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Abstract 
 

This paper deals with the doubly degenerate reaction-diffusion equation  11div ,m qu
u u u u

t


   


 

  where ,  0,1 ,x B 0,t  1m  1  , 1 1q m      and B(0,1) denotes a unit ball in RN with the center in 

origin. We prove that the blow up phenomenon can be restrained if the space dimension N is taken sufficiently large. 
Moreover, the critical condition guaranteeing the absence (or occurrence) of the blow up is achieved. 
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1. Introduction 
 
The blow up phenomenon in parabolic equation has been 
object of active research in recent years [1-4]. It has at-
tracted lots of interests and attentions because of its 
physical importance and mathematical challenge. Here 
we formulate the condition that guarantees the absence 
of the blow up in terms of space dimension. In order to 
fix ideas, we consider the following problem 
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(1.1) 

where , 1m  1  , 1 1q m     , and  0,1B  is 
a unit ball in  with the center in origin. The initial 
function 0  is assumed to be positive bounded. 
Problem (1.1) is the well known non-Newtonian poly-
tropic filtration equation, which comes up in a wide vari-
ety of physical contexts. The local in time existence and 
the comparison principle of nonnegative weak solutions 
have been established in [5], see also [6]. Due to the pos-
sible degeneration at the level  or 

NR
xu

0u  0u  , we 
understand the weak solution in distributional sense as 
follows 

Definition 1.1 Let  1m    


. A nonnegative 

        20,1 0, 0, ; 0,1u L B t C t L B    with 

   1 1 0,1 0,u L B t
 

     is said to be a weak solu-
tion of (1.1), if the integral identity 
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is true for all test function .     0 0,1 0,C B T  
When it comes to blow up, we mean that the solution 

of (1.1) exists for  0,t T  and become unbounded as 
 for some Tt T   . 

In this paper, we study the influencing factor of space 
dimension N on the blow up phenomenon for the Dirich-
let problem (1.1). Such question was first investigated by 
A. Tersenov for a heat equation with a nonlinear source. 
By analyzing the stationary equation and then using the 
comparison theorem, the author proved in [3] that if the 
space dimension N is chosen large enough, the solutions 
exist for all positive time. In other word, the high dimen-
sion plays a preventive role on the occurrence of the 
blow up. In this current paper we extend the results ob-
tained in [3] to a doubly degenerate equation. The below 
theorem is our first result. 

Theorem 1.1 Given an initial function  0u x
  ,x M

 and a 
constant , there is a , such 
that for every space dimension , the solution 

0M  * *
0N N u
*N N

 0, ;u x t u  of (1.1) satisfies 

 0 0, ; , 0.u x t u u M t


           (1.2) 

In particular, 
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where  1m     . Moreover,  as *N 

0u

  . 

Just as described in Theorem 1.1, there exists a critical 
 which depends on the given , such that the 

blow up can be avoided if the space dimension N satis-
fies . On the other hand, for a given space di-
mension N, there also exists a critical initial datum 

0
 such that all the non-trivial solutions occur blow 

up so long as the size of their initial datum is larger than 
that of 

0
. To demonstrate this we first present the 

following proposition 

*N

*u

 0u x

*N N

x

*u x

Proposition 1.1 For a given space dimension N, there 
exist positive constants A, a, which depend on N, as well 
as , ,m q , such that the function 

       1 1
_ , ; ,

q
u x t N T t            (1.3) 

with           11
1 ,A a

    




     

 x T t
    and      1 1q q       0 , 

solves the inequality 

   11div , , 0, .m q Nu
u u u u x R t T

t


     


 (1.4) 

The proof of Proposition 1.1 is available in the final 
Section 3. 

Because of      1 1q q       0


, the 
support of _ , ;u t N  falls into the set  

  :x x a T t aT  




. So, for a fixed N, we choose 

T so small such that , and therefore, 1aT 

  supp _ ,0; 0,1 .u N B          (1.5) 

We are ready to state our second result 
Theorem 1.2 Suppose that (1.5) holds for a given 

space dimension N, then there exists a critical initial 
datum 

0
   * _ ,0;u x u x N , such that for all initial data 

u0 satisfying 

     
0

*
0 _ ,0; ,u x u x u x N         (1.6) 

the solution  occur blow up before T. More-
over, inequality (1.6), along with (3.7) (see Section 3 
below), leads to 

 0, ;u x t u 

   
0

* _ ,0; , .u u N A N


       

Remark 1.1 Theorems 1.1 and 1.2 are also valid for a 
general convex domain. 

2. Proof of the Theorem 1.1 
 
This section is devoted to the proof of Theorem 1.1. First 
of all, let us analyze the radially symmetric solution 
 U r  of the stationary equation to (1.1), i.e., 

 11 1
1

1
0, 0,N m q

N
r U U U U r x

r

 


       (2.1) 

with initial conditions 

  0 0, 0U K U   0.             (2.2) 

The local and unique positive solution of (2.1)-(2.2) 
follows from the analysis of the equivalent integral equa-
tion, by using Banach contraction mapping theorem. 
Moreover, the solution is decreasing and can be extended 
whenever it is positive. (See [2] and [7].) Let 

  * sup : 0, 0r r U r r   . Integrating (2.1) over 
 0, r ,  *0,r r , yields 

1 1 1 1

0
d ,

rN m q Nr U U U U s s       (2.3) 

which implies 

 1 1 1

0

1
d .

rN m q N qr U U U s s K r
N

     N  

i.e., 

   
1
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           (2.4) 

Integrating (2.4) once more to get 
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i.e., 
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Clearly, 
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1* 1 11
.

1

m q
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Since the initial function , from 
(2.5) we have 

   0 0,1u x L B 

     0 , 0u x U x x B   ,1 ,         (2.6) 

provided 
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which is reduced to 
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   (2.7) 

To guarantee the validity of (2.7), it suffices to take 

0K u


  M  with a constant . That is, 0M 
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Apparently, (2.7) also ensures 

     0 , , for all 0,1 , 0U x u x t x B t   

0

.  (2.8) 

In terms of (2.7) and (2.8), the comparison theorem 
conclude 

     , , 0, ,u x t U x x B R t     

This deduces that 

       0, 0 , 0,1 ,u x t U x U u M x B t


       0.  

(2.9) 

This completes the proof of Theorem 1.1. 
Remark 2.1 In case of 1q m  

 U r
, all the solutions 

of the (1.1) can be bounded by  for arbitrary N, 
only if the  is chosen large enough (see (2.5)). 
We also refer to [4]. 

 0U  K

 
3. Proof of Theorem 1.2 
 
The proof of Theorem 1.2 is a direct consequence of 
Proposition 1.1. So the remain task is to prove the valid-
ity of the Proposition 1.1. In fact, to verify the function 

     
1

1_ , ; qu x t N T t  
   satisfies (1.4), we turn to 

prove the following equivalent inequality obtained after 
relatively computation 

 11 1
1

1

1
0, ,

1

N m
N
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       (3.1) 

in which  ' d d . Due to the explicit form 

    1
1 a

    



 

 , the derivative of   is non-

increasing, i.e., 
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By this we compute 
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 (3.2) 

A direct but tedious computation shows 
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. Hence, (3.2) is equals to 
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 (3.3) 

Similarly, 
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 (3.4) 
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Summing up (3.3)-(3.5), we receive 
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where 
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Firstly, because , we have  0 k     0   
for all  0,k l   with  0,1k l . As to  ,1k l  , 

inequality (3.6) holds so long as 
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which is valid if 
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         (3.7) 

Clearly, For any fixed  , m, q and N, (3.7) is true if 
we choose A large enough, and at the same vary a such 

that the ratio    1A a  1  keeps stable. Moreover, A  

is increasing with respect to N. This completes the proof. 
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