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Abstract 
 
In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective 
and constraint functions is directionally differentiable in its own direction di for a nondifferentiable multiob-
jective programming problem. Based upon these generalized functions, sufficient optimality conditions are 
established for a feasible point to be efficient and properly efficient under the generalised dI-univexity re-
quirements. Moreover, weak, strong and strict converse duality theorems are also derived for Mond-Weir 
type dual programs. 
 
Keywords: Multiobjective Programming, Nondifferentiable Programming, Generalized dI-Univexity,  
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1. Introduction 
 
The field of multiobjective programming, also known as 
vector programming, has grown remarkably in different 
directions in the setting of optimality conditions and dual-
ity theory. It has been enriched by the applications of var-
ious types of generalizations of convexity theory, with and 
without differentiability assumptions, and in the frame-
work of continuous time programming, fractional prog- 
ramming, inverse vector optimization, saddle point theory, 
symmetric duality and vector variational inequalities etc. 

Hanson [1] introduced a class of functions by genera-
lizing the difference vector x x  in the definition of a 
convex function to any vector function  , x x . These 
functions were named invex by Craven [2] and  -con- 
vex by Kaul and Kaur [3]. Hanson and Mond [4] defined 
two new classes of functions called Type I and Type II 
functions, which were further generalized to pseudo 
Type I and quasi Type I functions by Rueda and Hanson 
[5]. Zhao [6] established optimality conditions and dual-
ity in nonsmooth scalar programming problems assum-
ing Clarke [7] generalized subgradients under Type I 
functions. 

Kaul et al. [8] extended the concept of type I and its 
generalizations for a multiobjective programming prob-
lem. They investigated optimality conditions and derived 
Wolfe type and Mond-Weir type duality results. Suneja 

and Srivastava [9] introduced generalized d-type I func-
tions in terms of directional derivative for a multiobjec-
tive programming problem and discussed Wolfe type and 
Mond-Weir type duality results. In [10], Kuk and Tanino 
derived optimality conditions and duality theorems for 
non-smooth multiobjective programming problems in-
volving generalized Type I vector valued functions. Gu-
lati and Agarwal [11] discussed sufficiency and duality 
results for nonsmooth multiobjective problems under 
( , , ,F d  -type I functions. Agarwal et al. [12] estab-
lished sufficient conditions and duality theorems for 
nonsmooth multiobjective problems under V-type I func-
tions. Recently, Jayswal et al. [13] obtained some opti-
mality conditions and duality results for nonsmooth mul-
tiobjective problems involving generalized  , , ,F     

d V  -univexity. 
Antczak [14] studied d-invexity is one of the genera-

lization of invex function, which is introduced by [15]. In 
[14], Antczak established, under weaker assumptions 
than Ye, the Fritz John type and Karush-Kuhn-Tucker 
type necessary optimality conditions for weak Pareto 
optimality and duality results which have been stated in 
terms of the right differentials of functions involved in 
the considered multiobjective programming problem. 
Some authors [16-18] proved that the Karush-Kuhn- 
Tucker type necessary conditions [14] are sufficient un-
der various generalized d-invex functions. Antczak [19] 
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corrrected the Karush-Kuhn-Tucker necessary conditions 
in [14] and discussed the sufficiency and duality under 
d r  type I functions. Recently, Silmani and Radjef 
[20] introduced generalzed dI-invexity in which each 
component of the objective and constraint functions is 
directionally differentiable in its own direction and es-
tablished the necessary and sufficient conditions for effi-
cient and properly efficient solutions. The duality results 
for a Mond-Weir type dual are also derived in [20]. They 
also observed that the Karush-Kuhn-Tucker sufficient 
conditions discussed in [16-18] are not applicable. More 
recently, Agarwal et al. [21] introduced a new class of 
generalized  ,d      type I for a non-smooth 
multiobjective programming problem and discussed op-
timality conditions and duality results.  

In this paper, we introduce Id V -univexity and ge-
neralized Id V -univexity in which each component of 
the objective and constraint functions of a multiobjective 
programming problem is semidirectionally differentiable 
in its own direction di. Various Karush-Kuhn-Tucker suf- 
ficient optimality conditions for efficient and properly ef- 
ficient solutions to the problem are established involving 
new classes of semidirectionally differentiable generali- 
zed type I functions. Moreover, usual duality theorems 
are discussed for a Mond-Weir type dual involving afo-
resaid assumptions. The results in this paper extend many 
earlier work appeared in the literature [9,10,12,14-16, 
19]. 
 
2. Preliminaries and Definitions 
 
The following conventions for equalities and inequalities 
will be used. If    1 1= , , ,  = , , n

n nx x y y   x y , then 
= = , = 1, ,i ix y i n x y ; < < , = 1, ,i ix y i n x y ; 

, = 1, , ;i ix y i n   x y  and   x y x y x y , 
We also note q  (resp. q

  or q
 ) the set of vectors 

qy  with 0y   (resp. 0y  or > 0y ). 
Definition 1 [22]. Let D be a nonempty subset of n , 
: nD D     and let 0x  be an arbitrary point of 

D.The set D is said to be invex at 0x  with respect to  , 
if for each x D , 

   0 0, , 0,1 .x x x D      

D is said to be an invex set with respect to  , if D is 
invex at each 0x D  with respect to the same  . 

Definition 2 [23]. Let nD    be an invex set with 
respect to : nD D    .A function :f D    is 
called pre-invex on D with respect to  , if for all 

0,x x D , 

          0 0 01 , , 0,1 .f x f x f x x x         

Definition 3 [14]. Let nD    be an invex set with 
respect to : nD D    . A m-dimensional vector 

valued function : mD    is pre-invex with respect 
to  , if each of its components is pre-invex on D with 
respect to the same function  . 

Definition 4 [7]. Let D be a nonempty open set in n . 
A function :f D    is said to be locally Lipschitz at 

0x D , if there exist a neighborhood  0x  of 0x  
and a constant > 0K  such that 

     0,   , ,f y f x K y x x y x     

where .  denotes the Euclidean norm. We say that f  
is locally Lipschitz on D if its locally Lipschitz at any 
point of D. 

Definition 5 [7]. If : nf D R   is locally Lip-
schitz at 0x D , the Clarke generalized directional de-
rivative of f  at 0x  in the direction nd  , denoted 
by 

     0
0

0
0

; = sup .lim
y x

t

f y td f y
f x d

t



  
 
 

 

And the usual one-sided directional derivative of f at 

0x  in the direction d is defined by 

     0 0
0

0

; = ,lim
f x d f x

f x d





 
  

whenever this limit exists. Obviously,  

   0
0 0; ;f x d f x d . 

We say that f is directionally differentiable at 0x  if 
its directional derivative  0 ;f x d  exists finite for all 

nd  . 
Definition 6 [15]. Let : Nf D    be a function de-

fined on a nonempty open set nD    and directional-
ly differentiable at 0 .x D  f is called d-invex at 0x  on 
D with respect to  , if there exists a vector function 

: ,nD D     such that for any x D , 

   
        0 0 0 0

,   

, ; , ,

for all = 1, , ,

i i i

f y f x K y x

x y x f x f x f x x x

i N

 

 

  




  

where   0 0; ,if x x x  denotes the directional derivative 
of if  at 0x  in the direction  

    
    

0 0 0

0 0 0
0

, : ; ,

,
= .lim

i

i i

x x f x x x

f x x x f x


 








   

If Inequalities (1) are satisfied at any point 0x D , 
then f  is said to be d-invex on D  with respect to  . 

Definition 7 [20]. Let D  be a nonempty set in n  
and : nD D     a function. 
 We say that :f D    is a semi-directionally 
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differentiable at 0x D ,if there exist a nonempty 
subset nS    such that  0 ;f x d  exists finite 
for all d S  

 We say that f is a semi-directionally differentiable 
at 0x D  in the direction  0,x x , if its direc-
tional derivative   0 0; ,f x x x  exists finite for 
all x D . 

Definition 8 [20]. Let : Nf D    be a function de-
fined on a nonempty open set nD    and for all 

= 1, , ,   ii N f  is semi-directionally differentiable at 

0x D  in the direction : n
i D D    . f is called 

dI-invex at 0x  on D  with respect to   =1, ,i i N
  if for 

any x D , 

      0 0 0; , , for all , 2, , ,i i i if x f x f x x x i N   

where   0 0; ,i if x x x  denotes the directional deriva-
tive of if  at 0x  in the direction  

    
    

0 0 0

0 0 0
0

, : ; ,

,
.lim

i i i

i i i

x x f x x x

f x x x f x


 








 


 

If Inequalities (2)  are satisfied at any point 0x D , 
then f  is said to be Id -invex on D  with respect to  

  =1, ,i i N
  

Consider the following multiobjective programming 
problem 

          1 2 Minimize = , , , NMP f x f x f x f x  

 Subject to 0,g x   

,x D  

where : , : ,N kf D g D    D is a nonempty open 
subset of n . Let   = : 0X x D g x   be the set of 
feasible solutions of (MP). For 0x D , we denote by  

 0J x  the set       0 01, 2, , : = 0 , =jj k g x J J x    

and by     0 0resp.J x J x  the set  

    01, 2, , : 0jj k g x   (resp.   0 > 0jg x . we  

have        0 0 0 1,2, ,J x J x J x k     and if  

 0 0,  =x X J x  . 

We recall some optimality concepts, the most often 
studied in the literature, for the problem (MP). 

Definition 9. A point 0x X  is said to be a local 
weakly efficient solution of the problem (MP), if there 
exists a neighborhood  0N x  around 0x  such that 

     0 0for allf x f x x N x X   

Definition 10. A Point 0x X  is said to be a weakly 
efficient (an efficient) solution of the problem (MP), if 
there exists no x X  such that 

        0 0< .f x f x f x f x  

Definition 11. An efficient solution 0x X  of (MP) 
is said to be properly efficient, if there exists a positive 
real number M  such that inequality 

       0 0i i j jf x f x M f x f x     

is verified for all  1, ,i N   and x X  such that 
   0<i if x f x , and for a certain  1, ,j N   such 

that    0> .j jf x f x  
Following Jeyakumar and Mond [24], Kaul et al. [8] 

and Slimani and Radjef [20], we give the following defi-
nitions. 

Definition 12.  ,f g  is Id V -univex type I at 

0x D  if there exist positive real valued functions 
andi j   defined on X D , nonnegative functions 

0 1andb b , also defined on 0 1, : , :X D R R R     
; : , and :n n

i jR X D R X D R       such that 

          0 0 0 0 0 0 0, , ; ,i i i i ib x x f x f x x x f x x x      

(3) 

and 

        1 1 0 1 0 0 0 0, , ; ,j j j jb x x g x x x g x x x       (4) 

for every x X  and for all = 1, 2, ,i N  and  
= 1, 2, ,j k . 
If the inequality in (3) is strict (whenever 0x x ), we 

say that (MP) is of semistrictly Id V -univex type I  

at 0x  with respect to    =1, =1,
 and i ji N j k

  . 

Definition 13.  ,f g  is quasi- Id V -univex type I 
at 0x D  if there exist positive real valued functions 
  and j , defined on X D , nonnegative functions 

0 1andb b , also defined on 0,  : ,X D R R    

1 : R R   and  N k  dimensional vector functions  

: , = 1,n
i X D R i N    and : , = 1,n

j X D R j k     

such that for some vectors andN kR R    : 

        0 0 0 0 0
=1

0 0
=1

, ,

0 ( ; ( , )) 0

N

i i i i
i

N

i i i
i

b x x x x f x f x

f x x x x X

 

 

   

  



 
    (5) 

and 

     

  

1 0 1 0 0
=1

0 0
=1

, , 0

; , 0 .

k

j j j
j

k

j j j
j

b x x x x g x

g x x x x X

  

 

 
 
 

  








    (6) 

If the second inequality in (5) is strict  0x x , we 
say that (MP) is of semi-strictly quasi Id -V-univex type 
I at X with respect to    =1, =1,

andi ji N j k
  . 
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Definition 14.  ,f g  is pseudo- Id V -univex type 
I at 0x D  if there exist positive real valued functions 

i  and j , defined on X D , nonnegative functions 

0b  and 1b , also defined on X D , 0 : R R  , 

1 : R R   and  N k  dimensions vector functions  

: , = 1,n
i X D R i N    and : , = 1,n

j X D R j k    

such that for some vectors NR   and kR  : 

  

       

0 0
=1

0 0 0 0 0
=1

; , 0

, , ( ) 0  

N

i i i
i

N

i i i i
i

f x x x

b x x x x f x f x x X

 

 

 

     








 

(7) 
and 

  

     

0 0
=1

1 0 1 0 0
=1

; , 0

, , 0  .

k

j j j
j

k

j j j
j

g x x x

b x x x x g x x X

 

  

 

 
  

 








  (8) 

Definition 15.  ,f g  is quasi pseudo- Id V -univex 
type I at 0x D  if there exist positive real valued func-
tions i  and j , defined on X D , nonnegative fun- 
ctions 0b  and 1b , also defined on X D , 0 : ,R R   

1 : R R   and ( )N k  dimensions vector functions 
: ,n

i X D R   = 1,i N  and : ,n
j X D R   = 1,j k  

such that the relation (5) and (8) are satisfied. If the 
second inequality in (8) is strict 0(x x , we say that 
( )VP  is of quasi strictly-pseudo Id - V type I  at 0x  
with respect to    =1, =1,

and .i ji N j k
   

Definition 16.  ,f g  is pseudoquasi - Id -V-univex 
type I at 0x D  if there exist positive real valued func-
tions i  and j , defined on X D , nonnegative 
functions 0b  and 1b , also defined on X D , 

0 1: ,  :R R R R    and ( )N k  dimensions vector 
functions : ,  = 1,n

i X D R i N    and  
: ,  = 1,n

j X D R j k   , such that kR    the rela-
tions (7) and (6) are satisfied. If the second inequality in 
(7) is strict  0x x , we say that  MP  is of strictly- 
pseudo quasi Id  V  type I at 0x  with respect to 
  =1,i i N
  and  

=1,
.j j k

  

 
3. Optimality Conditions 
 
In this section, we discuss some sufficient conditions for 
a point to be an efficient or properly efficient for (MP) 
under generalized Id V  univex type I assumptions. 

Theorem 3.1. Let 0x  be a feasible solution for (MP) 
and suppose that there exist  N J  vector functions 

: , = 1, ,n
i X X R i N     0: ,n

j X X R j J x     

and scalars 
=1

0,  = 1, ,  = 1;
N

i ii
i N    0, j   

 0j J x  such that 

     0 0 0 0
=1 ( )0

; , ; , 0,

,

N

i ji i j j
i j J x

f x x x g x x x

x X

   


 

 

  
 

(9) 

Further, assume that one of the following conditions is 
satisfied: 

a) i)  ,f g  is quasi strictly-pseudo Id V -univex 

type I at 0x  with respect to      =1,
0

, , ,i ji N j J x
   


 

and for some positive functions , = 1, ,i i N  ,j  

 0j J x ,  

ii) for any u R ,  00 0;u u    1 < 0u  
< 0;u   0 0, > 0,b x x   1 0, > 0;b x x  

b) i)  ,f g  is strictly-pseudo Id V -univex type I at 

0x  with respect to   =1,i i N
 ,    0

, , j j J x
  


 and 

for some positive functions , = 1, , ,i ji N   

 0 ,j J x  

ii) for any u R , 0 ( ) > 0 > 0;u u    

10 ( ) 0,u u  0 0( , ) > 0,b x x  1 0( , ) 0.b x x   
Then 0x  is an efficient solution for  MP . 

Proof: Condition a). Suppose that 0x  is not an effi-
cient solution of  MP . Then there exists an x X  
such that 

   0 ,f x f x  

which implies that 

     0 0
=1

, 0.
N

i i i i
i

x x f x f x            (10) 

Since  0 0, > 0b x x ;  00 0u u  , the above 
inequality gives 

       0 0 0 0 0
=1

, , 0.
N

i i i i
i

b x x x x f x f x       
   

From the above inequality and Hypothesis i) of a), we 
have 

  0 0
=1

; , 0.
N

i i i
i

f x x x    

By using the Inequality (9) we deduce that 

  0 0
( )0

; , 0,j j j
j J x

g x x x 


   

which implies from the condition part ii) of a) that  

 
 

   
0

1 0 1 0 0, , < 0.j j j
j J x

b x x x x g x  


 
 
  
  

Since    1 0 1, > 0;  < 0 < 0,b x x u u   we get 
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   0 0

0

, < 0.j j j
j J x

x x g x 

          (11) 

As 0   and    0 0= 0;  jg x j J x  , it follows that 
   0 0= 0,  ,j jg x j J x    which implies that 

 
   0 0

0

, = 0.j j j
j J x

x x g x 

  

The above equation contradicts Inequality (11) and 
hence the conclusion of the theorem follows: 

Condition b): Since    0 0= 0,  0,  ,j jg x j J x    
and    0 0, > 0,  ,j x x j J x   we obtain  

 
   0 0

0

, = 0, .j j j
j J x

x x g x x X 


   

By Hypothesis ii) of b), we get  

 
 

 1 0 1 0

0

, , 0.j j
j J x

b x x x x  


 
 
  
   

From the above inequality and the Hypothesis i) of 
b)( in view of reverse implication in (8), if follows that  

 
    0 0 0

0

; , < 0, \ .j j j
j J x

g x x x x X x 


    

By using Inequality (9), we deduce that  

    0 0 0
=1

; , > 0, \ ,
N

i i i
i

f x x x x X x      (12) 

which by virtue of relation (7) implies that  

        

 

0 0 0 0 0
=1

0

, , > 0,

\ .

N

i i i i
i

b x x x x f x f x

x X x

    
 


 

The above inequality along with Hypothesis ii) of b) 
gives  

        0 0 0
=1

, > 0, \ .
N

i i i i
i

x x f x f x x X x     (13) 

Since (10) and (13) contradicts each other, and hence 
the conclusion follows: 

Theorem 3.2. Let 0x  be a feasible solution for (MP) 
and suppose that there exist  N J  vector functions 

 0: , = 1, , : , n n
i jX X R i N X X R j J x       

and scalars  0=1
0, = 1, , = 1, 0, 

N
i i ji

i N j J x       

such that Inequality (9) of Theorem 3.1 is satisfied. 
Moreover, assume that one of the following conditions 

is satisfied. 
a) i)  ,f g  is pseudo quasi Id V  univex type I  

at x0 with respect to      =1,
0

, , ,i ji N j J x
   


 and for 

some positive functions  

 0, = 1, and , ,i ji N j J x     

ii) for any u R ,  

   1 00 0, 0 0,u u u u       

   0 0 1 0, > 0, , 0;b x x b x x   

b) i)  ,f g  is strictly pseudo Id V  univex type  

  I at x0 with respect to      =1,
0

, , ,i ji N j J x
   


 and 

for positive functions = 1,i N  and  0, ,j j J x    

ii) for any u R   

   
   

0 1

0 0 1 0

0 0;  0 0;

, > 0,  , 0.

u u u u

b x x b x x

     


 

Then 0x  is an efficient solution for  MP . Further 
Suppose that these exist positive real numbers ,  i in m  
such that  0< , < ,  = 1,i i in x x m i N  for all feasible 
x .Then 0x  is a properly efficient solution for  MP  

Proof: Condition a). Suppose that 0x  is not an effici- 
ent solution of  MP . Then there exists an x X  
such that    0f x f x  which implies that 

      0 0
=1

, < 0.
N

i i i i
i

x x f x f x       (14) 

Since  0 = 0,  0j jg x    and  

   0 0, > 0,j x x j J x    

we obtain  

 
   0 0

0

, = 0.j j j
j J x

x x g x 

  

From the above inequality and Hypothesis ii) of a), we 
have  

     1 0 1 0 0
( )0

, , 0.j j j
j J x

b x x x x g x  


 
 
  
   

Using Hypothesis i) of a), we deduce that 

    0 0 0
( )0

, ; , 0.j j j j
j J x

x x g x x x  


      (15) 

The Inequalities (9) and (14) yield that  

  0 0=1
; , 0,

N

i i ii
f x x x    

which by Hypothesis i) of a), we obtain  

        0 0 0 0 0
=1

, , 0,
N

i i i i
i

b x x x x f x f x    
   (16) 

The Inequality (16) and Hypothesis ii) of a) give 

      0 0
=1

, 0.
N

i i i i
i

x x f x f x      (17) 

Since (14) and (17) contradict each other, we conclude 
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that 0x  is not an efficient solution of  MP . The pro- 
perly efficient solution follows as in Hanson et al. [25]. 
For the proof of part b), we proceed as in part b) of 
Theorem 3.1, we get Inequality (17). Thus complete the 
proof. 
 
4. Mond-Weir Type Duality 
 
Consider the following multiobjective dual to problem 
 MP  
 MD  Maximize         1 2= , , , Nf y f y f y f y  

subject to  

     
=1 =1

; , ; , 0,
N k

i i i j j j
i j

f y x y g y x y x X          

  0, = 1, 2, , ,  ,  ,N k
j jg y j k y D R R        

: ,   = 1, 2, , ,  

: , = 1,2, , .

n
i

n
j

X D R i N

X D R j k





  

 




 

Let Y  be the set of feasible solutions of problem 
 MD ; that is,  

    
     2

=1 =1

= , , , , :

; , ; , 0,

i ji j

N k

i i j j j
i j

Y y

f y x y g y x y

   

      
 

  0,   ;  , ,  ;

: = 1, 2, , ;

N k
j j

n
i

g y x X y D R R

X D R i N

  



    

   
 

 

: , = 1,2, , .n
j X D R j k      

We denote by rDP Y , the projection of set Y  on D . 
Theorem 4.1. (Weak Duality). Let x  and  

    =1, =1,
, , , ,i ji N j k

y      be feasible solution for (MP)  

and (MD) respectively. Moreover, assume that one of the  
following conditions is satisfied: 

a) i)  ,f g  is pseudo quasi Id -V-univex type I at 

y  with respect to   =1,
> 0,  ,  ,i i N

    
=1,j j k

  and 

for some positive functions i , j  for = 1, 2, ,i N  
and = 1, 2, ,j k , 

ii) for any u R   

   
   

0 1

0 1

0 0;  0 0;

, > 0, , 0

u u u u

b x y b x y

     


 

b) i)  ,f g  is strictly-pseudo quasi Id -V-univex 

type I at y with respect to   =1,
, , i i N

   ,  
=1,j j k

 and 

for some positive function i , j  for = 1, 2, ,i N  
and = 1, 2, ,j k ,  

ii) for any u R ,  

   
   

0 1

1 0

0 > 0;   0 0;

, 0,  , > 0;

u u u u

b x y b x y

    


 

c) i)  ,f g  is quasi strictly-pseudo Id V -univex 

type I at y  with respect to    =1, =1,
, , ,  i ji N j k

     

and for some positive functions , for =i j i   
1, 2, , N  and = 1, 2, ,j k ,  

ii) for any u R , 

   
   

0 1

0 1

> 0 > 0;  > 0 > 0;

, > 0,  , > 0.

u u u u

b x y b x y

  
 

Then    f x f y . 
Proof: Since  

 
   

 
1 1

0, = 1, 2, , ,  

0 0, , > 0

and , > 0, = 1, 2, ,

j j

j

g y j k

u u b x y

x y j k














  , 

we have 

     1 1 =1
, , 0.

k

j j jj
b x y x y g y   

     

By Condition a) (in view of definition 16), it follows 
that  

    
=1

, ; , 0.
k

j j j j
j

x y g y x y         (18) 

Since     =1, =1,
, , , ,i ji N j k

y      is a feasible solu-  

tion for (MD), the first dual constraint with (18) implies 
that  

  
=1

; , 0.
N

i i i
i

f y x y            (19) 

From (19) and Hypothesis i) of a), we obtain  

        0 0
=1

, , 0.
N

i i i i
i

b x y x y f x f y    
    (20) 

Condition ii) of a) and Inequality (20) give  

      
=1

, 0.
N

i i i i
i

x y f x f y         (21) 

Assume that    f x f y . Since  
> 0,  = 1, 2, , and > 0i i N  , we obtain  

      
=1

, < 0,
N

i i i i
i

x y f x f y       (22) 

which contradicts (21), Therefore, the conclusion follows: 
The proof of part b) and c) are very similar to proof of 

part a), except that: for part b), the Inequality (21) beco- 
mes strict  >  and Inequality (22) becomes non strict 
  . For part c), the Inequality (18) becomes strict  < , 
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it follows that the Inequalities (20) and (21) become strict 
 > . Since 0  , then the Inequality (22) becomes non 
strict   . In this cases, the Inequalities (21) and (22) 
contradicts each other always. 

Remark 1: If we omit the assumption > 0  in the 
condition i) of a) or the word “strictly” in the condition 
b),we obtain, for this part of theorem,    f x f y . 

Theorem 4.2. (Weak Duality). Let x  and  

    =1, =1,
, , , ,  i ji N j K

y      be feasible solutions for 

 MP  and  MD  respectively, Assume that 

1)  ,f g  is semi-strictly Id V -univex type I at y  

with respect to > 0 ,   =1,
,  i i N

  ,  
=1,j j k

  and for 

some positive functions    
=1, =1,

,  i ji N j k
   , 

2) for any u R ,  

     
   

0 1

0 1

> 0 > 0,  0 0,

, > 0,  , 0.

u a u u

b x y b x y

   


 

Then    f x f y . 
Proof: Since   0, = 1,2, , ,j jg y j k   which imp- 

lies that  

   
=1

, 0.
k

j j j
j

x y g y             (23) 

By (23) and Hypothesis i) (with    1 , ,jb x y x y ) in 
Definition 12 replaced by 

 ,j x y   it follows that  

  
=1

, , 0.
k

j j j
j

g y x y             (24) 

The first dual constraint and (24) give  

  
=1

, , 0.
N

i i i
i

f y x y             (25) 

Dividing both sides of (3)  by  ,i x y  and taking 
x y , by Hypothesis i), we get  

          0 0

1
, > , , ,

,

= 1, 2, , .

i i i i
i

b x y f x f y f y x y
x y

i N

 


  


 

On Multiplying by i  and taking 
 
1

=
,i

i x y



 , we 

get  

        0 0, > , , ,

= 1, 2, ,

i i i i i i ib x y f x f y f y x y

i N

     




 

Adding with respect to i, and applying (25) and Hy- 
pothesis ii), we have  

      
=1

, > 0.
N

i i i i
i

x y f x f y         (26) 

Assume that    f x f y . Since > 0 and > 0i  , 
we have  

      
=1

, < 0,
N

i i i i
i

x y f x f y    

which contradicts (26). 
Theorem 4.3. (Strong Duality ).Let x0 be a weakly effi- 

cient solution for  MP . Assume that the function g  
satisfies the Id -constraint qualification at 0x  with res-  

pect to  
=1,j j k

 . Then there exist > >andN KR R     

such that  0 =1,
, , , i i N

x    ,  
=1,j j k

Y   and objective  

functions of  MP  and  MD  have the same values  

at 0x  and     0 =1, =1,
, , , ,i ji N j k

x     , respectively. If,  

further, the weak duality between  MP  and  MD  in 
theorem holds with the condition a) without > 0  
(resp. with the condition b) or c)), then  

    0 =1, =1,
, , , ,i ji N j k

x Y      is a weakly efficient 

(resp. an efficient) solutions of  MD . 

Proof. By the Theorem 31 [20], there exists k    

and 
 0J x   such that 

     0 0 0 0=1 =1
; , ; , 0,

.

N k

i i i j j ji j
f x x x g x x x

x X

    

 

  
  

It follows that     0 =1, =1,
, , , , .i ji N j k

x Y      Tri- 

vially, the objective function values of (MP) and (MD) 
are equal. 

Suppose that     0 =1, =1,
, , , ,i ji N j k

x Y      is not a  

weakly efficient solution of  MD . Then there exists  

    =1, =1,
, , , ,i ji N j k

y Y          such that  

   0 <f x f y  which violates the weak duality  

theorem. Hence     0 =1, =1,
, , , ,i ji N j K

x Y      is in- 

deed a weakly efficient solution of (MD). 
Theorem 4.4. (Strict Converse Duality). Let 0x  and  

    0 =1, =1,
, , , ,i ji N j k

y      be feasible solutions for (MP) 

and (MD) respectively, such that  

   0 0
=1 =1

= .
N N

i i i i
i i

f x f y          (27) 

Moreover, assume that  ,f g  is strictly pseudo quasi 

Id V  type I at oy  with respect to    =1, =1,
,i ji N j k

   

and for   and  . Then 0 0=x y . 
Proof. Since  0 0  = 1,2, ,j jg y j k   , we have  
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     1 0 0 1 0 0 0
=1

, 0.
k

j j j
j

b x y x y g y  
 
 
 
   

Using the second part of the hypothesis, we get  

  0 0 0
=1

; , 0.
k

j j j
j

g y x y           (28) 

The Inequality (28) and feasibility of  

    0 =1, =1,
, , , ,i ji N j k

y      for (MD) give  

  0 0 0
=1

; , 0,
N

i i i
i

f y x y    

which by the first part of Hypothesis ii), we obtain 

        0 0 0 0 0 0 0 0
=1

, , > 0,

.

N

i i i i
i

b x y x y f x f y

x X

    
 

  

The above inequality along with Hypothesis iii) gives  

      0 0 0 0
=1

, > 0.
N

i i i i
i

x y f x f y       (29) 

By Hypothesis i), iii) and  0 0, > 0,i x y   
= 1, 2, ,i N  we have  

      0 0 0 0
=1

, = 0.
N

i i i i
i

x y f x f y       (30) 

Now (29) and (30) contradict each other. Hence the 
conclusion follows. 
 
5. Conclusion and Future Developments 
 
In this paper, generalized Id V -univex functions have 
been introduced. The sufficient optimality conditions are 
discussed for a point to be an efficient or properly 
efficient for (MP) under the introduced functions. App- 
ropriate Mond-Weir type duality relations are established 
under these assumptions. Sufficiency and duality with 
generalized Id V -univex functions will be studied for 
nonsmooth variational and nonsmooth control problems, 
which will orient the future research of the author. 
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