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Abstract 
 
In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's genera-
lized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent 
results are also discussed. 
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1. Introduction and Preliminaries  
 
Let u  and v  be real valued harmonic functions in a 
simply connected domain D in the complex plane , 
then a continuous function f u iv   is called a com-
plex valued harmonic map in D . Clunie and Sheil- 
Small [1] introduced a class SH  of complex valued 
harmonic maps f  which are univalent and sense-pre- 
serving in the open unit disk  : , 1z z z     and 
assume a normalized representation h g where 
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          (1) 

are analytic and univalent in  . Let * ( )SH   denotes 
the class of maps f h g SH    satisfying the condi-
tion 
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for ,0 1,0 2iz re r        and 0 1  , where 

' ' '( ) ( ) ( )zf z zh z zg z  .  

Denote by TSH  the subclass of function 
f h g SH    such that 
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( ) , ( ) .n n
n n
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Also denote * *( ) ( )THS SH TSH   . 

We have following result from the work of Jahangiri 
[2]: 

Lemma 1. Let f h g SH   , ( )h z  and ( )g z  are 
given by (1), satisfies  

     1 1
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2 1n n n n
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       (2) 

then f is sense preserving, harmonic univalent in   
and * ( )f SH  . Furthermore, * ( )f TSH   if and 
only if (2) holds. 

For some  1, 2,3,k    , corresponding to ( )h z  
and ( )g z  defined in (1), let  

( ) ( ) ( )k k kf z h z g z SH              (3) 

where for z , 
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'*' stands for convolution. Since 
1
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( )kh z and ( )kg z for some 2k   in (3), represent series 
of missing terms which increase with k . Involving 

( )kf z , defined in (3), a class ( )kSH   is defined as 
follows: 

Definition 1. A function f h g SH    is said to 
be in the class ( )kSH  , if it satisfies the condition 

' ( )
Re
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zf z

f z


    
  

, 0 1,           (6) 
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where for some k  , ( )kf z  is defined by (3). Func-
tions in the class ( )kSH   are called harmonic starlike 
functions with respect to k-symmetric points of order 

.  
Note that  

*
1( ) ( )SH SH  , 2 ( ) ( )sSH SH  and ( )kTSH    

( ) ,kSH TSH  ( ) ( ) .s sTSH SH TSH    The class 
( )sSH  is studied by Ahuja and Jahangiri in [3] (see also 

[4]). They also proved following result in [3]. 
Lemma 2. Let f h g SH   , ( )h z  and ( )g z  are 

given by (1), satisfies  

     2 1 2 1
1 0

2 1n n n n
n n

n h g h g 
 

 
 

        (7) 

then f is sense preserving, harmonic univalent in   
and ( )sf SH  . Furthermore, ( )sf TSH   if and 
only if (7) holds. 

Shaqsi and Darus in [5,6] proved that for 0 1  , 
k   if ( )kf SH  , then * ( )kf SH   and proved 
following result. 

Lemma 3. Let f h g SH   , ( )h z  and ( )g z  are 
given by (1), satisfies for some k  , 

     1 1
1 0

2 1n n nk nk
n n

n h g h g 
 

 
 

        (8) 

then f is sense preserving, harmonic univalent in   
and ( )kf SH  . Furthermore, ( )kf TSH   if and 
only if (8) holds. 

Obviously Inequality (8) is a generalized inequality 
ensuring f  to be in classes * ( )SH   and ( )sSH   
for 1k   and 2k   respectively. We see that if in-
equality (8) holds, inequality (2) must hold for any 
0 1  and for 0  both are same. Hence, inequality 
(8) for k  and 0 1  , ensures that 

* ( )f SH  and thus it is used in this study. 
If ( ) 0, ,g z z  we denote ( ) ( )k kSH S   which 

is studied by Wang et al. [7] for 
 1 (1 2 )
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in 

the respective class. The class *
2 (0) sS S  is introduced 

by Sakaguchi [8] whose members satisfy the condition  
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Connectivity of hypergeometric functions with har-
monic functions is seen through some of the recent pa-
pers [9-11]. Specially involvement of Wright’s genera-
lized hypergeometric (Wgh) functions is studied in 
[12-23]. Some Wgh inequalities for starlike and convex 
classes have already been obtained in [21,23] for certain 
harmonic functions. 

The Wright’s generalized hypergeometric (Wgh) func- 
tion [24,25], for positive real numbers 

, ( 1,2, , )i ia A i p   and , ( 1, 2, , )i ib B i q   
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Referring to [26], the series in (9) is absolutely con-

vergent z   if 
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    . 

Involving Wgh functions as defined in (9), we consid-
er a univalent, harmonic function ( )W z  of the form: 

( ) ( ) ( )W z H z G z SH              (10) 

where 
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and 
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Denote for some  0 0j     and for any 

k  , 
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It is noted that at 1z  , corresponding series of 
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s z converge absolutely to  , ,1j k j k
s s   , 
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Hence, from (13) and (14), we can easily derive fol-
lowing identities for some 0j  and k  , 
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provided conditions (1) or (2) of (15) hold. The symbol 
( )n  called Pochhammer symbol for non negative n , is 

defined by 

 
( ) ( 1) ( 1)

( )n

n
n


   


 

    


 . 

The object of this paper is to examine some Wgh in-
equalities as a necessary and sufficient conditions for 
univalent harmonic analytic functions associated with 
certain Wgh functions to be in the function class 

( )kSH  for some k  and in particular * ( )SH  and 
( )sSH  . Some consequent results and a convolution 

property are also derived.  

2. Some Wgh Inequalities 
 
In order to derive Wgh inequalities, we use Lemma 3. 

Theorem 1. Let ( ) ( ) ( )W z H z G z SH    be given 

by (10), if for 
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holds, then ( )W z  is sense preserving, harmonic univa-
lent in   and ( ) ( )kW z SH  .  

Furthermore, 1

( )
( ) 2 ( ) ( )k

H z
W z z G z TSH

z
     

 
 

if and only if (18) holds. 

Proof. To show ( )W z  is sense preserving, harmonic 

univalent in   and ( ) ( )kW z SH  , we need to show 

by Lemma 3, that 
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From the given hypothesis and with the use of identi-

ties (16) and (17) for 0,1j   and for any k  , we 
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if inequality (18) holds. Furthermore, if 1( ) ( )kW z TSH  , 

by Lemma 3, inequality (19) holds and hence (18) holds. 
This proves Theorem 1. 

Taking k 1 , in Theorem 1, we get following result. 
Corollary 1. With the same hypothesis of Theorem 1, 

for k 1  if Wgh inequality 
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holds, then ( )W z  is sense preserving, harmonic univa-
lent in   and *( ) ( )W z SH  . Furthermore, 

*
1
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W z z G z TSH
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 if and only if 

(20) holds. 
Remark 1. Taking ( 1, 2, , )i iA B i q    and 

( 1, 2, , )i iC D i s   , the inequality of Corollary 1 

coincides with Theorem 3.1 in [23] for p 1 . 

Taking k 2  in Theorem 1, we get following result. 
Corollary 2. With the same hypothesis of Theorem 1, 

for k 2  if Wgh inequality 
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holds, then ( )W z  is sense preserving, harmonic univa-
lent in   and ( ) ( )sW z SH  .  

Furthermore, 1
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z
     

 
 

if and only if (21) holds. 
 
3. Consequences of Wgh Inequalities 
 

Involving Mittag-Leffler functions [25]: 
1 1

1,1
, ( )B bE z   
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1 1 , ;b B z    ,  1 1 1 1

1,1 (1,1)
, 1 1 ,( ) ;D d d DE z z     , for positive 

real numbers 1 1 1 1, and ,b B d D , we consider a univalent, 

harmonic function ( )E z  for 1   of the form: 
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respectively. Following result can be directly obtained 
from Theorem 1. 

Corollary 3. Let ( )E z be defined by (22), if for some 
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holds, then ( )E z  is sense preserving, harmonic univa-
lent in   and ( ) ( )kE z SH  . Furthermore, 
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if and only if (23) holds. 
Results similar to the Corollaries 1 and 2, for 
( )E z and 1( )E z can be obtained by taking k 1  and 

k 2  respectively in Corollary 3. 
On taking 1i iA B  , 1, 2,3, ,i q   and 1i iC D  , 
1, 2,3, ,i s  , ( )W z reduces to  
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which involve the generalized hypergeometric functions:  
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From Theorem 1, we obtain following result. 
Corollary 4. Let ( )F z  be defined by (24), if for 
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holds, then ( )F z  is sense preserving, harmonic univa-

lent in   and ( ) ( )kF z SH  . Furthermore, 

    1( ) 2 ([ ]), ([ ]), ( )q i s i kF z z F a z z F c z TSH      

if and only if (25) holds. 
Results similar to the Corollaries 1 and 2, for 
( )F z and 1( )F z can be obtained by taking k 1  and 

k 2  respectively in Corollary 4. 
Further, taking 2q s  , 2 2 1b d  , in Corollary 4, 

we get following result for a harmonic univalent function 
defined by Gauss hypergeometric functions. 

Corollary 5. Let for positive real values of 

1 2 1 1 2 1, , , , ,a a b c c d  and for 1  , a harmonic univalent 
function: 
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holds, then ( )G z  is sense preserving, harmonic 

univalent in   and ( ) ( ).kG z SH   Furthermore, 
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if and only if (26) holds. 
Results similar to the Corollaries 1 and 2, for 
( )G z and 1( )G z can be obtained by taking k 1  and 

k 2  respectively in Corollary 5. 
 
4. Convolution Property 
 
In this section, we obtain a covolution property for 
functions belonging to the class ( ).kSH   

Theorem 2. A function = ( )kf h g SH    for some 
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which easily derives the result. 
Based on Theorem 2, we get that harmonic functions, 
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respectively hold. 
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