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Abstract 
 
We give a sufficient condition for uniqueness for the pressure/saturation system. We establish this condition 
through analytic arguments, and then construct “mobilities” (or mobility-like functions) that satisfy the new 
condition (when the parameter   is 2). For the constructed “mobilities”, we do graphical experiments that 

show, empirically, that this condition could be satisfied for other values of 1 < < 2 . These empirical 
experiments indicate that the usual smoothness condition on the fractional flow function (and on the total 
mobility), for uniqueness and convergence, might not be necessary. This condition is also sufficient for the 
convergence of a family of perturbed problems to the original pressure/saturation problem. 
 
Keywords: Porous Medium, Uniqueness of a Solution, Degenerate Equation, Immiscible Two-Phase Flow, 

Regularization, Phase Mobility. 

1. Introduction 
 
Consider the coupled nonlinear problem (1), with 

, which arises from modeling incompre- 
ssible two-phase immiscible (water/oil, for example) 
flow through a porous medium (see [1,2], for instance). 
The problem considered, here, is in one of its simplified 
problem. 

 00 S x 1

The conductivity of the medium is denoted by k  
while u is the total Darcy's velocity for the two-phase 
flow, f is the fractional flow function, S the saturation of 
the invading fluid (or wetting phase), P is the global 
pressure, and   the porosity of the medium. For the 

present analysis and for simplicity, we let 1  . 
The set   is a sufficiently smooth bounded domain 

of , , 2 or 3, although this analysis focuses 
more on the case . 

nR = 1n
2n =

Obviously, Problem 1 cannot, in general, be solved 
analytically: One needs to proceed through numerical 
approximations. Before attempting any solution method, 
one needs to investigate whether the problem has a 
solution and, if it does, whether the solution is unique. 
The main purpose of this paper is to revisit the uniqueness 
question of Problem 1, exhibit sufficient conditions for 
which the problem has a unique solution, and construct 
examples for which these conditions are satisfied. Those  
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conditions generalize the ones considered in [3] and in [4] 
for the uniqueness of the problem and for the conver- 
gence of a family of perturbed problems. This work con- 
stitutes, in some way, a complement to [3]. In addition, 
and on the applied side, the mobility-like functions that 
we construct can be used in testing codes for two-phase 
flow through porous media. 

The following conditions are usually imposed on the 
data (see [3], for instance).  

    k k0 1                 (2) 
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where 1 2

1
0 < < < < 1

2
  , and 0 < 2  , for some 

1  and 2 . 
The function f satisfies the following. 

 2 0, 1f C   in the variable s        (4) 

and  

   0 = 1 = 0.f f                 (5) 

Conditions (2) through (5) imply the following (see [5, 
6]).  

         2
,f b f a C K b K a b a         (6) 

for all  0 1a b  
where  

   
0

=
s

K s k d                  (7) 

Condition (6) has been used (as a sufficient condition, 
among other conditions) for the proof of the wellposed- 
ness for the saturation equation, the convergence for a re- 
gularization of that equation, and the convergence of 
numerical approximations of the same equation [7-9]. 

The rest of the paper is articulated as follows. In Sect- 
ion 2, we establish a new sufficient condition for (6) to 
hold, therefore for uniqueness of a solution of Problem 1. 
We also show that conditions (2) through (5) imply this 
new condition. In Section 3, we revisit the pressure satu- 
ration problem, to show, indeed, that, under this new 
condition (defined in Section 2), there is uniqueness for 
Problem 1. In Section 4, we construct examples of rela- 
tive “mobilities” (mobility-like functions) and show that 
we have uniqueness under the special case = 2 , with 
  defined as in (3). We also explore experimentally, 
through graphs, the uniqueness problem for the pressure/ 
saturation problem, for these examples, for other values 
of  , 1 < < 2 , though condition (4) is not satisfied 
for the corresponding total mobility , or fractional 
flow function 

a
f . 

In this work we use standard notations. In particular, 
we use 2L

v  for  2L 
v ,  2 2L L

v  for   2 20, ;L T L 
v , 

the norm of the function  as an  function in 

the variable t  on 

 ,v x t  2L

 0,T  with values in  2L  . If 

 1 2= , ,v v v , nv  is a vector, we denote by pL
v  the 

norm   NpL
v


. 

 
2. Sufficient Condition for Uniqueness for 

the Pressure/Saturation System 
 
Lemma 2.1  Let  and  be two functions 
defined on the interval 

0g  0h 
 0,1 . Assume that g  is conti- 

nuously differentiable on  0,1 , and that  is continu- 
ous on 

h
 0,1 . Define  

   
0

=H s h
s

d               (8) 

and suppose that  

               ,
2

C
g x g x g a h x x a H x H a       

(9) 
for all  ,1x a  and for all  0,1 ,a  

for some constant , then  > 0C

         2
,g b g a C H b H a b a        (10) 

for all 0 1a b .    

Proof. 
We use a calculus argument. If , then the only 

value that 
= 1a

x  can assume is 1, and (10) is obvious. For 
0 <a 1 , define the function  

           2
= .aG x g x g a C H x H a x a     (11) 

for x a .  
Then,   = 0aG a , and  

      = 2'
aG x g x g x g a        (12) 

Clearly, if (9) holds, then  for all   0'
aG x  x a , i.e., 

a  is decreasing on the interval G  ,1a . Since  aG a = 0 , 
we must have   0aG x   for all . This is true 
for any 

1a x
0 a 1  . Hence the lemma is proved.  

In [9], for one space variable and the unilateral case 
(  0 = 0k ), and in [6] for several variables and the 
bilateral case (    0 = 1 = 0k k ), it is proved that if f  
and  satisfy conditions (2) through (5), then k f  and 

 satisfy (6), for k   2 0, 1f C . In the next lemma, we 
show that if (2) through (5) hold, then the couple  ,f k  
satisfy (9), and therefore (6). 

Note: The above lemma is more general than what is 
known so far, since we do not require any of the con- 
ditions (2) through (5) to hold, nor do we require that f  
be in  2 0,1C . However, if those conditions are satis- 
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fied, we have the following lemma. 

Lemma 2.2 Under conditions (2) through (5), and un- 
der the assumption that the function f  is twice conti- 
nuously differentiable on  0,1 , we have  

               ,f x f x f a C k x x a K x K a       

(13) 

for all  ,1x a and for all  0,1 ,a  

for some constant . > 0C
Thus, the combination of Lemma 2.1 and Lemma 2.2 

gives an alternative way of proving that (6) holds, which 
in turns leads to uniqueness for Problem 1. 

Proof. We follow the lines of the proof of Proposition 
3.2 of [6], with some modification. For the proof, it suf- 
fices to bound the quantity  

      
       

,
f x f x f a

k x x a K x K a

 

  
 

independently of  and a x . 
Thanks to the symmetry implied by (3), we prove this 

for 10 a x   

1

 only, without lost of generality; the 
rest of the prove can be obtained by the change of vari- 
able x x  , for 2 1a x   

1 x
, and by using the 

fact that  for   2k x c 2   . Using (7) and (3), 
we obtain  

     

 
1

1 11

= d

.
1

x x

a a
dK x K a k s s c s s

c
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Therefore, since  , 0x a k x  ,  and K is increa- 

sing, 
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(15) 

By the Mean-Value Theorem, there exist  
such that  

< , <a c d x

     =
f x f a

f c
x a





 

and  

 
1 1

= 1
x a

d
x a

 

Because the function s s  is increasing, its mean 
value occurs on the interval  ,a x  after the midpoint 

2

a x
, so >

2

a x
d


. Hence 

>
2

c
d                     (16) 

and  

> .
2

x
d                    (17) 

Going back to (15), we get  
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  (18) 

where we have used (16), (17), and the fact that 
 0 = 0f  . Therefore the lemma is proved.  

 
3. Uniqueness of a Solution and 

Convergence of the Regularized Problem 
 
3.1. Uniqueness 
 
We give an existence and uniqueness result for the case 
when  and  satisfy (9), i.e.  a k

              a s a s a c C k s s c K s K c       

(19) 

for all , and for all 0c  x c . We also give a conver- 
gence result for a perturbation of Problem 1 to a nonde- 
generate case in the next subsection. 

Under condition (19) and the analogue for the fract- 
ional flow function f , its is easy to see, through the 
proof of Theorem 6.1 of [3], that the following holds.  

Theorem 3.1 Suppose the data , a f , and  are Lip- 
schitz continuous in their argument 

k
s . Then Problem 1 

has a solution  ,p S , with  

   
   

*2 10, , ,

0 , 1 . . 0,

S
L T H and

t
S x t a e T

   
    .



  (20) 

Furthermore, if the pairs  ,f k  and  satisfy 
(9), respectively, and if we assume that  

 ,a k 

.
 




       , ,a S p L L       , then the solution is unique.  
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3.2. Convergence of the Regularized Problem 
 
To get around the difficulties from the degeneracies of 
the problem, we perturb the diffusion coefficient, , to k
k  in such that a way that  k k 
strongly as 0  . Define  

   
0

=
s

K s k  d .              (21) 

Then under the condition (19), the family of solutions 
 ,p S    converges to the unique solution  ,p S  of 
(1). More precisely. 

Theorem 3.2  Under the conditions of Theorem 3.1, 
let  be the solution to (1). For  ,p S  > 0  small, say 

1
0 < <

2
 , let  ,p S  

k

 be the solution of (1) when  

is replaced by 

k

 , with k  as described above. Then  

     2 22 2 0, ,0, ,
( ) ( ) ( ) ( ) ,

L T LL T L
a S p p C a S a S  

     

(22) 

and  
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d  

 





  

   

     (23) 

where 
2

=





, with K  and K  

0

defined by (7) and 

(21), respectively, and for some > . 

4. Examples of Uniqueness 

In this Section, we describe the physical meanings of the 
parameters in Problem 1 and give an example that satis- 
fies conditions (2) through (3). These are purely mathe- 
matical examples that might not correspond exactly to 
models derived through physical experiments. Neverthe- 
less, the shapes of the graphs of the mobilities, the fract- 
ional flow function, and the conductivity, as functions of 
the saturation , resemble the ones obtained through 
experiments. See Figures 1-3, for 

S
= 3 2 . 

For more details on the physical meanings of these 
parameters, see [1,2,10-12], for instance. We retain the 
simplicity of the examples below for the mathematical 
analysis in this paper. For these examples, the diffusion 
coefficient (also called the total mobility)  of the pre- 
ssure equation of (1), as well as the fractional flow funct- 
ion, 

a

f , satisfy (5). 
Physically  

     1 2=a s k s k s             (24) 

where 1  is the mobility of the wetting phase, and the 

2  the mobility of the nonwetting phase. The con- 
ductivity of the porous medium is defined by  

k
k

     
   
1 2

1 2

d
=

d
ck s k s p

k s
k s k s s

,           (25) 

where  is the capillary pressure. Assuming cp d dcp s  

is bounded and bounded away from 0, we will define, for 
this analysis,  

     
   
1 2

1 2

=
k s k s

k s
k s k s

,             (26) 

dropping, in this manner, the factor dp ds . The fract- 

ional flow function is defined by  

   
   

1

1 2

=
k s

f s
k s k s

             (27) 

 

 

Figure 1. Fractional Flow. 
 

 

 

Figure 2. Mobilities. 
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Figure 3. Conductivity of the Medium. 
 
and , the total mobility, is given by (24). a

For numerical modeling of immiscible two-phase flow 
through porous media, it has been used the following 
mobilities (see [13], for example).  

 1 =k s s                (28) 

for the wetting, and  

   2 = 1k s s
              (29) 

for the nonwetting phase, up to multiplicative constants 
(or bounded functions). For a mathematical analysis 
purpose, and in order to get an example of uniqueness of 
a solution of Problem 1, we multiply both (28) and (29) 
by a bounded function of  on the interval s  0,1 . 
 
4.1. A case of Uniqueness 
 
We define our new mobilities (up to the same multipli- 
cative constant) by the following. For 1 < 2 


, let 

   2

1 = e ,
s s

k s s
 

            (30) 

for the wetting phase, and  

     2

2 = 1 e ,
s s

k s s
 

          (31) 

for the non wetting phase. Then, the total mobility (up 
to a multiplicative constant K , the absolute permeabi- 
lity, which we take here to be 1) is given by  

      2

= 1 e
s s

a s s s
 

  ,        (32) 

while the conductivity of the medium (up to the same 
multiplicative constant K ) is given by  

     

 

2

1 e
= ,

1

s s
s s

k s
s s








 
        (33) 

and the fractional flow function is given by  

 
 

=
1

s
f s .

s s



  
          (34) 

It is clearly seen that , defined by (26), satisfies (2) 
and (3), and that 

k
f  and  satisfy (5) for 1 <a 2  . 

One also checks that if = 2 , then  

         
2 2

0, 1 0, 1
.

L L
a f   C        (35) 

Therefore, for  defined by (33), k f  defined by 
(34), and  defined by (32), we have that the couple a
 ,a k  and  ,f k  satisfy (6), by Lemma 2.1 and Lem- 
ma 2.2. Hence the following. 

Corollary 4.1 Under the conditions (26) through (34), 
if = 2 , Problem 1 has a unique solution . Fur- 
thermore, the family of regularized solutions 

 ,p S 
 p S,  , 

as defined by Theorem 3.2, converges to the unique 
solution  ,p s  of (1).  

Conditions (32) through (35) and Corollary 4.1 show 
that condition (9) is not empty, neither is condition (6), 
which is often used in the proof of the well-posedness of 
problem 1 or the like and for the convergence of the re- 
gularization of the same type of problems ([3,4,6,7,14]. 

4.2. Graphical Experiments for Uniqueness 

One can check, through computations, that  and a f , 
as defined by (32) and (34), respectively, are not twice 
continuously differentiable, for 1 < < 2 . They fail to 
be twice differentiable at  and . For some  = 0s = 1s
values of  ,1 < < 2 , namely for the values = 3 2  
and = 4 3 , we show graphically, experimenting with 
several values of , that condition (19) seems to hold 
for  and 

c
a f  defined by (32) and (34). So this is an 

indication that Corollary 4.1 could hold for these values 
of   (and, maybe, for 1 < < 2 ). We emphasize that 
this does not constitute a rigorous mathematical proof 
that Corollary 4.1 holds for these values of  , but it 
does point to the conjecture that this could be the case. 

For our graphical illustrations, we define the functions 
 G s  and  F s  on the interval  0, 1 , for a given 

1 < < 2  by,  

 
              *

1

:

=

G s

a s a s a c c k s s c K s K c     
 

(36) 
and, in the same way,  

 
              *

2

:

= ,

F s

f s f s f c c k s s c K s K c     
 

(37) 

for a parameter 0 c 1  . Here  and  are fixed 
positive constants that are independent of , but could 
depend on 

*
1c *

2c
c

 . 
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For a given 1 < < 2 , for (19) to hold for the pairs 
and  ,a k   , f k  respectively, we need that   0G s   

and  for all  F s 0 s c  and for all, fixed, 0 < 1c . 
Through the graphs in the Figures 4 and 5, we show that 
this seems to be the case, at least for the chosen values of 
 . Here we do this just for two values   ( = 3 2  
and = 4 3 ), and for each such  , four values of  
and only for the function . However, one can check 
our claim, by plotting 

c
G s



F s  and  for other values 

of 
G s

  and different choices  for each chosen value of c
 . 

Here we have used the value 1  for both values * = 10c
= 3 2  and = 4 3 . One can see, through Figures 4-7, 

for = 3 2 , and Figures 8-11, for = 4 3 , that, for 
these graphs,   0G s  for s c for the chosen values of c. 
 

 

Figure 4. Case. = 3 2  and = 1 4c . 

 

 

Figure 5. Case. = 3 2  and = 1 2c . 

 
 

Figure 6. Case. = 3 2  and = 3 4c . 

 

 
 

Figure 7. Case: = 3 2  and = 9 10c . 

 

 
 

Figure 8. Case: = 4 3  and = 1 4c . 
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Figure 9. Case: = 4 3  and = 1 2c . 

 
 

 
Figure 10. Case: = 4 3  and = 3 4c . 

 

 
 

Figure 11. Case: = 4 3  and = 9 10c . 

4.3. Other Graphical Experiments for 
Uniqueness for < <1 2  

 
In this subsection, we use other arguments to show that 
the hypotheses of Lemma 2.1 seem to hold for the fun- 
ctions  and a f , respectively, for 1 < < 2 . We con- 
sider the following functions.  

 
      

      
, := ,

f x f x f y
F x y

k x x y K x K y

 

  
     (38) 

and  

 
      

      
, := .      (39) 

a x a x a y
G x y

k x x y K x K y

 

  

Clearly, condition (9) holds for f  and a , if the fun- 

ctions F  and , defined respectively by (38) and (39) 
are bounded above independently of 

G
x  and  on the 

region enclosed by the triangle with vertices (0,0), (1,0), 

and (1,1) i.e. the region 

y

   2
,:= >x y,R x 0,1y

R

. 

Notice that the common denominator of both functions is 
positive in the interior of the region . See Figure 12 
below. 

Functions F  and G are very complex by their defi- 
nition, especially for non integer values of 

 
 . They in- 

volve the integral-defined function K . They e diffi- 
cult to handle algebraically. For the present work, we 
sketch the surfaces representing the two functions, above 
the region R , for some valu  of 

ar

es  , using Maple So - 
ware, in order to analyze their boundedness. This is illu- 
strated through the Figures 13 through 18. 

We notice 

ft

the smoothness of the surfaces correspond- 
ing to the case = 2 . This suggests that the two funct- 
ions are definite nded in this case. For = 2ly bou  , we 
show directly that this is indeed the case that 
Corollary 4.1 holds. We prove this through the following 
lemma. 

Lemm

, i.e. 

a 4.2 For = 2 , functions F  and , defined 
by tiv

G
 (38) and (39), res ely, are bounded indepen- 

dently of 
pec

 ,x y  over the region R.  
Proof of Lemma  From (32) and (34), i 4.2. t is easily 

se



en that 

   

 
11

2

1
=

1

x x
f x

x x





  


 
           (40) 

and 

 

          2
22

=

1 1 2 1 2 3
x x

x x x x x x e






    
 

.

(41) 

s 

a x
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Figure 12. Region R. 
 

 

Figure 13. Surface  = ,z F x y , over region R, for = 3 2 . 
 

 

Figure 14. Surface  = ,z G x y

 
x 

Figure 15. Surface  = ,z F x y , over region R, for = 4 3 . 
 

 

 = ,z G x y

over region R, for = 3 2 . 

Figure 16. Surface , over region R, for = 4 3 . 
 

 

 = ,z F x y = 2 . Figure 17. Surface , over region R, for 
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Figure 18. Surface  = ,z G x y , over region R, for = 2 . 
 

On the other hand, by the Mean-Value Theorem, we 
have 

      
     

   
   

1

2

, = =
f x f x y f x f

F x y
k x x y k x y k x k

1

2

 
 

   
   

 

(42) 

and  

      
     

   
   

3

4

, = =
a x a x y a x a

G x y
k x x y k x y k x k

3

4

 
 

   

   
 

(43) 

where i , 1 4i  , are between x  and  and where 
we have obtain from  an ) that  

y ,
d (43 used (7). We  (42)

 
   
   

1

22

f x f
y

k
,F x

x k





 
    (4  

an

        4)

d  

 
   
   

3

4

,
2

a x a
G x y

k x k





 
            (45  

Combining (33),(40), (41), (44), and (45), we obta

)

in  

   
1 12 2, = 1F x y O x x

   
  

 
         (4 )

and  

6  

   
1 12 2= 1 ,O x   

 
       (47) ,G x y x

   
 

as , . Hence, if y x <y x = 2 ,  ,F x y  and 
 ,G x y  are bounded on . Th

Conjecture. Corollary 4.1 also holds for 

 R is proves the lemma.  
3

< 2
2

 . 

hope, in a future work, to be able to prove this 
claim or give a counterexample that disproves it. If this 
claim happens to be true, that would
functions  and

We 

 give examples of 
a  f  

que
that are not very smooth but for 

which the s uni ness for the problem (1).  

5. Conclusions 

In this paper, we have revisited the problem of unique- 
r the pressure/saturation system. A new sufficient 

condition for uniqueness has been established and we 
have showed that the old conditions for un
ditions (3), (5), and (35)) imply the new condition. An 

mple of  famil nding n a param

re i

ness fo

iqueness (con- 

exa  a y of data (depe  o eter 
) has    been constructed that gives uniqueness for 
= 2 . For the general case 1 < < 2 , we have illustra- 

ted graphically (without a rigorous pro there of) that 
co

e

[3] K stence an

ysis, Vol. 5, 2001, pp. 503-521. 

“Regularization and Numerical Methods 
 Porous Medium Equations,” PhD Thesis, 

University of South Carolina, Columbia, 1993. 

uld be uniqueness for these cases. A sequel of this 
paper should concern itself with a rigorous proof (or dis- 
proof) of this claim. It should also concern itself with the 
general cas , especially the case of convection domina- 
ted flow. 
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