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Abstract 
 
We introduce a new class of complex valued harmonic functions associated with Wright hypergeometric 
functions which are orientation preserving and univalent in the open unit disc. Further we define, Wright 
generalized operator on harmonic function and investigate the coefficient bounds, distortion inequalities and 
extreme points for this generalized class of functions. 
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1. Introduction 
 
A continuous function f = u + iv is a complex-valued 
harmonic function in a complex domain G if both u and v 
are real and harmonic in G. In any simply-connected 
domain D ⊂ G, we can write ghf  , where h and 
g are analytic in D. We call h the analytic part and g the 
co-analytic part of f. A necessary and sufficient condition 
for f to be locally univalent and orientation preserving in 
D is that |)('||)('| zgzh   in D (see [1]). 

Denote by H the family of functions 

ghf                    (1) 

which are harmonic, univalent and orientation preserving 
in the open unit disc }1|:|{  zzU  so that f is normal-

ized by 01)0()0()0(  zfhf . Thus, for ghf   

∈ H, we may express 
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where the analytic functions h and g are in the forms 
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We note that the family H of orientation preserving, 
normalized harmonic univalent functions reduces to the 
well known class S of normalized univalent functions if 
the co-analytic part of f is identically zero, that is g ≡ 0. 

Let the Hadamard product (or convolution) of two po- 
wer series 
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in S be defined by 
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For positive real parameters 1 , A1,..., p , pA  and 

1 , B1,..., q qB ( p, q   N = 1, 2, 3, ...) such that 
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The Wright’s generalized hypergeometric function [2] 
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If At = 1 (t = 1, 2, p) and Bt = 1 (t = 1, 2, q) we have 
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the relationship: 
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)};0{.;1( 0 UzNNqpqp   is the generalized 

hypergeometric function (see for details [3]) where N 
denotes the set of all positive integers and n)(  is the 

Pochhammer symbol and 
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By using the generalized hypergeometric function Dz- 
iok and Srivastava [3] introduced the linear operator. In 
[4] Dziok and Raina extended the linear operator by us-
ing Wright generalized hypergeometric function. First 
we define a function 
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Let      SSBAW qttptt :,, ,1,1   be a linear operator 

defined by 
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We observe that, for f(z) of the form (1), we have 
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where )( 1 m  is defined by 
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If, for convenience, we write 
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introduced by Dziok and Raina [4]. 
It is of interest to note that, if At = 1 (t = 1, 2, ..., p), Bt 

= 1 (t = 1, 2, ...,q) in view of the relationship (6) the linear 
operator (8) includes the Dziok-Srivastava operator (see 
[3]), for more details on these operators see [3,4,6,7] and 

[8]. It is interesting to note that Wright generalized hy-
pergeometric function contains, Dziok-Srivastava opera-
tor as its special cases, further other linear operators the 
Hohlov operator, the Carlson-Shaffer operator [6], the 
Ruscheweyh derivative operator [7], the generalized 
Bernardi-Libera-Livingston operator, the fractional de-
rivative operator [8], and so on. For example if p = 2 and 
q = 1 with 11    )1(  , 12  , 11  , then 
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is called Ruscheweyh derivative of order δ (δ > −1). 
From (8) now we define, Wright generalized hyperge- 

ometric harmonic function ghf   of the form (1), 

as 

)(][)(][)(][ 111 zgWzhWzfW p
q

p
q

p
q       (11) 

and we call this as Wright generalized operator on har-
monic function. 

Motivated by the earlier works of [1,5,9-13] on the 
subject of harmonic functions, we introduce here a new 
subclass )],([ 1 HWS  of H.  

For ,10    let )],([ 1 HWS  denote the subfam-

ily of starlike harmonic functions Hf   of the form (1) 

such that 
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where )(][ 1 zfW p
q   is given by (11) and .Uz  

We also let HHH VWSWV  )],([)],([ 11   where 

HV  the class of harmonic functions with varying argu-

ments introduced by Jahangiri and Silverman [10], con-
sisting of functions f of the form (1) in H for which there 
exists a real number φ such that 
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)1(),2(mod

)1(







m

m

m   

m

m





        (14) 

where )arg( mm a  and )arg( mm b . 

In this paper we obtain a sufficient coefficient condi-
tion for functions f given by (2) to be in the class 

)],([ 1 HWS . It is shown that this coefficient condition 

is necessary also for functions belonging to the class 
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)],([ 1 HWV . Further, distortion results and extreme 

points for functions in )],([ 1 HWV  are also obtained. 

 
2. The Class ,H 1WS α γ    

 
We begin deriving a sufficient coefficient condition for 
the functions belonging to the class )],([ 1 HWS . 

Theorem 1. Let ghf   be given by (2). If 
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,10    Then )],([ 1 HWSf  . 

Proof. We first show that if the inequality (15) holds 
for the coefficients of ghf  , then the required con-

dition (13) is satisfied. Using (11) and (13), we can write 
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where 
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In view of the simple assertion that )Re(w  if and 

only if 1 1w w      , it is sufficient to show 

that 

( ) (1 ) ( ) ( ) (1 ) ( ) 0.A z B z A z B z         (16) 

Substituting for A(z) and B(z) the appropriate expres-
sions in (16), we get 
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by virtue of the inequality (15). This implies that 
)],([ 1 HWSf  . 

Now we obtain the necessary and sufficient condition 
for function ghf   be given with condition (14). 

Theorem 2. Let ghf   be given by (2) and for 

10    , then )],([ 1 HWVf   if and only if 
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Proof. Since ),],([)],([ 11  HH WSWV  we only 

need to prove the necessary part of the theorem. Assume 
that )],([ 1 HWVf  , then by virture of (11) to (13), 
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The above inequality is equivalent to 
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This condition must hold for all values of z, such that 
|z| = r < 1. Upon choosing φ according to (14) we must 
have (18). 

If (17) does not hold, then the numerator in (18) is 
negative for r sufficiently close to 1. Therefore, there 
exists a point oo rz   in (0, 1) for which the quotient in 
(18) is negative. This contradicts our assumption that 

)],([ 1 HWVf  . We thus conclude that it is both nec-
essary and sufficient that the coefficient bound inequality 
(17) holds true when )],([ 1 HWVf  . This completes 
the proof of Theorem 2. 

If we put 
k

 2
  in (14), then Theorem 2 gives the 

following corollary. 
Corollary 1. A necessary and sufficient condition for 

ghf   satisfying (17) to be starlike is that )arg( ma  

,/)1(2 km    and 2)arg( mb ,/)1(2 km  ,1( k  

).,3,2   

 
3. Distortion Bounds and Extreme Points 
 
In this section we obtain the distortion bounds for the 
functions )],([ 1 HWVf   that lead to a covering re-

sult for the family )],([ 1 HWV . 

Theorem 3. If )],([ 1 HWVf   then 
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Proof. We will only prove the right-hand inequality of 
the above theorem. The arguments for the left-hand ineq- 
uality are similar and so we omit it. Let 

Hf WV   

)],([ 1   taking the absolute value of f, we obtain 

 1
2

( )

(1 ) m
m m

m

f z

b r a b r




   
 

 

 2
1

2

(1 ) .m m
m

b r r a b




     

This implies that 

1
2 1

2
2 1 2 1

2

1 1
( ) (1 )

( ) 2

2 2
( ) ( )

1 1m m
m

f z b r

a b r


  

    
 





 
     

     
         


 

2
1 1

2 1

1 1 1
(1 ) 1

( ) 2 1
b r b r

 
   

    
          

 

2
1 1

2 1

1 1 1
(1 ) ,

( ) 2 2
b r b r

 
   

  
      

 

which establish the desired inequality. 
As consequences of the above theorem and corollary 1, 

we state the following corollary. 
Corollary 2. Let ghf   and of the form (2) be so 

that )],([ 1 HWVf  . Then 
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For a compact family, the maximum or minimum of 
the real part of any continuous linear functional occurs at 
one of the extreme points of the closed convex hull. Un- 
like many other classes, characterized by necessary and 
sufficient coefficient conditions, the family ],([ 1HWV  

)  is not a convex family. Nevertheless, we may still 

apply the coefficient characterization of the ],([ 1HWV  

)  to determine the extreme points. 

Theorem 4. The closed convex hull of )],([ 1 HWV  

(denoted by clco )],([ 1 HWV ) is 
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By setting 
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functions of the form (19) are the extreme points for clco 
)],([ 1 HWV , and so the proof is complete. 

 
4. Inclusion Relation 
 
Following Avici and Zlotkiewicz [9] (see also Rusch- 
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Now, we will examine the closure properties of the 
class )],([ 1 HWV  under the generalized Bernardi-Lib- 

era-Livingston integral operator )( fLc  which is de-
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Therefore )],([)],([)*( 11  HH WVWVFf   and 

since the above inequality bounded by )1(2   while 

)1(2)1(2   . 

 
5. Concluding Remarks 
 
The various results presented in this paper would provide 
interesting extensions and generalizations of those con-
sidered earlier for simpler harmonic function classes (see 
[10,12,13]). The details involved in the derivations of 
such specializations of the results presented in this paper 
are fairly straight-forward. 
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