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Abstract 
 
A mathematical model for blood flow in the small blood vessel in the presence of magnetic field is presented 
in this paper. We have modeled the two phase model for the blood flow consists of a central core of sus-
pended erythrocytes and cell-free layer surrounding the core. The system of differential equations has been 
solved analytically. We have obtained the result for velocity, flow rate and effective viscosity in presence of 
peripheral layer and magnetic field .All the result has been obtained and discussed through graphs. 
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1. Introduction 
 
Blood shows anomalous viscous properties. The anoma- 
lous behavior of blood is principally due to the suspen-
sion of particles in plasma. The plasma solution in the 
blood obeys the linear Newtonian model for viscosity [1]. 
However, blood as a whole is often considered as non- 
Newtonian fluid, particularly when the characteristic di- 
mension of the flow is close to the cell dimension. The 
experimental observations and theoretical analysis of 
blood flow are very useful for the diagnosis of a number 
of cardiovascular diseases and development of patho- 
logical patterns in animal or human physiology [2]. The 
flow of blood through small diameter tubes is of physio- 
logical and clinical importance. Due to its complexity and 
anomalous behaviour, it is very difficult to analyze it. The 
two types of anomaly are due to low shear and high shear 
effects [3]. When blood flows through larger diameter ar- 
teries at high shear rates, it behaves like a Newtonian 
fluid. The apparent viscosity of blood decreases with de- 
creasing blood vessel diameter, when measurements are 
made in capillaries of diameter less than 300  m [4]. 

Pries et al. [5] studied the effect of the tube diameter 
and the hematocrit ratio on the blood viscosity and found 
that for tube diameters greater than 1 mm, the blood vis- 
cosity is independent of the diameter while for tube di- 
ameter less than 1 mm, the blood viscosity is strongly de- 
pendent on the tube diameter. They also reported the vis- 
cosity increases non-linearly with the hematocrit. Bug-

liarello and Sevilla [6], Cokelet [7] and [8-10] have re-
ported that for blood flowing through narrow blood ves-
sels, there is a peripheral layer of plasma and a core re-
gion of suspension of all the erythrocytes. 

Also the red blood cell is major bio-magnetic subs- 
tance and the blood flow may be influenced by the mag- 
netic field [11]. The effect of magnetic field on blood 
flow has been analyzed theoretically by treating blood as 
an electrically conductive fluid [12]. Assuming blood as 
a magnetic fluid, it may be possible to control blood pre- 
ssure and its flow behavior by using an appropriate mag- 
netic field. Hence such studies have potential for thera-
peutic use in the diseases of heart, blood and blood ves- 
sels. 

Most of the model [13-17] on blood flow deal with 
one phase model. However, in view of the fact that blood 
is a suspension, a two-phase model appears to be more 
appropriate. Wagh and Wagh [18] have used [19] a mo- 
del of dusty gas to study the effect of the magnetic nature 
of red blood cells of the flow of blood. The reason is, 
blood is a liquid suspension having mass and volume 
concentrations roughly the same, however, for dusty gas 
the mass and bulk concentrations are quite different [20], 
Nayfeh’s [21] two phase model seems to be more suita-
ble for blood flow. 

In view of the above mentioned fact, we have consid- 
ered the two phase model consisting of central core of 
suspended erythrocyte and cell free layer surrounding the 
core in the presence of magnetic field. 
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2. Mathematical Analysis 
 
We have considered a two layer model (Figure 1) for the 
blood flow within cylindrical vessel of radius R consist-
ing of central core radius R1, which contains an erythro-
cyte suspension of uniform hematocrit and a cell free 
layer outside the core containing plasma. We have taken 
some assumptions for formulating the mathematical mo- 
del. 

Blood is considered as viscous, incompressible and 
electrically conducting fluid. Fluid flow is steady and la- 
minar. Magnetic field is constant in transverse direction. 
 
2.1. Governing Equations 
 
Introducing the assumptions mentioned above the go-
verning equation for the fluid flow are given as. 
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Where ,r z   are radial and axial co-ordinate, fu  
and pu  are the velocities of the fluid (plasma) and par-
ticles (red cell),   is the volume fraction of the red 
cells,  s   is the suspension viscosity, dF  is the 
drag coefficient of interaction for the force exerted by 
one phase on the other, 0k  is the magnetic permeability,  

pM  is the magnetization of red cells and 
dH

dz


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 is the  

magnetic field gradient. The expression of the drag coef-
ficient is given by: 
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Where f  is the constant fluid viscosity. 
The viscosity of the suspension is given by an empiri-

cal relation. 
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Figure 1. Flow geometry of blood in small vessels. 
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2.2. Boundary Conditions 
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2.3. Solution of the Problem 
 
Introducing the following non-dimensional scheme. 
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The expression for the velocities 0u , fu , and pu , 
obtained as the solution of Equations (1)-(3), subjected to 
the boundary conditions are given as: 
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The flow flux (volumetric flow rate) is now calculated as 

0 f pQ Q Q Q                (9) 
Using Equations (6)-(8) in the Equation (9) the ex-

pression for flow rate is obtained as: 
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Using the fact that total flux is equal to the sum of the 

fluxes across the two regions (peripheral and core) de-
termines the relation. 

1R R                 (11) 

Using the relation (10) and (11), the expression for the 
effective (apparent) viscosity is given by: 
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3. Results and Discussions 
 
To have a quantitave estimate of the various parameters 
involved, particularly the hematocrit    and magnetic  

field gradient 
H

Hz z

   
, some of the results is dis-  

played graphically in Figures 2-8. 
The variation of effective viscosity  e  for differ-

ent values of magnetic field gradient  zH  is shown in 
Figure 2 and for different values of hematocrit    is 
shown in Figure 3. The effective viscosity increases with 
increasing value of hematocrit. Also, the effective visco- 
sity increases with the increase of the magnetic field gra-
dient. The major mechanism of the influence of a static 
magnetic field on blood flow viscosity is based on the 
interaction between the induced magnetic moment on the 
RBC and the external static magnetic field. This property 
in a static magnetic field increases the friction of the 
flowing blood, because the anisotropic orientation of the 
RBC in the static magnetic field distribus the rolling of 
the cell in flowing blood, and so the blood viscosity in-
creases [22].  

Figure 4 shows the variation of flow rate ( Q ) with 

hematocrit of blood    for different values of mag-
netic field gradient  zH . It is clear from the figure that 
the flow rate decreases slowly with the increase of the  
 

 

(  )  

Figure 2. Variation of effective viscosity  e  with hema-
tocrit of blood    for different values of magnetic field 
gradient   z dH dz . 
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 = 0.6 

 = 0.4 

 = 0.2 

 

Figure 3. Variation of effective viscosity  e  with magnetic 
field gradient   z dH dz  for different values hemato-
crit   . 
 

 

( ) 
 

Figure 4. Variation of blood flow rate  Q  with hematocrit 
of blood    for different values of magnetic field gra-
dient   z dH dz . 
 
hematocrit and decrease with increasing values of the 
magnetic field gradient. It may be observed that the flow 
rate is significantly influenced by the magnetic field gra-
dient, the magnetic nature of the fluid and hematocrit of 
blood   . 

The variation of axial velocities profiles fu  and pu  
for both phase (plasma and erythrocyte) with radial axis 
(r) for different values of hematocrit    are plotted in 
Figures 5 and 7. It has been observed that the fu  and 

pu  decrease with increase of the hematocrit    for 
constant magnetic field gradient  zH  and other para-
meter are keep constant. The effect of hematocrit of 

blood    on the velocity is relatively small near the 
wall. It may be due to the red cell’s tendency to accumu-
late near the tube axis. 

Figures 6 and 8, shows the variation of axial velocites 
profiles fu  and pu  for both phase (plasma and eryt-
hrocyte) with radial axis (r) for different values of mag-
netic field gradient  zH . It is clear from the figure that 

fu  and pu  decrease with increase of the magnetic field 
gradient. Thus, it is of importance to note that though the 
suspending fluid is non magnetic the magnetic field gra-
dient influence its velocity.  

All these results of the present study have been com-
pared with already existing results obtained in the theo-
retical study of [2], [13] and [21]. 

 

  = 0.6 

 = 0.4 

 = 0.2 

 

Figure 5. Variation of phase velocity  fu  with radial axis 
for different values of hematocrit of blood   . 
 

 


 

Figure 6. Variation of phase velocity  fu  with radial axis for 
different values of magnetic field gradient   z dH dz . 
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 = 0.6 

 = 0.4 

 = 0.2 

 

Figure 7. Variation of pluge velocity  pu  with radial axis 
for different values of hematocrit of blood   . 
 

 


 

Figure 8. Variation of pluge velocity  pu  with radial axis for 
different values of magnetic field gradient   z dH dz . 
 
4. Conclusions 
 
This study brings out many interesting fluid mechanical 
phenomena due to the magnetic field and presence of the 
peripheral layer. Blood has been modeled as two-fluid 
model with the core region of suspension of all the eryt-
hrocytes and the plasma in the peripheral region as a 
Newtonian fluid. It is noted that the velocity and flow 
rate decreases, while the effective viscosity increases with 
magnetic field and hematocrit . 

It is clear from the above discussion that magnetic 
field affects largely on the axial flow velocities of blood 
and effective viscosity. So, by taking appropriate values 
of magnetic field we may regulate the axial velocities and 

effective viscosity. 
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