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Abstract 
 
The two-parameter exponential distribution can often be used to describe the lifetime of products for exam-
ple, electronic components, engines and so on. This paper considers a prediction problem arising in the life 
test of key parts in high speed trains. Employing the Bayes method, a joint prior is used to describe the va-
riability of the parameters but the form of the prior is not specified and only several moment conditions are 
assumed. Under the condition that the observed samples are randomly right censored, we define a statistic to 
predict a set of future samples which describes the average life of the second-round samples, firstly, under 
the condition that the censoring distribution is known and secondly, that it is unknown. For several different 
priors and life data sets, we demonstrate the coverage frequencies of the proposed prediction intervals as the 
sample size of the observed and the censoring proportion change. The numerical results show that the pre-
diction intervals are efficient and applicable. 
 
Keywords: Prediction Interval, Incomplete Data, Bayes Method, Two-Parameter Exponential Distribution 

1. Introduction 
 
Prediction problem has been very often and useful in 
many fields of applications. The general prediction pro- 
blem can be regarded as that of using the results of pre- 
vious data to infer the results of future data from the 
same population. The lifetime of the second round sam- 
ple is an important index in life testing experiments and 
in many situations people want to forecast the lifetimes 
of these samples as well as the system composed of these 
samples (See [1,2] and among others). For more details 
on the history of statistical prediction, analysis and appli- 
cation, see [3,4]. 

As we know, many quality characteristics are not nor- 
mally distributed, especially the lifetime of products for 
example, electronic components, engines and so on. Ass- 
ume that the lifetime of a component follows the two- 
parameter exponential distribution whose probability 
density function (pdf) given by  

   1
; , = exp > ,

x
f x I x

  
 

  
 

     (1.1) 

where > 0  and 0   are called the scale parameter 
and the location parameter, respectively, and  I A  de- 
notes the indicator function of the set A . The readers 
are referred to [5,6] for some practical applications of the 

two-parameter exponential distribution in real life. The 
recent relevant studies on the two-parameter exponential 
distribution can be found in [7-9], etc. 

In this paper, we adopt the following testing scheme: 
for n  groups of components, which come from n  dif- 
ferent manufacture units possessing the same techno- 
logy and regulations, we sample m  components from 
each group and put them to use at time = 0t  and to 
practice economy the experiment will be terminated if 
one of the m  components is ineffective, where m  is a 
predetermined integer. Denote the lifetime of the ineffe- 
ctive component by  1iX i n  . Obviously, =iX  

 1 2min , , , ,i i imX X X where  1ijX j m   is the life 
of the j -th component of the i -th group. Hence, we 
obtain n lifetime data 1 2, , , .nX X X  If iX a , 
where > 0a  is a known constant, then we again sample 
one component from the i -th group and denote its 
unknown lifetime by iY . In this paper, our interest is to 
predict the average life of the second round sample, i.e., 
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n n
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     . For instance, 
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     approximately des- 

cribes the average lifetime of a system of k  com- 
ponents, based on the samples of the second round, is 
connected in active-parallel which fails only when all k  
components fail. *Sponsored by the Scientific Foundation of BJTU (2007XM046) 
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Normally, there are two different views on prediction 
problems, the frequentist approach and the Bayes appr- 
oach. The Bayesian viewpoint has received large atten- 
tion for analyzing data in past several decades and has 
been often proposed as a valid alternative to traditional 
statistical perspectives (see [10-12], etc.). A main diff- 
erent point between the Bayes approach and the frequen- 
tist approach is that in Bayesian analysis we use not only 
the sample information but also the prior information of 
the parameter. 

To adopt the Bayes approach, we regard the para- 
meters   and   as the realization value of a random 
variable pair  ,U  with a joint prior distribution 
 ,G   . 
Let      1 1 2 2, , , , , ,n n       be independent and 

identically distributed (i.i.d.) with the prior distribution 
 ,G   , and conditionally on  ,i i   assume ijX  

has the pdf (1.1) which will be denoted by  ,f x    
in the following section. Set  
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              (1.2) 

Our problem is how to construct a function 
 1 2, , , ng X X X  to predict S . 
As we know, many statistical experiments result in 

incomplete sample, even under well-controlled situations. 
This is because individuals will experience some other 
competing events which cause them to be removed. In 
life testing experiments, the experimenter may not al- 
ways be in a position to observe the lifetimes of all 
components put on test due to time limitation or other 
restrictions(such as money, material resources, etc.) on 
data collection (see [9,13] and others). Hence, censored 
samples may arise in practice. In this paper we assume 
furthermore that  1 ,  1ijX i n j m     are censored 
from the right by nonnegative independent random vari- 
ables  1iV i n   with a distribution function W . It is 
assumed that  1 ,  1ijX i n j m     are independent 
of  1iV i n  . In the random censorship model, the 
true lifetimes   

1 2= min , , , 1i i i imX X X X i n   are 
not always observable. Instead, we observe only 

 = min ,i i iZ X V and  =i i iI X V  . 
The paper is organized as follows. In Section 2, based 

on   , 1i iZ i n   , we define a predictive statistic for 
S  and simulate its prediction results under the condition 

that the censoring distribution W  is known. In Section 
3, when the censoring distribution W  is unknown, we 
obtain a similar result for a corresponding predictive sta- 
tistic of S  as well as demonstrate the prediction perfor- 
mances. Some conclusions and remarks are presented in 
Section 4 and Section 5 deals with the proofs of the main 
theorems. 
 
2. Predictive Statistic for S  with Known W  
 
Note that ijX  has the conditional pdf  ,f x   , we 
know that, given  ,  ,  1 2= min , , ,i i i imX X X X  
has the pdf  

     , = exp > .
m xm

l x I x


  
 

 
 
 

  (2.1) 

Since iX  and Y  ( if i iX a ) come from the same 
group,   , 1i iX Y i n   would be i.i.d. with common 
marginal pdf  

       , = , , , ,
U

p x y l x f y dG     
   (2.2) 

where U denotes the support of the prior distribu- 
tion  ,G   . 

Rewrite  
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By Fubini’s theorem, we know Equation (2.4) (Below) 
and 

      
 

1
2

=1

( , )

= = ,

      = exp ,

n

i i
i

ES E n I X a E E I X a

m a
E  

 




        
  

  
   


 

(2.5) 
where  ,E    denotes the expectation with respect to 
 ,  . 

Based on   , 1i iZ i n   , we define  
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 (2.6) 
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and 

 
 2

=1
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= .
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           (2.7) 

Note that conditionally on  ,i i   all  1iZ i n   
are i.i.d. with the distribution function  

    = 1 1 1 ,H W z L z       , 

where       
0

( , ) = , ,
z

L z l x dx     

we have Equation (2.8) (Below) 
and 

 
 

 
 

 
   

 
 

1 1
2

1

,

2,

=
1

      = ,
1

      = exp = .

x v

I Z a
ES E

W Z

I x a
E dW v l x dx

W x

m a
E ES

 

 



 






 
 

 
  
 

 
  

  
  

  (2.9) 

Hence, the statistics  = 1,2iS i  have the same exp- 
ectation as  = 1,2iS i . 

Set  

1

2

= .
S

S
S

                (2.10) 

Remark 1. Note that it is almost impossible that all 

i ’s are equal to zero, so 1S  and 2S  are reasonable 
estimators for 1S  and 2S , respectively. 

The main result in this section can be formulated in 
the following theorem. 

Theorem 1. If the following conditions are satisfied:  

1) 2 2< ,  < ;E E    

2)    , , < ;E           

3) 
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then 
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p

S S n    

where  
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 and 
p

  denotes con-  

vergence in probability. 
Clearly, S  can be used as a predictive statistic for 

S  in this case. 
Especially, when there is no censorship  

 = ,  = 1i i iZ X  , 1S  and 2S  turn into, respectively  
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and 

 20
=1

1
= .

n

i
i

S I X a
n

         (2.12) 

Consequently, we use 0 10 20=S S S  as a prediction 
statistics of S . 

Normally, we choose Gamma prior for the parameters 
 ,  , however, it is easy to see that Theorem 1 does 
not depend on any specific prior distribution. This shows 
that for any a prior distribution satisfying the conditions 
of Theorem 1, the conclusion of Theorem 1 will hold. 

So in the simulation study, we let the prior distribution 
of parameters  

 500,1300 ,Uniform           (2.13) 

 800,1400 ,Uniform           (2.14) 

and the censoring distribution be  
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   = 1 exp ,  > 0,W v cv v         (2.15) 

where = 0.0001,0.0002c  and 0.00025 can be used to 
describe the censorship proportion (CP)  >P X V , 
which denotes the probability that X  is larger than V . 
In the censorship model, if the probability  >P X V  
gets larger, then more 'iV s  are likely to be observed 
other than 'iX s . Also, let = 3m . 

Under the above assumptions, it is not difficult to check 
that the conditions (i), (ii) and (iii), defined in Theorem 1, 
are satisfied. Note that = = 3800 3EX E E m  , 
which shows the mean time to failure (MTTF) of mini- 
mum lifespan of the m  components is 3800/3. 

Firstly, we generate n  random values from the priors 
(2.13) and (2.14), and denote them by   , 1i i i n    . 
Secondly, by Equations (2.1) and (2.15) we obtain 

 1iX i n   and  1iV i n  , accordingly, we get  
   = min , 1i i i

Z X V i n   and  
  = 1i i iI X V i n    . Thirdly, let the predeter- 

mined constant a  be equal to the MTTF, we compute 
the frequencies of the event  <S S   for = 200  
and = 100  with = 0.0001,0.0002,0.00025c . Repea- 
ting the process for 5000 times, the results are reported in 
Table 1. 

where PCP denotes the practical CP obtained from the 
simulation data. From Table 1, firstly, we find that when 
the PCP is fixed, the frequencies of  <S S   gene- 
rally increase as the sample size n  and   get larger, 
respectively. Secondly, as it can be expected, the fre- 
quencies tend to decrease as the PCP increases. As a con- 
trast, we report the frequencies of  0 <S S   in 
Table 2 when there is no censorship, which are uni- 
formly better than those of Table 1. 

In Tables 3 and 4, we change the value of the constant 
a  and present the frequencies of  <S S   with  
a  = 0.5MTTF and a  = 1.5MTTF, respectively. 

Although it is difficult to describe how S and the fre- 
quencies depend on the constant a , there is a trend that 
the frequencies of  <S S   are getting larger as the 
constant a becomes smaller. The reason is that S  de- 
notes the average values of iY 's, as we know, if a  gets 
smaller, obviously, both  =1

n

i ii
I X a Y  and 

 =1

n

ii
I X a  will become larger, then the S  is more 

like the average life other than denoting several or a few 
samples, hence, the proposed method works better. That 
is why the frequencies in Table 3 perform the best 
among the above tables, especially for larger n . 

It is well-known that the prior distribution  ,G    
reflects the past experience about the parameter  ,   
in Bayesian analysis. During the process of our simula- 
tion, we find the fact that the performance of the freq- 
uencies of  <S S   depends on the prior distribu- 
tion. In what follows, we generate three kinds data of  

Table 1. a = MTTF = 3800/3. 

c n 
Frequency  <S S   

= 200  = 100  

0.0001  
(PCP = 11.80%)

20 0.7880 0.6020 

30 0.8500 0.7040 

50 0.9300 0.7900 

0.0002  
(PCP = 22.10%)

20 0.7100 0.5360 

30 0.7780 0.5980 

50 0.8680 0.7220 

0.00025  
(PCP = 26.80%)

20 0.5800 0.4660 

30 0.6720 0.5340 

50 0.8040 0.6320 

 
Table 2. a = MTTF = 3800/3. 

n 
Frequency  0 <S S   

= 200  = 100  

20 0.8280 0.6820 

30 0.8610 0.7640 

50 0.9440 0.8010 

 
Table 3. a = 0.5 MTTF. 

c n 
Frequency  <S S   

= 200  = 100  

0.0001  
(PCP = 11.80%)

20 0.8080 0.6620 

30 0.8800 0.8140 

50 0.9350 0.8410 

0.0002  
(PCP = 22.10%)

20 0.7300 0.6390 

30 0.8470 0.6980 

50 0.8980 0.8320 

0.00025  
(PCP = 26.80%)

20 0.6300 0.5670 

30 0.7440 0.6340 

50 0.8620 0.7920 

 
different prior and report the corresponding perfor- 
mances of the frequencies in Figure 1 and Table 5. At 
the same time, we simulate the performance of the 
frequencies of  0S S  as a contrast. 
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Table 4. a = 1.5 MTTF. 

c n 
Frequency  <S S   

= 200  = 100  

0.0001  
(PCP = 11.80%) 

20 0.6860 0.5920 

30 0.7600 0.6060 

50 0.9050 0.6800 

0.0002  
(PCP = 22.10%) 

20 0.6100 0.5160 

30 0.6760 0.5770 

50 0.7690 0.6240 

0.00025  
(PCP = 26.80%) 

20 0.4880 0.4260 

30 0.5710 0.5130 

50 0.7050 0.4650 

 
From the above, we see that for the three different 

priors of  ,  , which have the same prior means for 
  and  , respectively, under the condition that their 
PCPs are almost the same, the more concentrative the 
prior values, the better the performances of the frequen- 
cies. This numerical evidence means that the proposed 
prediction intervals are in accordance with practice and 
applicable. 
 
3. Predictive Statistic for S  with Unknown  

W  
 
Note that the censoring distribution (.)W  is unknown, 
hence the predictive statistic S  is unavailable to use. 
This leads us to adopt the product limit estimator, which 
introduced to statistical problems by [14], to propose a 
corresponding predictive statistic for S  in this case. 

Define  

1

2

ˆ
ˆ = ,

ˆ
S

S
S

                 (3.1) 

where 
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              (3.3) 

and the product limit estimator  ˆ
nW t  is given by  

 
    

 

( , =0

=1

ˆ1 = ,  < ,
1

I Z tn i i

n n
i

n i
W t t Z

n i

     
   (3.4) 

where      1 2 nZ Z Z    are the order statistics of 
 1 2, , , nZ Z Z  and  i  is the concomitant of  iZ . 

Theorem 2. Under the same conditions as Theorem 1, 
we have  

ˆ 0.
p

S S   

Obviously, Ŝ  can be used as a predictive statistic for 
S  when the censoring distribution W  is unknown. 

Remark 2. Note that in the case that the censoring 
distribution W  is unknown, it is impossible to check 
whether the conditions of Theorem 2 are satisfied or not. 
Hence, we first need to propose a distribution function 
W  to fit the data 1 2, , , nV V V . 

Consider the following several data sets, which come 
from [15]. We take them as the the censoring variables 

1 2, , , nV V V . 
= 5n ,  381, 395, 408, 423, 431. 
= 20n , 350, 380, 400, 430, 450, 470, 480, 500, 520, 

540, 550, 570, 600, 610, 630, 650, 670, 730, 770, 840. 
= 31n , 30 926, 34 554, 36 381, 38 423, 40 103, 40 

501, 42 200, 44 392, 46 092, 46 125, 46 175, 48 025, 48 
025, 48 055, 48 055, 48 055, 48 055, 48 056, 51 675, 52 
344, 52 345, 52 345, 52 345, 52 379, 55 997, 56 202, 57 
709, 57 709, 57 709, 57 709, 63 496. 

= 71n , 3 95642, 4 00418, 4 09161, 4 35505, 4 35540, 
4 37601, 4 39179, 4 48768, 4 48768, 4 73667, 4 73667, 4 
93985, 4 96362, 5 22019, 5 35341, 5 37272, 5 418045 
44411, 5 60317, 5 69810, 5 74617, 5 84352, 6 17514, 6 
19741, 6 24969, 6 27976, 6 27976, 6 57274, 6 74048, 6 
88765, 7 18309, 7 20900, 7 20900, 7 20900, 7 20900, 7 
36640, 7 58164, 7 58164, 7 58164, 7 64559, 8 24600, 8 
5997, 8 71397, 8 93634, 9 04422, 9 197 45, 9 51173, 9 
75447, 9 96745, 10 13631, 10 17288, 10 17288, 10 
30804, 10 39500, 10 609 23, 10 60923, 10 78897, 10 
87997, 10 97175, 11 59441, 11 99059, 12 23731, 12 
40031, 12 40031, 12 55001, 13 19873, 13 94778, 15 
55712, 17 646 12, 19 84823, 23 19907. 

As we know the Weibull distribution is widely applied 
to life testing and reliability analysis. Some studies on it 
have been quickly developed in recent years (see [16] 
and [17], etc). The cumulative distribution function 
(CDF) of the three-parameter Weibull distribution is  

  = 1 exp ,
t

F t




        
        (3.5) 

where  is the shape parameter,  is the location para- 
meter and   is the scale parameter. 

Employing the method proposed by [18], we use the 
three-parameter Weibull distribution to fit the above four 
groups data and test the fitting by Kolmogorov-Smirnov  
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Figure 1. The values of  , n n  for three different priors. 

 
Table 5. a = 0.5 MTTF. 

PCP and the prior n 
Frequency  <S S   Frequency  0 <S S   

= 200  = 100  = 200  = 100  

PCP=11.76% 

50 0.9240 0.6730 0.9420 0.7060  500,1300U   

 800,1400U   

PCP=11.94% 

50 0.9300 0.7280 0.9480 0.7520  700,1100U   

 1000,1200U   

PCP=11.91% 

50 0.9370 0.7540 0.9510 0.8500  850,950U   

 1050,1150U   

 
s (K-S) test method. Note that (3.5) can be transformed 
into the following linear equation  

       ln ln 1 = ln ln .F t t           (3.6) 

Firstly, to estimate the location parameter  , we fol- 
low the principle of golden-section to find a value which 

located in the interval   10, t  to maximize the absolute 
value of the correlation coefficient defined by  

  

   

=1

2 2

=1 =1
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n

i i
i

n n

i i
i i

x x y y

x x y y
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where   =1 =1
= ,  = ,  = ln ,

n n

i i i ii i
x x n y y n x t     

   = ln ln 1i iy F t    and (1) (2) ( ), , , nt t t are the stati- 

stics of 1 2, , , nt t t  and       = 0.32 0.36iF t i n  . 

Secondly, adopting the least square method and regar- 
ding every group data as 1 2, , , nt t t , we report the fit- 
ting results and the estimators of the parameters as well 
as the Kolmogorov-Smirnov test values in Figures 2-5 
and Table 6. Where the K-S value denotes the 
Kolmogorov-Smirnov test value. 

Assume that the parameters  ,   have priors sim- 
ilar to (2.13) and (2.14), for example  

   1 2 1 2, ,  ,Uniform Uniform       , and = 3m . 
Obviously, under the condition that the censoring distri- 
bution W  is Weibull distribution with the above esti- 
mated parameters, it is easy to check that the conditions 
of Theorem 2 are satisfied. 

We simulate the frequencies of  ˆ <S S   as the 
PCP changes and present the results in what follows. 
Also, we refer to the performances of the frequencies of  

 0 <S S   as a contrast. 

From Tables 7-9, firstly, it is the same as before, we 
find that for the fixed PCP, the frequencies of  

 ˆ <S S   and 0 <S S  generally increase as the  

Constant a  gets small. Secondly, compared with Ta- 
bles 1, 3 and 4, for the same sample size n , the fre-  

quencies of  <S S   generally tend to be larger  

than those of  ˆ <S S  , which means in this case for 

given   S  is more concentrated in the vicinity of S . 
However, this may not be the case all the time. One 
reason is that iX ’s and iV ’s are different even for each 

the same sample size n  and hence this makes the 
comparison more complicated. Thirdly, consistently, 
whether W  is known or not the performances of the 

frequencies of  0 <S S   are the best. Also, as it can  

be expected, the frequencies of  ˆ <S S   generally 
tend to decrease as the PCP increases. 
 
4. Conclusions and Remarks 
 
In this paper, assume the observed lifetimes of com- 
ponents are rightly censored, we define a prediction sta- 
tistic to predict the average value of some untested com- 
ponents, firstly, under the condition that the censoring 
distribution is known and secondly, that it is unknown. In 
the case that the censoring distribution is unknown, we 
first fit the data 1 2, , , nV V V  with a distribution function, 
say  W t , and test the fitting by Kolmogorov-Smirnov 

 
Figure 2. The case of n = 5. 
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Figure 3. The case of n = 20. 

 

 

Figure 4. The case of n = 31. 
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Figure 5. The case of n = 71. 
 

Table 6. Parameter estimation and test. 

       correlation coefficient K-S value 

n = 5 3.9333 327.8554 87.9323 0.9552 0.0577 

n = 20 1.9868 294.9828 298.2851 0.9992 0.0261 

n = 31 6.5704 4623.1700 46952.0369 0.9914 0.1129 

N = 71 1.1500 3854.0232 4856.6078 0.9960 0.0481 

 
Table 7.  = 1.5 + a E E m . 

  Frequency  ˆ <S S   Frequency  0 <S S   

PCP n = 200  = 100  = 200  = 100  

10.91% 5 0.5630 0.5330 0.7100 0.7510 

4.33% 20 0.6600 0.6520 0.8160 0.7190 

6.63% 31 0.7100 0.6800 0.8500 0.7630 

10.08% 71 0.8770 0.7420 0.9300 0.7730 

 
Table 8. =  a E E m . 

  Frequency  ˆ <S S   Frequency  0 <S S   

PCP n = 200  = 100  = 200  = 100  

10.91% 5 0.5610 0.5500 0.7190 0.6710 

4.33% 20 0.6740 0.6500 0.8260 0.6990 

6.63% 31 0.7940 0.7120 0.8300 0.7530 

10.08% 71 0.9020 0.7950 0.9380 0.8530 
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Table 9.  = 0.5 + a E E m . 

  Frequency  ˆ <S S   Frequency  0 <S S   

PCP n = 200  = 100  = 200  = 100  

10.91% 5 0.5930 0.5030 0.7390 0.6910 

4.33% 20 0.6990 0.6170 0.8360 0.6890 

6.63% 31 0.8030 0.7400 0.9230 0.7730 

10.08% 71 0.9110 0.8100 0.9300 0.8380 

 
test. Then, we regard the data 1 2, , , nV V V  as being dis- 
tributed according to  W t  and check whether the con- 
ditions of Theorem 2 are satisfied or not. The numerical 
evidences show that the proposed prediction intervals are 
in accordance with practice and applicable. Also, it is 
easy to see that the proposed prediction method can be 
extended to many important survival models such as 
Erlang distribution, Gompertz distribution and so on. 
Furthermore, we may consider the same prediction pro- 
blem in any a pdf, say    , > 0f x I x , which may be 
a finite mixture of any two life distributions, which 
occurs when two different causes of failure are present 
(see [19] and among others). 

5. Proofs 
 
5.1. The Proof of Theorem 1 
 
Proof. In order to obtain the conclusion of Theorem 1, 
we first prove  

1 1 0,  .
p

S S n               (5.1) 

Note that 

 2 2 2
1 1 1 1 1 1= 2 .E S S ES ES S ES         (5.2) 

Firstly, it is easy to see Equation (5.3) (Below) 
Secondly, we have belowing Equation (5.4) 
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Thirdly, 1S  can be represented as  

 
    

 1
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1 1
= 1 .
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We know  
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2
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=1 1
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where 
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Along with Equations (5.3)-(5.4) and (5.6)-(5.8), we have 
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Combining Equation (5.9) and using the following facts: 

1)    
2

2, > , > ;E X
m
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2) 
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 (5.10) 
and also by Cauchy-Schwarz inequality, we easily know 
that under the conditions 1), 2) and 3),  

 2

1 1 = 0.lim
n

E S S


            (5.11) 

Then by Markov's inequality, we conclude that (5.1) 
holds. 

On the other hand, note that as n    
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and 
 

2 with probability 1.S P X a       (5.13) 

From Equations (5.1), (5.12) and (5.13), Theorem 1 
follows. 

5.2. The Proof of Theorem 2 

Proof. To prove Theorem 2, it is enough to show that  

ˆ 0.
p

S S                  (5.14) 

Firstly, represent 1̂S  as  
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Note that 
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since 
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with probability 1. 

By Equation (5.16) and the following result (see [20]),  
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we know 
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Similarly, we have  
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Combining Equations (5.15) with (5.19)-(5.22), we 
conclude that 

1 1
ˆ 0,

p

S S              (5.23) 

and 

2 2
ˆ 0.

p

S S              (5.24) 

Hence, Equation (5.14) has been proved. Together 
with Theorem 1’s conclusion Theorem 2 holds. 
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