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Abstract 
We study decomposition of finite Abelian groups into subsets and show by examples a negative 
answer to the question of whether Hajós-property is inherited by direct product of groups which 
have Hajós-property. 
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1. Introduction 
The general setting is as follows: Suppose we decompose a group G into direct product of subsets 1 2, , , nA A A  
of G in such a way that each element g in G has a unique representation of the form 1 2 ,ng a a a=   where 

i ia A∈ . The question then asked is what we can say about the subsets 1 2, , , nA A A . 
The answer is rather difficult even if we do not impose many restrictions either on G or on the subsets. The 

most important special case has some connection with a group-theoretial formulation by G. Hajós [1] of a 
conjecture by H. Minkowski [2]; this is when G is a finite Abelian group and each of the subsets is of the form 

{ }2, , , , k
iA e g g g=  , 

where k g<  is an integer; here e denotes the identity element of g and g  denotes order of the element g of 
G. Then a result due to Hajos states that one of the subsets iA  must be a subgroup of G. L. Rédei [3] 
generalizes this result to the case when the condition on the subsets iA  is that they contain a prime number of 
elements. 

Another interesting question has also been asked by Hajos. It is concerned with the case in which G is an 
Abelian group and 2n = ; the question then asked is as follows: Suppose G has a decomposition as 1 2G A A= . 
Does it follow that one of the subsets 1A  or 2A  is a direct product of another subset and a proper subgroup of 
G? 

http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2015.54013
http://dx.doi.org/10.4236/alamt.2015.54013
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


K. Amin 
 

 
140 

The concept of Hajós factorization begin group-theoretical but now finds applications in diverse fields such as 
number theory, [4] coding theory [5] and even in music [6]. 

2. Preliminaries 
Throughout this paper, G will denote a finite Abelian group, e the identity of G, and if g G∈ , then g  will 
denote its order. We will also use A  to denote the number of elements of a subset A of G. A subset A of G of 
the form { }2, , , , kA e g g g=   is called a cyclic subset of G; here k is an integer with k g< . If 

1 2 nG A A A=   

we say that we have a factorization of G. If in addition, each of the subsets iA  contains e, we say that we have 
a normalized factorization of G. A subset A of G is called periodic if there exists { }g G e∈ − , such that 
gA A= . Such an element g G∈  if it exists is called a period for A. A group G is said to be of type 
( )1 2

1 2, , , r
rp p pα α α

 , if it is a direct product of cyclic groups of orders 1 2
1 2, , , r

rp p pα α α
 , (where of course ip s′  

are primes and i sα′  are non-negative integers). 

3. Remarks 
1) If G AB=  is a factorization of G , then for any ,x y G∈ , xAyB G=  is also a factorization of G. 

Similarly, with 1 2 nG A A A=  . Thus, we may assume that all factorization we consider are normalized. 
2) In the literature, a group G is said to be "good" if from each factorization G AB= , it follows that one the 

subsets A or B is periodic.  
We extend the above definition as follows. 

4. Definition 
A group G has the Hajos-n-property or n-good if from any factorization 

1 2 nG A A A=   

it follows that one of the subsets 1 2, , , nA A A  is periodic. Otherwise it is n-bad. We will also say G is totally- 
good if it is n-good for all possible values of n. 

The following results are known and will be used in this paper. 
Lemma 1 [7] 
If G is of type ( )2 22 , 2 , then G is 2-good. 
Lemma 2 [8] 
A cyclic group G of order pα , where 3p >  is prime is totally-good. 
Lemma 3 [8] 
If G is of type ( ),p pα β , where 1 , 2α β β≤ ≤ ≥  and 3p >  is prime, then G is n-bad for all n,

2 1n α β≤ ≤ + − . 
Lemma 4 [9] 
If H is a proper subgroup of G, then there exists a non-periodic set N such that G HN=  is a factorization of 

G, except when H is a subgroup of index 2 in an elementary abelian 2-group. 
Lemma 5 [7] 
If A and B are non-periodic subsets o a group G and A is contained in a subgroup H of G such that G HB=  

is a factorization of G, then AB is also non-periodic. 

5. Results 
Theorem 6 
If G is of type ( )2 22 , 2  , then G is totally-good. 
Proof. 
Let 1 2 nG A A A=   be a factorization of G. 
Now, the possible values for n are 1, 2, 3 and 4.  
The case 1n =  is trivial. 
The case 2n =  follows from Lemma 1. 
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The case 4n =  follows from Rédei’s theorem. 
So, we only need details the case 3n = . So now, 1 2 3G A A A= . 
We may assume 1 2 2A A= = . Now, ( )1 2 3G A A A=  is also a factorization of G. Hence by Lemma 1, either 

1A  is or 2 3A A  is periodic. If 1A  is periodic, we are done. So assume 2 3A A  is periodic, say with period 
g e≠ . We may assume 2g = . 

Let { }2 ,A e x=  and { }3 ,A e y= . Then { }2 3 , , ,A A e x y xy= . If g x= , then 2A  is a subgroup and hence 
periodic, while if g y= , then 3A  is a subgroup and hence periodic. Suppose g xy= , then we must have 
either 1) 2x y x=  and 2xy y=  both of which give xy e= , which is impossible; or 2) 2x y y=  and 2xy x=  
both of which imply that both 1A  and 2A  are subgroups of G. This ends the proof.  

Theorem 7 
If G is of type ( )2 22 , 2 , 2 , then G is 3-bad. 
Proof. 
Let G x y z= × × , where 4x y= =  and 2z = . 
Let { }1 ,A e x= , { }2 ,A e y=  and { }2 2 3 2 2 2 2 3

3 , , , , , , ,A e x xy x y z y z x yz x y z= . 
Then 1 2 3G A A A=  is a factorization of G and none of the subsets 1A , 2A  or 3A  is periodic. This ends the 

proof.  
Theorem 8 
Let H be a proper subgroup of a group G. If H is n-bad, then G is both n and ( )1n + -bad. 
Proof. 
Since H is n-bad, there is a factorization 1 2 nH A A A=   of H, where none of the subsets 1 2, , , nA A A  is 

periodic. Now, by Lemma 5, there is a factorization 1nG HA +=  of G, with 1nA +  nonperiodic. Hence, 

1 2 1n nG A A A A +=   

is a factorization G with none none of the subsets 1 2 1, , , ,n nA A A A +  periodic. Thus, G is ( )1n + -bad. 
Also, ( )1 2 1 1n n nG A A A A A− +=   is a factorization G with none of the subsets periodic. Here, the non- 

periodicity of the factor ( )1n nA A +  follows from Lemma 5. This ends the proof.  
Theorem 9 
If G is of type ( )1 22 , 2 , , 2 rα α α

 , where 3r ≥ , 1 2, 2α α ≥ , then G is both 3 and 4-bad. 
Proof. 
G has a subgroup H of type ( )2 22 , 2 , 2  which is 3-bad by Theorem 7. 
So, the result follows from Theorem 8. This ends the proof. 
Finally, we show by example what we aimed to show. 

6. Example 1 
Let 1G  be of type ( )2 22 , 2 . Then by Lemma 1, 1G  is 2-good. Now, consider the group 1 1G G G= ×  and 
note that G is of type ( )2 2 2 22 , 2 , 2 , 2  Observe that G has a subgroup H of type ( )2 22 , 2 , 2  which is 3-bad by 
Theorem 9. Now, by Lemma 4, G has a factorization G HN= , where N is nonperiodic. Hence, G has a 
factorization 1 2 3G A A A N= , where none of the factor is periodic. Thus G is 4-bad. This ends the proof.  

7. Example 2 
Let 1G  be of type ( )pα  and 2G  be of type ( )pβ , where α  and β  are positive integers and 3p >  is 
prime. Then by Lemma 2, 1G  is m-good for all m, 1 m α≤ ≤ , and 2G  is n-good for all m, 1 n β≤ ≤ . 
Consider the group 1 2G G G= × . Then by Lemma 3, 1G  is ( )m n+ -bad for all m n+ , 2 m n α β≤ + ≤ + . 
This ends the proof.  
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