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Abstract 
In this paper, we construct one of the forms of totally positive Toeplitz matrices from upper or 
lower bidiagonal totally nonnegative matrix. In addition, some properties related to this matrix 
involving its factorization are presented. 
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1. Introduction 
Total positive matrices arise in many areas in mathematics, and there has been considerable interest lately in the 
study of these matrices. For background information see the most important survey in this field by T. Ando [1]. 
See also [2].  

A matrix A is said to be totally positive, if every square submatrix has positive minors and A is said to be to-
tally nonnegative, and if every square submatrix has nonnegative minors. While it is well known that many of 
the nontrivial examples of totally positive matrices are obtained by restricting certain kernels to appropriate fi-
nite subsets of R (see, for example, Ando ([1], p. 212) or Pinkus ([3], p. 2). For Toeplitz matrices, that is, ma- 
trices of the form ( ) , 1

,
n

i j i j
T t − =
=  a complete characterization of the total positivity, in terms of certain entire  

functions, has been studied in a series of references by Ando [1], Pinkus [3] and S.M. Fallat, C.R. Johnson [4].  
Expressing a matrix as a product of lower triangle matrix L and an upper triangle matrix U is called a LU fac-

torization. Such factorization is typically obtained by reducing a matrix to an upper triangular matrix from via 
row operation, that is, Gaussian elimination. 

The primary purpose of this paper is to provide a new totally positive matrix generated from a totally nonneg-
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ative one and to construct its factorization.  
The organization of our paper is as follows. In Section 2, we introduce our notation and give some auxiliary 

results which we use in the subsequent sections. In Section 3, we recall from [3] the Toeplitz matrices speci- 

fied for the case k

n
t

k
 

=  
 

, on which our proofs heavily rely. In Section 4, we present the proofs of our main  

results. In last section, we present the factorization of this resulted matrix. 

2. Notation and Auxiliary Results 
2.1. Notations 
In this subsection we introduce the notation that will be used in developing the paper. For ,k n  we denote by 

,k nQ  the set of all strictly increasing sequences of k integers chosen from { }1,2, , n . For { }1, , ,kα α α= 

{ }1 ,, , k k nQβ β β= ∈ , we denote by A α β    the k k×  submatrix of A contained in the rows indexed by 
1, , kα α  and columns indexed by 1, , kβ β . A matrix A is called totally positive (abbreviated TP henceforth) 

and totally nonnegative (abbreviated TN) if det 0A α β  >   and det 0A α β  ≥   , respectively, for all ,α
, , 1, 2, ,k nQ k nβ ∈ =  . If a totally nonnegative matrix is also nonsingular, we write NsTN. 

Definition 2.1.1 [3] 
A square lower (upper) triangular matrix A is called lower (upper) triangular positive matrix, denoted LTP 

(UTP), if for all 1, ,k n=   and for { } { }1 1 ,, , , , ,k k k nQα α α β β β= = ∈   with the property that s sα β≥  
( s sβ α≥ ) for 1, ,s k=  , then det 0A α β  >  . 

Let I be the square identity matrix of order n, and for 1 ,i j n≤ ≤ , we let ijE  be the square standard basis ma-
trix whose only nonzero entry is 1 that occurs in the ( ),i j  position.  

A tridiagonal matrix that is also upper (lower) triangular is called an upper (lower) bidiagonal matrix. State-
ments referring to just triangular or bidiagonal matrices without the adjectives “upper” or “lower” may be ap-
plied to either case. 

2.2. Auxiliary Results 

We use the following classic formula known as Cauchy-Binet formula and stated in the theorem below.  
Theorem 2.2.1 (Cauchy-Binet formula) ([4], p. 27). Let A be an n m×  matrix and B be an m p×  matrix then 

for each pair of indexed sets { }1, , nα ⊆   and { }1, , pβ ⊆   of cardinality k, where { }1 min , ,k n m p≤ ≤ , we 
have 

[ ] [ ] [ ]
,

det , det , det ,
k

AB A B
η η

α β α η η β
=

= ⋅∑
 

The following remarkable result is one of the most important and useful results in the study of TN matrices. 
This result first appeared in [5] see also [1] for another proof of this fact. 

Theorem 2.2.2. Let ( ) , 1

n
ij i j

A a
=

=  be a square matrix of order n. Then A is NsTN if and only if A has an LU  

factorization, such that both L and U are NsTN square matrices. 
Using this theorem and Cauchy-Binet formula we have the following corollary. 
Corollary 2.2.3 [6]. Let ( ) , 1

n
ij i j

A a
=

=  be a square matrix of order n. Then A is TP if and only if A has an LU  

factorization, such that both L and U are TP square matrices. 
We have the following theorem to prove both L and U are totally positive. 
Theorem 2.2.4. Let ( ) , 1

n
ij i j

U u
=

=  be an upper triangular square matrix of order n satisfying  

1, , 1, , 0U k j j k + +  >    for 0,1, ,j n k= − , 1, ,k n=   

Then U is UTP (upper totally positive). Similarly, if ( ) , 1

n
ij i j

L l
=

=  is an lower triangular square matrix of order  

n satisfying 1, , 1, , 0L i i k k + +  >    for 0,1, ,j n k= − , 1, ,k n=  . Then L is LTP (lower totally posi-
tive). 
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In the sequel we will make use the the following lemma, see, e.g. [7]. 
Lemma 2.2.5 (Sylvester Identity) 
Partition square matrix T of order n, 2n > , as: 

1 12 2

21 22 23

3 32 4

c T c
T T T T

c T c

 
 =  
  

, 

where 22T  square matrix of order 2n −  and 1 2 3, ,c c c  and 4c  are scalars. Define the submatrices 

12 2 21 22 22 231 12
1 2 3 4

22 23 3 32 32 421 22

, , ,
T c T T T Tc T

T T T T
T T c T T cT T
      

= = = =      
       

 

Then if 22T  is non singular 

1 4 2 3

22

det det det det
det

det
T T T TT

T
−

=  

3. Toeplitz Matrices 
Assuming we are given a finite sequence 1 1 0 1, , , , , , ,n n nt t t t t t− − + −   of distinct real numbers, the associated To-  
eplitz matrix is defined by ( ) , 1

n
j i i j

T t − =
=  or ( ) , 1

n
i j i j

T t − =
= . If we are given a one-sided finite sequence 0 1, , , nt t t ,  

then we understand this to mean that 0, 1, 2, ,kt k n− = =   in the above definition. Sequences that give rise to 
totally positive Toeplitz matrices have been totally characterized in terms of their generating functions, i.e. re- 

presentations of 
n

k
k

k n
t x

=−
∑ . 

In our case, the normalization 0 1t = , the sequence 0 1, , , nt t t  gives rise to a totally positive Toeplitz matrix  

( ) , 1

n
j i i j

T t − =
=  if and only if 

0

n
k

k
k

t x
=
∑  has the form 

( )

( )
1

0

1
e

1

n

s
x s

n

s
s

i x

j x

λ =

=

+

−

∏

∏
 

where 0, 0, 0s si jλ ≥ ≥ ≥ . 
Now consider the polynomial ( ) ( )1 nf x x= + , the upper triangular Toeplitz matrix  

0 1 2 1

0
0 1 2

0 0
0

1

0 0 0 0
0

n n n n
n

n n n
n

n
U

n

n

        
        −        
            −      
 

  =     
  

  
  

    
   





 

   

 

is TP. 
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4. Generating New Form of Toeplitz Matrix 
4.1. Main Result 
Now we formalize the structure of our result by the following theorem. 

Theorem 4.1.1. Assume that we are given the sequence 1 1, , nx x −  of ( )1n −  distinct positive real numbers.  
Define the upper bidiagonal matrix ( ) , 1

n
ij i j

P p
=

=  by 

if 1
0 otherwise

i
ij

x j i
p

= +
= 


 

That is the sequence 1 1, , nx x −  lies on the superdiagonal. Then the matrix T defined as  

( ) ( )T

0 0

n n kr

r k

n n
T f P P P

r k= =

  
= =   

  
∑∑  

is TP. 
Proof 
To prove this result we must note that 

( ) ( ) ( )T T

0 0 0 0

n n n nk kr r

r k r k

n n n n
T f P P P P P UL

r k r k= = = =

         
= = = × =         

         
∑∑ ∑ ∑  

where 
0

n
r

r

n
U P

r=

  
=   

  
∑  is upper triangular matrix and ( )T

0

n k

k
L P

=

 =  
 
∑  is lower triangular matrix. By corollary 

2.2.3 A is TP if both U and L are TP. 

So, want to prove 
0

n
r

r

n
U P

r=

  
=   

  
∑  is upper TP. 

1

1 1 2
1

2

2
1

1

0 1 2 1

0
0 1 2

0 0
0

1

0 0 0 0
0

n

i
i

n

i
i

n

n n n n
x x x x

n

n n n
x x

n

n
U

n
x

n

−

=

−

=

−

        
        −        
            −      
 

  =     
  

  
  

    
   

∏

∏





 

   

 

By Theorem 2.2.4 U is TP if 

1 1

1, , 1, , 01 2

1

n n n
j j j k

n n n
U k j j k q j j j k

n n n
j k j k j

     
     + + −     

     
      + +  = >− + −      

     
     − + −     
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where ( ) ( )
1

2 2

1 1

n n

k k
k n k

k k
q x x

+

−
= =

  
  =     
  
∏ ∏  which is positive and 

1 1

01 2

1

n n n
j j j k

n n n
j j j k

n n n
j k j k j

     
     + + −     

     
      >− + −     

     
     − + −     





   



 

Since its submatrix of Toeplitz matrix. 
Illustrative Example 
Let we have the following sequence of distinct positive real numbers 1, 4, 3. 
Define the matrix A as: 

0 1 0 0
0 0 4 0
0 0 0 3
0 0 0 0

A

 
 
 =
 
 
 

 

Then the matrix function  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

0 1 2 3 4

0 1 2 3 4T T T T T

2 3 42 3 4 T T T T

4 4 4 4 4
0 1 2 3 4

4 4 4 4 4
0 1 2 3 4

4 6 4 4 6 4

1 0 0 0 0 1 0
0 1 0 0

4
0 0 1 0
0 0 0 1

f A A A A A A

A A A A A

I A A A A I A A A A

          
= + + + +          

          

          
× + + + +          

          

= + + + + × + + + +

 
 
 = + ×
 
 
 

0 0 0 4 0 0 0 0 12 0 0 0 0
0 0 4 0 0 0 0 12 0 0 0 0 0 0 0 0

6 4
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0

4 6
0 0 1 0 0 4 0 0
0 0 0 1 0 0 3 0

        
        
        + × + × +        
                 

   
   
   × + × + ×
   
   
   

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

4
4 0 0 0 0 0 0 0 0 0 0 0
0 12 0 0 12 0 0 0 0 0 0 0

1 4 24 48 1 0 0 0 2897 3844 600 48
0 1 16 72 4 1 0 0 3844 5441 880 72
0 0 1 12 24 16 1 0 600 880
0 0 0 1 48 72 12 1

      
      
      + × +      
             

   
   
   = × =
   
   
   

145 12
48 72 12 1

 
 
 
 
 
 

 

is TP. 
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4.2. Properties 

1) Note that det 1T =  since ( )T

0 0

n n kr

r k

n n
T P P UL

r k= =

      
= × =      

      
∑ ∑  and 

det det det det 1 1 1T UL U L= = = × =  

Using this property we prove the following lemma 
Lemma 4.2.1. The matrix T, as defined above has the following property  

22 1 4 2 3det det det det detT T T T T= −  

where 1 2 3 4, , ,T T T T  and 22T  are defined in Lemma 2.2.5. 
Proof 
The statement follows by Lemma 2.2.5 and the idea of det 1T = . 
2) Let P denote the square matrix of order n permutation matrix by the permutation  

1, 1ij n i n jp p − + − += , 1 ,i j n≤ ≤ , and suppose T is a square TP Toeplitz matrix. Then PTP LU=  is TP too (see  
[7]). Moreover, 1ST S−  is TP, where S is diagonal matrix with diagonal entries alternately 1 and -1. 

3) The Hadamrd product of two TP toeplitz matrices is TP matrix too, that is if we are given two square TP  
matrices ijT t =    and ijW w =    of order n. Then the Hadamard product ij ij ijY y t w   = = ⋅     is TP. 

5. Factorization 
5.1. Construct New Factorization 
Our aim is to write the new TP Toeplitz matrix T as a product of elementary matrices of a special form. For any 

{ }2, ,k n∈  , we let ( )r
k ijE eδ  =    to be the elementary lower matrix whose entries are defined by 

1 if
if ,

0 otherwise
ij

i j
e i k j k rδ

=
= = = −



 

Note that ( )r
kE δ  can be written as ( ) ,

r
k k k rE I Eδ δ −= + , where I is square identity matrix of order n and ,i jE  

is square matrix of order n whose non-zero entry is a 1 in the ( ), thi j  position n. Also, notice that 
( ) ( ) 1r r

k kE Eδ δ −− = . 
We use the elementary matrices ( )r

kE δ  to reduce Lower diagonal matrix to identity matrix.  
For example, we can consider the following 4 4×  Lower diagonal matrix L  

1 0 0 0
4 1 0 0
6 4 1 0
4 6 4 1

L

 
 
 =
 
 
 

 

It can be factorized as  

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 2 1 3 2 1
2 3 3 4 4 4

4 6 4 4 6 41 2 1 3 2 1
2 3 3 4 4 4

4 6 4 4 6 4

1 1 1 1 1 1

L E E E E E E I

E E E E E E I

=

=
 

5.2. General Characterization 

We begin a definition and a result that characterize the TP Toeplitz matrix T in terms of the elementary matrices 
( )1l

kE . 
Theorem 5.2.1. Any square Toeplitz matrix of oreder n, ijT t =    can be written as 
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( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

14 23 13 121 2

21 31 32 41

12 13 1

2123 2

31 323

1 2 3

T T T T T T
1 2 3 1 2 1

4 3 3 2

1 2 1 3 2
2 3 3 4

1 0 0 01
1 0 00 1

1 00 0 1

10 0 0 1

1 1 1 1 1 1

1 1 1 1 1

n n n n

n

n

n

n n n

u u u u u u

n n

l l l l

n

u u u
lu u

T UL l lu

l l l

E E E E E E I

E E E E E

− −

  
  
  
  = =
  
  
     

=

⋅







        







( ) ( )( ) ( )2 11 1n n n nl l

nE− −

 

That is, ( )( )( ) ( )( )1, 2 , 1
T

1 1
2

2 2 2 2
1 1n k n k k i

n k n ku ln k k i
n k k

k i k i
T E I E− + − + −− + − +

− +
= = = =

= × ×∏∏ ∏∏  

Illustrative Example 
Let  

2897 3844 600 48 1 4 24 48 1 0 0 0
3844 5441 880 72 0 1 16 72 4 1 0 0
600 880 145 12 0 0 1 12 24 16 1 0
48 72 12 1 0 0 0 1 48 72 12 1

T

     
     
     = = ×
     
     
     

 

The matrix in this example can be factorized as 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

T T T T T T12 72 48 16 24 41 2 3 1 2 1
4 4 4 3 3 2

4 24 16 48 72 121 2 1 3 2 1
2 3 3 4 4 4

1 1 1 1 1 1

1 1 1 1 1 1

T E E E E E E I

E E E E E E

= × × × × × ×

× × × × × ×
 

Note that the number of the factored matrices equal 

( )2 12 72 48 16 24 4 352 matrix× + + + + + =  
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