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Abstract 
 
In this paper, we mainly focus on the Riesz means of eigenvalues of the subelliptic Laplacian on the Heisen-
berg group . We establish a trace formula of associated eigenvalues, then we prove differential inequali-
ties, difference inequalities and monotonicity formulas for the Riesz means of eigenvalues of the subelliptic 
Laplacian. 
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1. Introduction 
 
Until now, the eigenvalue estimations of Laplacian on the 
bounded Euclidean domain have been extensively studied 
(see [1-5]). In recent years, some academics have already 
started to pay attention to the Heisenberg group nH , such 
as P. Levy-Bmhl [6], D. Müller [7], P. C. Niu [8], G. Jia [9] 
and so on. 

The Heisenberg group plays an important role in several 
branches of mathematics such as representation theory, 
harmonic analysis, several complex variables, partial dif-
ferential equations and quantum mechanics. In the past 
decades research on Heisenberg sub-Laplacian has 
achieved considerable progress. But the problem of the 
invariant differential operator eigenvalue for the Heisen-
berg group, did not be studied deeply. 

In this paper, the Riesz mean inequalities of eigenvalues 
for the subelliptic Laplacian is treated. And some differen-
tial inequalities and difference inequalities are established. 

The outline of the paper is as follows. In Section 2, we 
first recall some definitions and the lemmas that will be 
used in the following, and then establish the trace formula 
of eigenvalues. Main results and their proofs will be given 
in Section 3. 
 
2. Preliminaries and Trace Formula 
 
Let nH  denote Heisenberg group which is a Lie group 
that has algebra , with a nonabelian group law 2 1ng R 
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Remark 2.1 
It is easy to see that iX , ,  are skew symmetric 

operators, and 
iY T

   , 4 ,  , ,i j ij i iX Y T X T Y T  0,      

where  ,X Y  denotes the standard commutator  
XY YX . 

Definition 2.1 [10]. 
The subelliptic Laplacian is defined as 
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By the definitions and properties of iX  and iY , it is 
easy to see that nH

  is invariant with respect to left- 
translations. 

Let us concern with the eigenvalue problem  

,     in ,
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where   is a bounded domain of the Heisenberg group 
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nH  with smooth boundary. By [8], we see that the 
Dirichlet problem (2.4) has a discrete spectrum on a Hil-
bert space with Inner product denoted ,  , and its ei-
genvalues by 1 20 k        with  
lim
k

k

1 2u u

 
1,

 and orthonormalize its eigenfunctions  

 2
0 , , S  so that 

, d d di j i j iju u u u x y t 


  , , 1i j   . 

Here,  denotes the Hilbert space of the func-
tions  such that 

 1,2S 
 2u L   iX u ,    2

iY u L 


, 
and  denotes the closure of . 1,2
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For the sake of simplicity, let  be a form  
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There will be a distinguished subset  
 1 2, , ,j jJ   
 , , ,


c

 of the spectrum of ,  L

1 1\ , , j j jJ         is the complement of  

jJ , and 
jJP , c

jJ
P  will be the corresponding spectral  

projections. We shall be interested in traces of  
jJP f L , 

where  jf   is any function defined on the spectrum 
of . L

Definition 2.2.  
If  is an increasing sequence of real numbers, 

for , the Riesz mean of order 
  1k k
 


0z  0   of  k  

can be defined as [11,12] 
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where   : max 0,kz kz 


    is the ramp function. 
Definition 2.3.  
Two symmetric operators ,V W 
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here I  is an identity operator. In fact, we have 
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i.e.  ,X V   I , similarly  ,Y W I   , and so on. 
Theorem 2.1.  
Let j  and ju  be eigenvalues and -normalized 

eigenfunctions of the subelliptic Laplacian. Let  
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To derive out Theorem 2.1, we need the following 
lemma. 

Lemma 2.1 [6]. 
Let 0 x y   and 0  . Then 
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By [2], we obtain  

      ,
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And similarly ,        ,
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Summing of the (2.10) and (2.11), we obtain 
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the proof of the Theorem is completed. 
 
3. Riesz Means Inequalities 
 
In this section, we derive differential inequalities and 
difference inequalities for the Riesz means  
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values of the subelliptic Laplacian on a bounded domain. 
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By symmetry in j m , extending the sum to all  
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