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Abstract 
 
We consider an economic model with a deterministic money market account and a finite set of basic economic 
risks. The real-world prices of the risks are represented by continuous time stochastic processes satisfying a 
stochastic differential equation of diffusion type. For the simple class of log-normally distributed instanta-
neous rates of return, we construct an explicit state-price deflator. Since this includes the Black-Scholes and 
the Vasicek (Ornstein-Uhlenbeck) return models, the considered deflator is called Black-Scholes-Vasicek 
deflator. Besides a new elementary proof of the Black-Scholes and Margrabe option pricing formulas a vali-
dation of these in a multiple risk economy is achieved. 
 
Keywords: State-Price Deflator, Option Pricing, Black-Scholes Model, Vasicek Model, Margrabe Formula 

1. Introduction 
 
The first rigorous mathematical derivation of the Black- 
Scholes formula in [1] (see also [2]) relies on a dynamic 
delta-hedge portfolio and a risk-free argument of no- 
arbitrage. Later on [3] introduced state-price deflators, 
which led to the insight that deflator based market valua-
tion using the real-world probability measure is equiva-
lent to market valuation based on a risk-neutral martin-
gale measure. 

The present contribution focuses entirely on state-price 
deflators, which are summarized in Section 2. We consi- 
der in Section 3 an economic model that contains a mon- 
ey market account with deterministic continuous-com- 
pounded spot rates and a finite set of basic economic risks 
(interest rates, stocks and equity, property, commodities, 
inflation, currency, etc.). The real-world prices of these 
risks are represented by continuous time stochastic proc- 
esses satisfying a stochastic differential equation of dif-
fusion type. In the simplest situation of log-normally dis- 
tributed instantaneous rates of return, which includes the 
Black-Scholes and the Vasicek (Ornstein-Uhlenbeck) re- 
turn models, we construct in Proposition 3.2 the so-called 
Black-Scholes-Vasicek (BSV) deflator. 

The application of the BSV deflator to option pricing 
follows in Section 4. Besides a new elementary proof of 
the (slightly extended) Black-Scholes formula it provides 
a validation of it in a financial market with multiple eco- 

nomic risks. The same holds true for Margrabe’s formula 
for a European option to exchange one risky asset for 
another one. 
 
2. Valuation with State-Price Deflators 
 
Let  , ,F P  be a probability space such that   is 
the sample space, which describes the states of the world, 
F is the  -field of events, and P is the probability 
measure assigning to any event E in F its probability 
 P E . At each time 0t  , the  -field tF F  de-

notes the set of events, which describes the information 
available at time t . An adapted process X is a set 
  0t t

X


 such that tX  is a random variable with respect 
to the measurable space  , tF . 

In continuous time finance one considers adapted price 
processes   0t t

S S


  such that tS  represents the ran-
dom value at time t of a financial instrument. To place a 
market value or price on any financial instrument, we 
consider a (state-price) deflator   0t t

D D


 , that is a 
strictly positive adapted process such that the stochastic 
value tS  payable at time t  has value at time ts   
given by the formula 

 1 , 0s s s t tS D E D S s t    , 

where by convention  s t P t sE X E X F     denotes the 
expected value (under the real-world probability measure 
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P) of tX  at time t  given the information at time s . 
This means that the adapted deflated or discounted price 
process   0t t t

DS D S


  is a martingale. Recall that 
state-price deflators have been introduced in [3], pp. 23 
and 97. 
 
3. The Black-Scholes-Vasicek Deflator for  

Multiple Economic Risks 
 
We suppose that the economic model contains 

1) A deterministic money market account   0t t
M M


  

with value 

    exp , , 0t sM M t s R s t s t    ,    (1) 

where  , , 0 ,R s t s t   are the deterministic continu- 
ous-compounded spot rates. The price at time s  of a 
zero-coupon bond paying one unit of money at time t  
(that corresponds to the money market account) is de-
fined and denoted throughout by 

      , exp , , 0P s t t s R s t s t     .   (2) 

2) A finite set of m  economic risks (interest rates, 
stocks and equity, property, commodities, inflation, cur-
rency, etc.), which are measured by indices. The conti-
nuous instantaneous change in each index defines a fi-
nancial instrument , 1, ,kI k m  , whose real-world 
price is represented by a continuous time stochastic pro-  

cess     
0

k k
t

t
S S


 , which satisfies a stochastic differ- 

ential equation 

             d , d , d ,

1, , ,

k k k k k k
t k t t k t t tS t r S t t r S W

k m

  

 
  (3) 

where the instantaneous rate of return  k
tr  is assumed 

to follow a diffusion process 

         d , d , d , 1, ,k k k k
t k t k t tr t r t t r W k m     , (4) 

with  ,k t   the drift,  ,k t   the instantaneous stan-
dard deviation, and  k

tW  a standard Wiener process. The 
standard Wiener processes are correlated such that 

   d d d , 1 ,i j
t t ijE W W t i j m      .     (5) 

The correlation matrix is denoted by  ijC   and 
we assume that it is a valid correlation matrix, i.e. it is 
positive semi-definite. In general, it is still possible to 
construct a valid correlation matrix that approximates 
with respect to a given norm a given invalid correlation 
matrix (e.g. [4] for the spectral decomposition method). 
The real-world prices of the financial instruments (1) at a 
time 0t   given the information at a previous time 
0 s t   can be expressed using an exponential function 

of a stochastic integral as follows. 
Proposition 1 The real-world prices of the financial 

instruments , 1, ,kI k m  , satisfy the following stocha- 
stic representations 

      21
exp , d ,

2

0 , 1, , .

t
k k k

t s t s k u
s

S S r r u r u

s t k m


 

   
 

  




  (6) 

Proof. For fixed k  set     ,k k
t t tX r S  to see that 

     d , d , d k
t t t tX M t X t t X W   

with  

          , , , ,k k k
t k t t k tM t X t r S t r  , 

          , , , ,k k k
t k t t k tt X t r S t r  . 

The result follows through application of the bivariate 
version of Itô’s Lemma (e.g. [5], Section 2). □  

For simplicity, and to describe the main features in an 
analytical way, we restrict the attention to either Black- 
Scholes return processes    d d dk k

t k k tr t W    (stocks 
and equity) or Vasicek (Ornstein-Uhlenbeck) return pro-  

cesses       d d dk k k
t k k t k tr a b r t W    (interest rates,  

property, commodities, inflation, currency, etc.). In both 
cases the return differences     , 0 ,k k

t sr r s t    are nor- 
mally distributed, which implies that the prices (6) are log- 
normally distributed. For a unified analysis let  ,km s t  
and  ,kv s t  denote the mean and standard deviation 
per time unit of these return differences as given by 

Black-Scholes return model 

   , ,   , ,   0k k k km s t v s t s t           (7) 

Vasicek return model 

 
     

 
 

 
2

1
, ,

1
,

2

k

k

k a t s
k s

k

a t s

k k
k

b r e
m s t

t s

e
v s t

a t s


 

 

 









      (8) 

In this situation Proposition 1 yields the following 
equalities in distribution 

         21
exp , ,

2

0 , 1, , ,

k k k
t s k k k t sS S m s t t s v t s W

s t k m

 
         
  

   
 (9) 

where the  k
t sW  ’s are correlated standard Wiener pro- 

cesses such that    d d di j
t s t s ijE W W t 

    .  

Following Section 2 consider now the Black-Scholes- 
Vasicek deflator in the multiple risk economy, for short 
BSV deflator, which has the same form as the price pro- 
cesses in (9), i.e.  
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             exp , , , 0 ,

Tm m m m
t s t sD D s t t s s t t s W s t                     (10)

for some parametric function    ,m s t  and vectors 

            1, , , , ,
T

m m m
ms t s t s t  β , 

    1 , ,
T

m
t s t s t sW W   W . 

To define a state-price deflator the stochastic proces- 
ses (9) and (10) must satisfy the martingale conditions 

           

       

,, ,

, 0 , 1, , .

m m m t s R s t
s t s s

m k m k
s t t s s

E D D P s t D e

E D S D S s t k m

     
       

 (11) 

Proposition 2 (BSV deflator) Given is a financial 
market with a risk-free money market account and m  
economic risks that have log-normal real-world prices 
(9). Assume a non-singular valid correlation matrix C  
with non-vanishing determinant. Then, the BSV deflator 
(10) is determined by 

             

        

     

2

1

1

1

1
exp , ,

2

                           , ,

                           , ,

0 ,

m
m m m

t s j
j

m m
ij i j

i j m

m
m j

j t s
j

D D R s t t s s t t s

s t s t t s

s t t s W

s t



  





  





    



 


   


 







 

(12) 
with 

   
 

( ) 1 ( )

1

2 21
2

, det( ) ( 1) det ( , ),

( , ) ( , ) ( , )
( , ) ,

( , )

0 ,

m
m i j i

j j i
i

i i i

i
i

s t s t

m s t R s t v s t
s t

v s t

s t

 




 



   

  


 

C C

 (13) 

where  i
jC  is the matrix formed by deleting the i -th 

row and j -th column of C . The quantity  ,i s t  is 
called market price of the i-th economic risk. 

Remark 1 In the Black-Scholes return model the 
market price of the i-th economic risk is given by 

    , ,i i is t R s t     (Sharpe ratio). 
Proof. The martingale conditions (11) are equivalent  

with the system of equations 

         

       

2

1

1

1
, , ,

2

, , 0, 0 ,

m
m m

j
j

m m
ij i j

i j m

R s t s t s t

s t s t s t

 

  



  

 

   




  (14) 

            
          

           

2
2

2

, ,

1 1
, , , ,

2 2

, , ,

1
, , , 0,

2

0 , 1, , .

m m
k k k k

m m
k k jk j

j k

m m m
j ij i j

j k i j i j k

s t m s t v s t s t

v s t s t s t

s t s t s t

s t k m

  

  

   



  

   

  

  

  



 


(15) 

Insert (14) into (15) using the definition of  ,i s t  to 

obtain the matrix equation      , ,m s t s t C β λ , where  

      1, , , , ,
T

ms t s t s t  λ  is the market price vec-  
tor of economic risks. If  Adj C  denotes the adjoint 
matrix, then by Cramer’s rule one has  

         1
, det ,m s t Adj s t

  β C C λ , which implies the 
more explicit formula (13). The expression for the para-
metric function  ,s t  follows from (14). □ 

Examples 1 For a single economic risk the BSV def-
lator reads 

          

 

 
      

 

1 1 2
1

1

2 2
1 1 1

1
1

1
exp , ,

2

                      , ,

1
, , ,

2, ,  0 ,
,

t s

t s

D D R s t t s s t t s

s t t s W

m s t R s t v s t
s t s t

v s t










    


   


  
  

 

(16) 
The other lower dimensional special cases are fully 

analytical. For 2m   one has 

       

       

2 1 12 2
1 2

12

2 2 12 1
2 2

12

, ,
, ,

1

, ,
, ,

1

s t s t
s t

s t s t
s t

  



  














       (17) 

Similarly, for 3m   one has (note for mnemonic pur- 
poses the cyclic permutations)   

               
              
               
   

3 2
1 1 23 2 12 13 23 3 13 12 23

3 2
2 2 13 3 23 12 13 1 12 23 13

3 2
3 3 12 1 13 23 12 2 23 13 12

2 2 2
12 23 13 12 23 13

, det , 1 , , ,

, det , 1 , , ,

, det , 1 , , ,

det 1 2

s t s t s t s t

s t s t s t s t

s t s t s t s t

          

          

          

     

      

      

      

    

C

C

C

C .

           (18) 
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4. The Black-Scholes and Margrabe  

Formulas in a Multiple Risk Economy 
 
We begin with an elementary result in probability theory. 
Suppose that the random vector  1 2,S S  has a bivariate 
lognormal distribution with parameter vector  
 1 1 2 2, , , ,      such that the standardized random 
vector 

  1 1 2 2
1 2

1 2

ln ln
, ,

S S
U U

 
 

  
  
 

       (19) 

has a standard bivariate normal distribution with correla-
tion coefficient  . 

Lemma 1. The expected positive difference of the bi-
variate lognormal spread is given by 

 1 2

2
2 1 2 1 1 2

1 1 2 2
1 2 1 2

2
2 1 2 2 1 2

2 2 2 2
1 2 1 2

1
exp

2 2

1
exp ,

2 2

E S S

   
 

   

    
 

  


  

               
               

   (20) 

with )(x  the standard normal distribution. 
Proof. The derivation is left as exercise. □  
The formula (20) is the unifying mathematical content 

leading to the (slightly extended) European call option 
formula by [6] (Theorem 1) (see also [7-9]) and the 
(slightly extended) formula by [10] for pricing the ex-
change option (Theorem 2). Both formulas are validated 
within a multiple risk economy. 

Theorem 1 (Black-Scholes in a multiple risk economy) 
Under the assumptions of Proposition 2, the market val-
ue at time 0s   of a European call option on the finan- 
cial instrument  , 1, ,kI k m   with strike time t s  
and strike price K  is given by the formula 

    
        

      
,

1

,
2

,

, ,

m k
s t t

m k k m
s s

k m

E D S K

D S d s t

K P s t d s t



   

  

  

       (21) 

with 

   
        

 
         

2

,
1

, ,
2 1

1
ln , ,

2
, ,

,

, , , ,

0 , 1, , .

k
s k

k m

k

k m k m
k

S K R s t v s t t s
d s t

v s t t s

d s t d s t v s t t s

s t k m

    
 



  

   
 

(22) 

Remark 2 If for 1m   one specializes to the Black- 
Scholes single risk economy with constant risk-free return 
 , 0R s t r   and Black-Scholes return model with 

constant volatility  1 1,v s t  , one recovers the origi-
nal formula in [6]. 

Proof. This is an application of Lemma 1. We distin-
guish between two cases. If 1m   one writes using (14) 
that       1 1 1 2 2 21 1 U U

t tD S K e e    


    with 

        

     

1 2
1 1

1 2
1 1

1
ln , ,

2
1

ln , ,
2

s

s

D R s t t s s t t s

S m s t t s

 



    

     
 

 

        1 2
2 1

1
ln , , ln ,

2sD R s t t s s t t s K        

     
        

    

1 1 1 2 1

1 1
1 1 1 2

1 1

, , , , ,

sgn , , , ,

sgn , , .

t s t s

v s t s t t s s t t s

U v s t s t W U W

v s t s t

   



 
 

    

    

  

 

Through elementary algebra one sees that (use the de-
finition of  1 ,s t  in (13)) 

  

        

        

   

     

2 2 2
1 2 1 2 1

2
1 2 1 1 2

1 2
1

2
1 2 2 1 2

1 2
1

1 12
1 1

12
2 2

2 , ,

1
ln , , ,

2

1
ln , , ,

2

1
ln ln ,

2
1

ln ln , .
2

s

s

s s

s

v s t t s

S K R s t v s t t s

S K R s t v s t t s

D S

D K R s t t s

  

    

    

 

 

   

  

     
 

  

     
 

  

    

 

Plugging into (20) one obtains (21). If 2m   it suf-
fices (for reasons of symmetry) to show (22) for 1k  . 
For this consider the quantities      

2 , ,m ms t   defined 
by 

       

       

         

2 2

2
2

2

2 1
2

, ,

, , ,

, , .

m
m m

j
j

m m
ij i j

i j m

m
m m m

j j
j

s t s t

s t s t

s t s t

 

  

   



  















 

From the proof of Proposition 2 one has  
     , ,ms t s t λ C β , which in particular implies the id- 

entity            1 1 2, , ,m m ms t s t s t     , which is used  

several times below. Using (12) one has  
      1 1 1 2 2 21m U U
t tD S K e e    


    with 
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1 2
1 1 1

2

2 2

1 2 1 2

1 1
ln , , ln , ,

2 2

1
ln , , ln ,

2

, , , 2 , , ,

m
s s

m
s

m m m m m

D R s t A s t t s S m s t t s

D R s t A s t t s K

A s t s t s t s t s t

 



    

             
   
      
 

  

 

              22 2
1 1 1 1 2, , 2 , , ,    , ,A s t v s t v s t s t t s A s t t s           

              1
1 1 1 1

2

, , , ,
m

m m j
t s j t s

j

U v s t s t t s W s t t sW   


       

           

          

1
2 2 1

2

1 2 1 1 2 2 1 1

, , ,

, , , , .

m
m m j

t s j t s
j

U s t t s W s t t sW

Cov U U A s t v s t s t t s

  

    

 


     

    


 

 
Elementary algebra shows the relations (use the defi-

nition of  1 ,s t  in (13)) 

  

        

        

   

    

2 2 2
1 2 1 2 1

2
1 2 1 1 2

1 2
1

2
1 2 2 1 2

1 2
1

12
1 1

2
2 2

2 , ,

1
ln , , ,

2

1
ln , , ,

2

1
ln ln ,

2
1

ln ln , .
2

s

s

m
s s

m
s

v s t t s

S K R s t v s t t s

S K R s t v s t t s

D S

D K R s t t s

  

    

    

 

 

   

  

     
 

  

     
 

  

    

 

Inserting into (20) one obtains (21) for 1k  .□ 
Theorem 2 (Margrabe in a multiple risk economy) 

Under the assumptions of Proposition 2, the market val-
ue at time 0s   of a European exchange option on the 
financial instruments  , , 1, ,kI I k m     with strike 
time t s  is given by the formula 

      

   
       

 

 
        

 

         
 

2

2

2 2 2

1
ln ,

2
,

1
ln ,

2          ,
,

, , , 2 , , ,

0 , 1, , .

m k
s t t t

k
s s

m k
s s

k
s s

s

k k k

E D S S

S S v s t t s
D S

v s t t s

S S v s t t s
S

v s t t s

v s t v s t v s t s t s t

s t k m

  



    
     

  
     

    
   

    
  

   









  

 

 (23) 

Proof. For reasons of symmetry it suffices to show (23) 
for 1,  2k   . Consider the quantities    3 , ,m s t  

   
1 2,m m   defined by (if 2m   the sums are empty 

and the quantities zero) 

       

       

         

         

2 2

3
3

3

1 3 1
3

2 3 2
3

, ,

, , ,

, , ,

, , .

m
m m

j
j

m m
ij i j

i j m

m
m m m

j j
j

m
m m m

j j
j

s t s t

s t s t

s t s t

s t s t

 

  

   

   



  





















 

Since      , ,ms t C s t    (proof of Proposition 2) 
one has in particular the identities 

               
               

1 1 12 2 1 3

2 12 1 2 2 3

, , , , ,

, , , , .

m m m m

m m m m

s t s t s t s t

s t s t s t s t

     

     

  

  
 

Using (12) one writes 

        1 1 1 2 2 21 2m U U
t t tD S S e e    


    

with 

       

     

             
       

         
         

2

2 2 2

1 2 3

12 1 2

1 1 3

2 2 3

1
ln , ,

2

1
ln , , 1,2,

2

, , , ,

2 , ,

2 , ,

2 , , ,

m
i s

i
s i i

m m m

m m

m m m

m m m

D R s t A s t t s

S m s t t s i

A s t s t s t s t

s t s t

s t s t

s t s t
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22
1 1 1 1

22
2 2 2 2

1
1 1 1 1

2
2

3

1
2 2 1

2
2 2

3

1 2

, , 2 , , ,

, , 2 , , ,

, ,

, , ,

,

, ,

, ,

m
t s

m
m m j

t s j t s
j

m
t s

m
t s

m
m j

j t s
j

A s t v s t v s t s t t s

A s t v s t v s t s t t s

U v s t s t t s W

s t t s W s t t sW

U s t t s W

v s t s t t s W

s t t sW

Cov

 

 

 

 

 





 



 









    

    

   

    

   

   

 







 
         

     

1 1 2 2

1 1 2 2

12 1 2

,

, , , , ,

   , , .

U U

A s t v s t s t v s t s t

v s t v s t t s

 

 



  

  

 

One obtains the relations (use again the definition of 
 , , 1, 2i s t i   in (13)) 

          
   

        

        

   

2 2
1 2 1 2

2 2
1 2 12 1 2

2

2
1 2 1 1 2

1 2 2

2
1 2 2 1 2

1 2 2

2

2

, , 2 , ,

, ,

1
ln , ,

2

1
ln , ,

2
1

ln ln , 1, 2.
2

s s

s s

m i
i i s s

v s t v s t s t s t t s

v s t t s

S S v s t t s

S S v s t t s

D S i

  

  

    

    

 

 

    

  

  

   

  

   

   

 

Inserting into (20) one obtains the Formula (23) for 
1, 2k   .□  

It might be useful to conclude with a short summary. 
If one starts with the stochastic representation (9) of the 
real-world prices for the risks in the economy, the deri-
vation of the formulas is rather elementary. It only uses 
introductory Probability Theory (including the notion of 

Martingale) and Linear Algebra. Therefore, the proof is 
accessible to any knowledgeable person in these mathe-
matical areas. Moreover, the approach is different from 
the original one (hedging argument, use of Itô’s Lemma 
and solution of a partial differential equation). It leads to 
new insight in Option Pricing Theory. Besides a general 
validation in a multiple risk economy, the proposed de-
rivation implies a risk-neutral property of independent 
interest, i.e. the formulas are invariant with respect to the 
market prices of the risk factors. 
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