1

1 2

1 1

1

=n

n n

n n n n

a b

d a

a b

d a

 

 




 
 
 




T



  



  

singular matrix. Then    T= In InA PAP

]

. The following 
algorithm by using the Sylvester law of inertia describes 
a floating point process to compute the exact inertia of a 
symmetric tridiagonal matrix [5 . In this algorithm 

1= ( , , )na a a   , 1 1, , )nz = (z z    such that  for 2=i iz b
( = 1, , 1)i n     and   is a proper shift parameter. 

Algorithm 1. (inertia of a symmetric tridiagonal 
matrix) 

Function   , , = , ,inertia a z      
and produces the basis  and 1= [ ,...., ]n nV v v

 = ,d inertia a z,   = [ , ]W w w

T
n

, respectively, for the Krylov subspaces 

K  = ,d inertia a z,    and  1,nA v K A w  which satisfies the rela- 

tions: for = 1 ,i n ，  

if sign  id  = sign  id   then 
T

1 1=n n n n nd   nAW W T w e         (3.1) 
if  then < 0id  = 1ν ν  

T T
1 1=n n n n nb   T

nA V V T v e        (3.2) 
else if  then > 0id  = 1    

=T
n n nV W I  end if 

end if Thus 
end do 

=T
n nV AW Tn   = n     

End. Step 2. (determining the exact inertia):  
Example 3.2. Consider the nonsymmetric matrix A  

as the form: 
Theorem 3.1. (The Sylvester law of inertia) 

A  be a Hermitian matrix and  be a non-  PLet 

 

5 0.21 1.2 0 .13 1.42 0 0

0.45 5 1 1.2 0 0.13 1.42 0 0

0.34 0.45 0

0 0.34 1.42 0

0.12 0 2 6 0.13 1.42

0.11 0.12 2 3 0 0.13

0 0.11 2 4 1.2 0

0 0

0 0.11 0.12 0 0.34 0.45 1 0.21

0 0 0 0.11 0.12 0 0.3

n

n

n n

n

n

n



 

 







 



      

     

    

    

    

      

 



2 2

4 0.45

n n

n



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

.21 1.2

 

We apply Shifted Lanczos process to compute the 
exact inertia of A . This algorithm has been tested when 
the dimension of matrix A  increases. The results are 
shown in Table 1. 

In Table 1 the column of error is the precision of 
transforming the matrix A to a tri-diagonal matrix. Note 
that if the error is small, then the inertia of A can be 
computed correctly. But if the error is not small, this 
dose not mean that the inertia of A cannot be computed, 
in this case by choosing a proper shift, the inertia of A 
will be computed. Shift intervals are seen in Table 1. 
The best case is when the shifted parameter is zero. In 

that case the amount of computations is less, that is why 
we have a column called  0In A  in Table 1 to have 
more information. Also the results show that by 
increasing the dimension the matrix this method does not 
work very well. 
 
4. Weighted Shifted Lanczos Method 
 
According to the results shown in Table 1, we can see 
that the shifted Lanczos method computes the inertia 
accurately, when the matrix is not so large, but does not 
have an exact results when the dimension is large. The  
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Table 1. Implementation of Shifted Lanczos method for 
determining inertia of a n-DOF system with different values 
of degree of freedom. 

 DOF n  T
n n nV AW T  

Shift

terval( )in 
 0In A  Situation Time

8 7.65 013E   [ 0.5,0.5] (4, 4,0)  exact 0.0013

16 1.21 010E   [ 1.5,1.5] (6,10,0)  exact 0.0026

32 1.09 007E   [ 9,9]  (14,18,0)  exact 0.0070

64 0.3317  [ 25, 25]  (30,34,0)  exact 0.0235

128 608.34  [66,67]  (63,65,0)  fail 0.0852

256 1591  [129.5,131] (127,129,0) fail 0.3774

512 27351  [60, 220]  (255,257,0) fail 2.2154

 
reason for the above is that, the non-hermitian Lanczos 
method is not an orthogonal projection comparing with 
the other Krylov subspace methods. Because in this 
method the matrices  and  are not orthogonal,  nV nW

but anyhow we have , and for this reason the T =n n nW V I

method is an oblique projection method. In this section 
we have tried to decrease the error by making changes in 
the Lanczos algorithm to be able to develop an effective 
method for computing the exact inertia of a large sparse 
nonsymmetric matrices. Using (3.1) and (3.2) we have:  

T T
1 1=n n n n n nb   TA V V T v e         (4.1) 

T T
1 1=n n n n n nb   TA V V T v e         (4.2) 

The right side of the above relations indicates the error 
of oblique projection in the Lanczos method. We 
multiply the both sides of  and  by a small 
scaler 

(4.1) (4.2)
> 0  with the hope that to prevent the 

increasing error in the Lanczos process. Thus we obtain  
T

1 1( ) =n n n n nd    nAW W T w e     (4.3) 

 T T
1 1=n n n n n nb   A V V T v eT

n

     (4.4) 

Now let  
T =n n nV W I  

Thus we have  
T =n nV AW T             (4.5) 

Therefore for holding  we must construct a pair (4.5)
  orthogonal basis  and , respectively, for the 
two following Krylov subspaces 

nV nW

    1T T T, = , , ,
n

nK span v


   A v A v A v



 

    1
, = , , ,

n

nK span
  A w w Aw A w

nonsymmetric matrix

 

The following algorithm computes exact inertia of a 
A to a 

thm 2. (weighted shifted Lanczos process) 

tridiagonal form by the weighted shifted Lanczos 
process. 

Algori
Input a shift parameter   
Choose two vectors 1v  and 1w  such that 

 1 1, = 1 v

set 0

w  

1 0 0= = =b p q . 

For = 1,2, ,j n    do 

 = ,j j ja Aw p  

1 1=j j j j j jr Aw a w b w    
T

1 1=j j j j j js A v r v d v    

 1 1= ,j jd r   1js 

 1 1 1= , 1j j j jb r s d     

1 1= 1j j jv s b    

1 1= 1j j jw v d    

End for 
For = 1i , 2, , 1n     do 

End for 

2=i iz b  

Set  1, , na a    and =a  1 1= , , nz z z     

   , , ,a z, = inertia    
End. 



Example 4.1. Let A be the same matrix that used in 
Example 1  and we increase its dimension orderly. We 
apply alg rithm 3 to find the exact inertia of o A . The 
results for different values of n  are shown in Ta e 2. 

According to the Table , we can see that by
bl

2  
decreasing the error of oblique projection,  In A  can 
be computed accurately without consuming m e.  

Example 4.2. According to the results in Table 1 and
ore tim

 
Table 2, we see that the Weighted Shifted Lanczos in 
comparison with Shifted Lanczos method works better. 
Now consider A  is the same matrix that used in 
Example 3.1 . W apply our two computational methods 

 
e 

Table 2. Implementation of Weighted Shifted Lanczos 
method for determining inertia of a n-DOF system with 
different values of degree of freedom. 

 DOF n T
n n nV AW T

Shift

terval( )in   
 0In A  Situation Time

3.84 014E  [ 1.01,1.01]  (4, 4,0)8  exact 0.0035

16 1.51 012E  [ 4.5, 4.5]  (6,10,0)  exact 0.0050

32 2.11 011E  [ 18,18]  (14,18,0)  exact 0.0077

64 8.87 011E  [ 31.5,31.5]  (30,34,0)  exact 0.0269

128 4.19 010E  [ 39,39]  (62,62,0)  exact 0.0927

256 1.69 009E  [ 50,50]  (126,130,0) exact 0.3916

512 9.23 009E  [ 65,65]  (254,258,0) exact 2.3921, use transforming A

Copyright © 2011 SciRes.                                                                                  AM 
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e 3. Impleme tation of S if s and W  shift zos methods for large values of degree of freedom. Tabl n h ted Lanczo eighted ed Lanc

Shifted Lacczos method  Weighted Shifted Lacczos method  
 DOF n  

 0In A  situation  Time   0In A  situation  Time  

800 (397, 403,0)  fail  7.65   (398, 402, )  0 exact  8.35  

1024 (513,511,0)  fail  15.82   (510,514,0)  exact  17.02  

1200 (597,603,0)  fail  22.735   (598,602,0)  exact  24.838  

1400 (699,701,0)  fail  35.813   (698,702,0)  exact  37.77  

1600 (801,799,0)  fail  55.296   (798,802,0)  exact  57.74  

1800 (900,900,0)  fail  73.639   (898,902,0)  exact  78.761  

2048 (1023,1025 )  ,0 fail  114.49   (1022,1026,0)  exact  123.92  

 
 compute the exact inertia of Ato  when the dimension 

zos 
m

 in this pape

of the matrix is large. Results are shown in Table 3. 
Table 3 shows that the weighted shifted Lanc
ethod works very well for large sparse matrices and in 

any case the exact inertia can be computed. 
 
. Comments and Conclusion 5

 
wo new iterative methods presentedT r can 

compute  In A  in the case that A  is a nonsymmetric 
large spa atrix. However the shifted Lanczos 
method may not be able to compute the exact inertia of a 
nonsymmetric large sparse matrices, but the results show 
that they do not have a big difference with the exact 
solutions. Therefore this method can be used for the 
application of many engineering problems like, vibration 
problems which needs to be aware of the behavior of the 
eigenvalues. 
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