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Abstract

We consider an economic model with a deterministic money market account and a finite set of basic economic
risks. The real-world prices of the risks are represented by continuous time stochastic processes satisfying a
stochastic differential equation of diffusion type. For the simple class of log-normally distributed instanta-
neous rates of return, we construct an explicit state-price deflator. Since this includes the Black-Scholes and
the Vasicek (Ornstein-Uhlenbeck) return models, the considered deflator is called Black-Scholes-Vasicek
deflator. Besides a new elementary proof of the Black-Scholes and Margrabe option pricing formulas a vali-

dation of these in a multiple risk economy is achieved.
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1. Introduction

The first rigorous mathematical derivation of the Black-
Scholes formula in [1] (see also [2]) relies on a dynamic
delta-hedge portfolio and a risk-free argument of no-
arbitrage. Later on [3] introduced state-price deflators,
which led to the insight that deflator based market valua-
tion using the real-world probability measure is equiva-
lent to market valuation based on a risk-neutral martin-
gale measure.

The present contribution focuses entirely on state-price
deflators, which are summarized in Section 2. We consi-
der in Section 3 an economic model that contains a mon-
ey market account with deterministic continuous-com-
pounded spot rates and a finite set of basic economic risks
(interest rates, stocks and equity, property, commaodities,
inflation, currency, etc.). The real-world prices of these
risks are represented by continuous time stochastic proc-
esses satisfying a stochastic differential equation of dif-
fusion type. In the simplest situation of log-normally dis-
tributed instantaneous rates of return, which includes the
Black-Scholes and the Vasicek (Ornstein-Uhlenbeck) re-
turn models, we construct in Proposition 3.2 the so-called
Black-Scholes-Vasicek (BSV) deflator.

The application of the BSV deflator to option pricing
follows in Section 4. Besides a new elementary proof of
the (slightly extended) Black-Scholes formula it provides
a validation of it in a financial market with multiple eco-
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nomic risks. The same holds true for Margrabe’s formula
for a European option to exchange one risky asset for
another one.

2. Valuation with State-Price Deflators

Let (©,F,P) be a probability space such that Q is
the sample space, which describes the states of the world,
F is the o -field of events, and P is the probability
measure assigning to any event E in F its probability
P(E). At each time t>0, the o -field K cF de-
notes the set of events, which describes the information
available at time t. An adapted process X is a set
{X},., suchthat X, isarandom variable with respect
to the measurable space (Q,F,).

In continuous time finance one considers adapted price
processes S :{St}tZO such that S, represents the ran-
dom value at time t of a financial instrument. To place a
market value or price on any financial instrument, we
consider a (state-price) deflator D ={D,} _, , that is a
strictly positive adapted process such that the stochastic
value S, payable at time t has value at time s<t
given by the formula

S, =D;'-E,[D;S,], 0<s<t,
where by convention E,[X,]=E,[X,|F, ] denotes the

expected value (under the real-world probability measure
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P) of X, at time t given the information at time s.
This means that the adapted deflated or discounted price
process DS ={D,S}_, is a martingale. Recall that
state-price deflators have been introduced in [3], pp. 23
and 97.

3. The Black-Scholes-Vasicek Deflator for
Multiple Economic Risks

We suppose that the economic model contains

1) A deterministic money market account M = {M,}
with value -
M, =M.exp((t-s)R(s,t)), 0<s<t, (1)

where R(s,t),0<s<t, are the deterministic continu-
ous-compounded spot rates. The price at time s of a
zero-coupon bond paying one unit of money at time t
(that corresponds to the money market account) is de-
fined and denoted throughout by

P(s.t)=exp(—(t-s)R(s,t)),

2) A finite set of m economic risks (interest rates,
stocks and equity, property, commodities, inflation, cur-
rency, etc.), which are measured by indices. The conti-
nuous instantaneous change in each index defines a fi-
nancial instrument I,,k=1---,m, whose real-world
price is represented by a continuous time stochastic pro-

cess S* = {ka)}tzo

0<s<t. (2

, Which satisfies a stochastic differ-
ential equation
dst) = 4, (t,r( ) dt+ o (£, )8 aw,"
k = 1’ -ee,m

where the instantaneous rate of return r®) is assumed
to follow a diffusion process

©)

ar, ()—,uk(t r )dt+o-k(t r )dw k=1---,m, (4)
with g (t,-) the drlft O (t,-) the instantaneous stan-
dard deviation, and W a standard Wiener process. The
standard Wiener processes are correlated such that

E[th(i)th(”] = p,dt, 1<i,j<m. (5)

The correlation matrix is denoted by C :(pij) and
we assume that it is a valid correlation matrix, i.e. it is
positive semi-definite. In general, it is still possible to
construct a valid correlation matrix that approximates
with respect to a given norm a given invalid correlation
matrix (e.g. [4] for the spectral decomposition method).
The real-world prices of the financial instruments (1) at a
time t>0 given the information at a previous time
0<s<t can be expressed using an exponential function
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of a stochastic integral as follows.

Proposition 1 The real-world prices of the financial
instruments 1.,k =1,---,m, satisfy the following stocha-
stic representations

ll
s =s®explr —r. —=[o2(u,r" )dul,
t s p t H 2jo_k( u ) (6)

s
0<s<t, k=1--,m
Proof. For fixed k set th(rt(k),sfk)) to see that
dX, =M (t, X, )dt+ > (t, X, )aw,
with

M (t, X,)= (ﬂk (t, rl(k)),gt(k)ﬂk (t, ) )) ,

3 (tX,)= (ak (65,50, (t.5 >))

The result follows through application of the bivariate
version of 1t6’s Lemma (e.g. [5], Section 2). [

For simplicity, and to describe the main features in an
analytical way, we restrict the attention to either Black-
Scholes return processes dr*) = s dt+ o, dW,*) (stocks
and equity) or Vasicek (Ornstein Uhlenbeck) return pro-

cesses dr¥) =a, (b —r )dt+a dw, ) (interest rates,

property, commodities, inflation, currency, etc.). In both

cases the return differences r) —r) 0<s<t, are nor-

mally distributed, which implies that the prices (6) are log-

normally distributed. For a unified analysis let m, (s,t)

and v, (s,t) denote the mean and standard deviation

per time unit of these return differences as given by
Black-Scholes return model

m(sit)= s, v (sit)=0,, 0<s<t )
Vasicek return model

m s- )

t-s

8
l_e—Zak(t—s) ( )
2a, (t-s)

v (sit) =0,

In this situation Proposition 1 yields the following
equalities in distribution

s =g exp{(mk (s,t)—%ak j(t s)+vVt—s-w }

0<s<t, k=1---,m
k ©)
where the W( )’s are correlated standard Wiener pro-

cesses such that E[dW dW } p;dt.
Following Section 2 consider now the Black-Scholes-
Vasicek deflator in the multiple risk economy, for short

BSV deflator, which has the same form as the price pro-
cesses in (9), i.e.
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D™ =p{™ exp{a(m) (s,t)(t-5)- 8™ (s,t) Vs ~WH}, 0<s<t, (10)

for some parametric function o™ (s,t) and vectors
(m) (m) (m) !
B ()= (s:8). - A7 (s11))

.
I/Vt—s :(Wt(—lg""’wt(—s)) :
To define a state-price deflator the stochastic proces-
ses (9) and (10) must satisfy the martingale conditions

S
E, [Dfm)st(k)J = ng)Sgk), 0<s<t, k=1,---,m.

Proposition 2 (BSV deflator) Given is a financial
market with a risk-free money market account and m
economic risks that have log-normal real-world prices
(9). Assume a non-singular valid correlation matrix C
with non-vanishing determinant. Then, the BSV deflator
(10) is determined by

m

p™ =™ exp{—R(s,t)(t—s)—%Z A" (5,1 (t-s)

=1

- X piiﬂi(m) (s,t)ﬂ}m) (s.t)(t-s)

1<i<j<m

RN

0<s<t,
(12)
with
" (s,t) = det(C)” -i(—l)i+j det(C()- 4 (s.1),
Ast) = (5.9 -R(s.) (o _Vf(s’t)), (13)

vi(s.1)
0<s«<t,

where C! s the matrix formed by deleting the i-th
row and j-th column of C. The quantity 4 (s,t) is
called market price of the i-th economic risk.

Remark 1 In the Black-Scholes return model the
market price of the i-th economic risk is given by
A (s.t)=(s,—R(s,t)) /o, (Sharpe ratio).

Proof. The martingale conditions (11) are equivalent
with the system of equations
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R(S,t)+a(m) (s,t) +%iﬂfm) (s,t)2
=

+ 3 M (s, )" (s,1)=0, 0<s<t,

I<i<j<m

(14)

2

™ (s,t)+m, (s,t)_%o—g +%(vk (s.0)- A" (s.1))

(9 (504" () T Al (5

ik (15)
SN T AN 0 (5020
0<s<t, k=1---,m.

Insert (14) into (15) using the definition of 4 (s,t) to

obtain the matrix equation C- g™ (s,t)=4(s,t), where
A(s,t)=(A4(s,t), . 4, (s,t))T is the market price vec-
tor of economic risks. If Adj(C) denotes the adjoint
matrix, then by Cramer’s rule one has
g™ (s,t)= det(C)’1 -Adj(C)-4(s,t), which implies the
more explicit formula (13). The expression for the para-
metric function a(s,t) follows from (14). [J
Examples 1 For a single economic risk the BSV def-
lator reads

Dl = B exp{—R(s,t)(t—s)—%ﬂf (s.0)(t=s)
—ﬂl(s,t)\/a-wt_s},
Lio2ov s,
. ml(s,t)—R(s,vtl)(;f)(o-l 2 ( t)) beset
(16)

The other lower dimensional special cases are fully
analytical. For m=2 one has

B2 (s,1) = ﬂl(s’t)_l’lzﬂa (s,t),
1-p 17)

(2) _ 2 (5,1) = P (s:1)

ﬂz (S't)_ l_p122 !

Similarly, for m=3 one has (note for mnemonic pur-
poses the cyclic permutations)

(s,t)-det(C) = 4 (5,1)(1= p5 ) = 4 (3,1) (P12 — Prsas) — A (3,1) (13 = Profss),
B (,1)-det(C) = 4, (5,t) (1= pf ) = A (3,1) (028 = o1 ) = A (5:1) (P12 = Pospis )

(s,t)-d (C):/13(s,t)(l—pfz)—ﬂj(s,t)(pm—p23p12)—12(s,t)(p23—p13p12),
det(C) =1—(p122 + Pk, +p123)+ 21, Pr3P13-

(18)
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4. The Black-Scholes and Margrabe
Formulas in a Multiple Risk Economy

We begin with an elementary result in probability theory.
Suppose that the random vector (S,,S,) has a bivariate
lognormal distribution with parameter vector

(44,01, 445,05, p) such that the standardized random
vector

(Ul,U) (InS lensf)_ﬂzj (19)

U

has a standard bivariate normal distribution with correla-
tion coefficient p .

Lemma 1. The expected positive difference of the bi-
variate lognormal spread is given by

E[(Sl—52)+:|

— 2 —
— exp[ﬂl +£012J(D M~y T U — pub, (20)
2 \/1)12 +0 =2puw,

_exp(luz_;’_lsz M~ U22+pUlU2 ,
2 \/Ul +0; -2pu,

with ®(x) the standard normal distribution.

Proof. The derivation is left as exercise. [

The formula (20) is the unifying mathematical content
leading to the (slightly extended) European call option
formula by [6] (Theorem 1) (see also [7-9]) and the
(slightly extended) formula by [10] for pricing the ex-
change option (Theorem 2). Both formulas are validated
within a multiple risk economy.

Theorem 1 (Black-Scholes in a multiple risk economy)
Under the assumptions of Proposition 2, the market val-
ue attime s>0 of a European call option on the finan-
cial instrument 1, k € {1,---,m} with strike time t>s
and strike price K is given by the formula

E, [D}m (st - K)J

- p™ -(s§k> o (d" (s,1)) 1)

S

—K-P(s,t)-@(df"" (s.1)))

with

( /K) ( 5t+;vk(st))(t—s)
v (s,t)Vt—s

™ (s,t) =d*™ (s,t) v, (s,t)Vt -,

0<s<t, k=1---,m

4 (51) -

(22)
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Remark 2 If for m=1 one specializes to the Black-
Scholes single risk economy with constant risk-free return
R(s,t)=r>0 and Black-Scholes return model with
constant volatility v, (s,t)=o,, one recovers the origi-
nal formula in [6].

Proof. This is an application of Lemma 1. We distin-
guish between two cases. If m=1 one writes using (14)
that Dfl) (Sf” - K) = (e"l“’1U1 —grerea )+ with

R(s,t)(t—s)—%ﬂf(s,t)(t—s)
+Ins? +(ml(s,t)——o-fj(t—s),

“In D§1>-R(s,t)(t-s)-%zf(s,t)(t-s)+|nK,

(s,t |J— A (s, t)ﬂ
U, =sgn(v, (s, t) ﬂi(s,t))wl(fg, U, =-w",

p=-sgn(v,(s,t)- 4 (s.1)).

Through elementary algebra one sees that (use the de-
finition of 4, (s,t) in (13))
v +0; —2puw, =V; (st)(t-s),

w=In Dgl)—

v =|v (s,t)-

= +Ulz—pUll)2

“in(s® /k)+ ( 0+ v (s,t)j(t—s),
H = Hy = U3 + pULD,

—in(s® /k)+ ( (s0)-2v (s,t)J(t-s),

m +%uf =InDY +InsY,

@ +%022 =InDY +InK —R(s,t)(t-s).

Plugging into (20) one obtains (21). If m>2 it suf-
fices (for reasons of symmetry) to show (22) for k=1.
For this consider the quantities ™ (s,t), 7™ defined

by
B (s1) =3 A7 (s.t)

+ 3 B (A" (st),

2<i<j<m
t)= Z;,Dljﬁj(m)(s,t).
J:

From the proof of Proposition 2 one has
A(s,t)= c-p™ (s,t), which in particular implies the id-
entity 4 (s,t)= 4" (s,t)+p ™A™ (s,t), which is used
several times below. Using (12) one has
Dt(m) (St(l) —K )+ _ (e#1+01U1 _ gt )+ with

MM (s,
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~nD{" <[ R(s.0)+ 3 A0 |(1-5) +ins 4 [ my(s:) o | (t-9),
o =D ~(R(s.)+3 A(s1)(t-9)+Ink
A(s,t) =" (s.t) + B (s.t) +20™ A" (s) B (s.0),

o =(A(st)+v () ~24 (s, ) A (s.1))-(t=s), 0f = A(s,t)-(t-s),
MCONERRTERS WA CONEETE

vy, :(vl(s,t)—ﬂl(

L .
oM, ==A" (s.)Vt=s - W - Zﬁ’?m) (s,t)vt—sw ),

puw, =Cov[vlU,,vU, ] =(A(s,t) -V, (s,t) 4 (5,1))- (t—s).

Elementary algebra shows the relations (use the defi-
nition of A, (s,t) in (13))

v +0; =2puw, =V (s,t)(t-s),
th =ty + 0 = pUv,

( /K)( st+;v1(st)j(t—s),

- 0% + puy,
( /K)( st—%vl(st)J(t—s),

=InD!™ +InsY,

)

1,
/ul+501
1, +%u§ =InD™ +InK —R(s,t)(t-s).

Inserting into (20) one obtains (21) for k =1.1

Theorem 2 (Margrabe in a multiple risk economy)
Under the assumptions of Proposition 2, the market val-
ue attime s>0 of a European exchange option on the
financial instruments 1,, 1,k # (e {1---,m} with strike
time t>s isgiven by the formula

E, [D@ (509 -s" ” _

o [ (/54 2 0 -s)
D" s (s,t)F
-l ( /Sv(s)t) t—sSt)t S =

V(5.0) = V2 (5.) V2 (8.0) -2, (5. (s.),
0<s<t, k#le{l---,m}.
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Proof. For reasons of symmetry it suffices to show (23)
for k=1, ¢=2. Consider the quantities A" ( t),
™, ﬁém) defined by (if m=2 the sums are empty
and the quantities zero)

A (1) = 3 A7 (1)
j=3
+ Z pi B (1) 7 (s.),

,01(,3 ( ) ZleﬂJ( )
A B (sit) = sz,ﬂj( t)

Since ﬁ(s,t)zc-ﬁ (s, ) (proof of Proposition 2)
one has in particular the identities

A (s.)= A7 (5.0)+ oA (s,8)+ AT A (s.11),
2 (5,8) = A (5,0)+ A7 (s.8) + VA (s,1).
Using (12) one writes

Dt(m) (St(l) _ S[(Z) )+ _ (eﬂﬁUM _gta+vdls )

+

with
~InD™ —(R(s,t)+%A(s,t)j(t—s)

+Ins® +(mi (s,t)—%o-fj(t—s), i=12,

A(st)= B (1) + A7 (s.1) + A" (s.1)
+2p, 8" (1) A" (s.1)
+2p" A" (s ) A" (s,1)
+2p" A" (s ) B (s.1),
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of =(A(s.t)+v (s,0)" = 2v; (s,t) A (s,1) (),
0 =(A(s.)+v, (s,)" = 2v, (s,) & (s,1))-(t-5),
U, = (Vl (S’t)_ﬂfm) (S’t))ﬂ'wt(—lg

e (s,t)vt—s-W? - Zﬁ}m) (s,t)Vt- sw, ),
i3

o, =" (s,t)Vt-s W
(v, (5,0) A (5.0)) =S W2
—iﬂ}m) (s,)Vt—sw Y,

puw, =Cov[uU,,v,U, |

= (A =% (5 A (s.0)=v, (5:) 4 (5.0

+ppV (S, 1)V, (5,))-(t=5).

One obtains the relations (use again the definition of
A (s,t),i=12 in(13))

vf +0? -2 po,
= (V7 (s:t)+v3 (s,t) = 20,1, (s, ) v, (5,1))-(t =)
=V2(s,t)-(t-s),
H =y + U — pUD,
:In(SS)/Siz))Jrlvz(s,t)-(t—s),
2
th = My = U3 + PO,
1
:|n(s§1>/s§2))—§v2(s,t)-(t—s),
L, +%uﬁ =InD!™ +Ins"Y, =12

Inserting into (20) one obtains the Formula (23) for
k=1,¢=2.0

It might be useful to conclude with a short summary.
If one starts with the stochastic representation (9) of the
real-world prices for the risks in the economy, the deri-
vation of the formulas is rather elementary. It only uses
introductory Probability Theory (including the notion of
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Martingale) and Linear Algebra. Therefore, the proof is
accessible to any knowledgeable person in these mathe-
matical areas. Moreover, the approach is different from
the original one (hedging argument, use of It6’s Lemma
and solution of a partial differential equation). It leads to
new insight in Option Pricing Theory. Besides a general
validation in a multiple risk economy, the proposed de-
rivation implies a risk-neutral property of independent
interest, i.e. the formulas are invariant with respect to the
market prices of the risk factors.
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