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Abstract 
In this paper, we present homotopy analysis method (HAM) for solving system of linear equations 
and use of different H(x) in this method. The numerical results indicate that this method performs 
better than the homotopy perturbation method (HPM) for solving linear systems. 
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1. Introduction 
Approximating the solutions of the system of linear and nonlinear equations has widespread applications in ap-
plied mathematics [1]-[11]. Many techniques including homotopy perturbation method (HPM) [12] and iterative 
methods [13] were suggested to search for the solution of linear systems. In 2009 Keramati [2] and in 2011 Liu 
[3] in their articles applied HPM to the solution of the system Ax b= . In this article we used homotopy analysis 
method [14] [15] with different H(x) to solve linear system Ax b=  and showed that our results were better 
than the HPM results; then convergence of the method was considered. 

Consider a linear system 
,Ax b=                                       (1) 

where n n
ijA a R × = ∈   is nonsingular and , nx b R∈  is a vector. 

First of all, the basic ideas of the homotopy analysis method are being discussed. 
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Let 0x  be an initial guess of x, and [ ]0,1q∈  be called the embedding parameter. The homotopy analysis 
method is based on a kind of continuous mapping ( );x x qφ→  such that, as the embedding parameter q 
increases from 0 to 1, ( );x qφ  varies from the initial guess 0x  to the exact solution x. To ensure this, choose 
such an auxiliary linear operator as 

( )( ) ( ), ,L x q x qφ φ=                                   (2) 

and we define the operator 

( )( ) ( )( ), , .N x q A x q bφ φ= −                                (3) 

Let 0h ≠  and ( ) 0H t ≠  denote the so-called auxiliary parameter and auxiliary matrix, respectively. Using 
the embedding parameter [ ]0,1q∈ , we construct a family of equations 

( ) ( )( ) ( ) ( )( )01 , ,q L x q x hqH x N x qφ φ− − =  

from (2) and (3) we have 

( ) ( )( ) ( ) ( )( )( )01 , , .q x q x hqH x A x q bφ φ− − = −                        (4) 

Obviously, at q = 0 and q = 1, one has ( ) 0,0x xφ =  and ( )( ),1A x bφ =  respectively. Thus, as q increases 
from 0 to 1, ( );x qφ  varies continuously from 0x  to x. Such kind of continuous variation is called deforma-
tion in topology [16]. We call the family of equations like (4) the zeroth-order deformation equation. Now we 
define mth-order deformation derivative 

( )
0

,1 ,
!

m

m m
q

x q
x

m q
φ

=

∂
=

∂
                                  (5) 

where 1, 2,3, .m = �  Because ( ),x qφ  is now a function of the embedding parameter q, by Taylors Theorem, 
we expand ( );x qφ  in a power series of the embedding parameter q as follows: 

( ) ( ) ( )
1 0

,1, ,0 .
!

m
m

m
m q

x q
x q x q

m q
φ

φ φ
+∞

= =

∂
= +

∂∑  

By using (5) we have 

( ) 0
1

, .m
m

m
x q x x qφ

+∞

=

= +∑                                   (6) 

If the series (6) is convergent at q = 1, then using the relationship ( ),1x xφ =  one has the series solution 

0
1

.m
m

x x x
+∞

=

= +∑                                       (7) 

Now we have the so-called mth-order deformation equation 

[ ] ( ) ( )1 1 ,m m m m mL x x hH x R xχ − −− = �                               (8) 

where 

( ) ( )
( )( )1

1 1

0

,1
1 !

m

m m m

q

N x q
R x

m q
φ−

− −

=

∂
=

− ∂
�                             (9) 

and 
0 when 1,
1 otherwise.m

m
χ

≤
= 


                                 (10) 

By using (2) we obtain 
( ) ( )
( ) ( )

1 1

1 1

,

.
m m m m m

m m m m m

x x hH x R x

x x hH x R x

χ

χ
− −

− −

− =

= +

�

�                              (11) 
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Also by using (3) and (9) we have 

( ) ( )
( )( )

( )
( )( )

( )
( )

1

1 1

0

1 1

1 1
00

,1
1 !

,1 1 ,
1 ! 1 !

m

m m m

q

m m

m m
qq

A x q b
R x

m q

A x q b
m mq q

φ

φ

−

− −

=

− −

− −
==

∂ −
=

− ∂

∂ ∂
= −

− −∂ ∂

�

 

and then 

( ) ( )1 1 1 .m m m mR x Ax b χ− −= − −�  

Finally by using (11) we obtain 

( ) ( )( )1 1 1 .m m m m mx x hH x Ax bχ χ− −= + − −                         (12) 

Now with the initial guess 0 0x =  and 1h = −  we have 

( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

1

2 1 1 1

2
3 2 2 2

1
1 1 1

,

,

,

,
n

n n n n

x H x b

x x H x Ax I H x A x I H x A H x b

x x H x Ax I H x A x I H x A H x b

x x H x Ax I H x A x I H x A H x b
−

− − −

=

= − = − = −

= − = − = −

= − = − = −

�

              (13) 

hence, by substituting (13) in (7) we obtain 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

1 2 3
2

1
,

n

n

x x x x x

H x b I H x A H x b I H x A H x b

I H x A H x b
−

= + + + + +

= + − + − +

+ − +

� �

�

�

                 (14) 

and by factor of ( )H x b  we have 

( )( ) ( )( ) ( )( ) ( )2 1
.

n
x I I H x A I H x A I H x A H x b

− = + − + − + + − +  
� �            (15) 

Now we have to prove the convergence of (15). 

Theorem 1. The sequence [ ] ( ) ( )
0

,
m km

k
x I H x A H x b

=

 = −    
∑  is a Cauchy sequence if 

( ) 1.I H x A− <  

Proof: Following ([2], Theorem 1) we have to show that 
[ ] [ ]lim 0.m p m

m
x x+

→∞
− =  

Now considering 

[ ] [ ] ( ) ( )
1

,
p m km p m

k
x x I H x A H x b

++

=

 
− = −   

 
∑  

then 

[ ] [ ] ( ) ( )
=1

p m km p m

k
x x H x b I H x A

++ − ≤ −∑  

let ( )I H x Aγ = −  then 
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[ ] [ ] ( ) ( )
1

1 ,
1

pp
m p m m k m

k
x x H x b H x b γγ γ γ

γ
+

=

 −
− ≤ ≤  − 

∑  

so we have 

[ ] [ ] ( ) ( )1lim lim ,
1

p
m p m m

m m
x x H x bγ γ

γ
+

→∞ →∞

 −
− ≤  − 

 

since 1γ <  then we obtain 
[ ] [ ]lim 0m p m

m
x x+

→∞
− =  

which completes the proof. 

2. Main Results 
In this section For solving the linear system (1) we apply different H(x) and the convergence of the method is 
checked. At first assume that A is a nonsingular diagonally dominate matrix and 0, 1,2, , .iia i n≠ = �  Dividing 
(1) by iia  and without loss of generality we can obtain 

.Bx d=                                       (16) 
where ,i jB b =   , such that 

,,

,

1 for , 1, 2, ,

for , , 1, 2, , ,i ji j

i i

i j i n
ab

i j i j n
a

= =
=  ≠ =


�

�
                          (17) 

and 

,

1, 2, , .i
i

i i

b
d i n

a
= = �  

Now we apply different H(x) and the convergence of the method is tested. 
1) we propose ( )H x I S= +  with 

( ) 1 for 1, 2, , 1, 1
0 otherwise,

ii
ij

b i n j i
S s +− = − = +
= = 



�
                      (18) 

and show that 

( ) 1.I H x B− <  

Theorem 2. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: By direct calculation we have 

( )
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,1 ,2 , 1
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and first row is satisfied: 

( ) ( )

12 21 13 12 23 14 12 24 1 12 2

12 21 13 12 23 14 12 24 1 12 2

12 21 23 24 2 13 14 1 .

n n

n n

n n

b b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b

+ − + + − + + + − +

≤ + + + + + + +

= + + + + + + + +
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Since A is diagonally dominated, B is diagonally dominated and we have 

21 23 24 2 1.nb b b b+ + + + ≤�                               (19) 

Now by using (19) we obtain 

( )12 21 23 24 2 13 14 1
1

12 13 14 1 1.

n n

n

b b b b b b b b

b b b b
≤

 
+ + + + + + + +  

 
≤ + + + + ≤

�������������������
� �

�

 

This relation satisfis for other rows also and 

( ) 1.I H x B
∞

− <  

2) We propose ( )H x I R= +  with 

for 1, 2, , 1
0 otherwise,

njb j n
R

− = −
= 


�
                            (20) 

and show that 

( ) 1.I H x B− <  

Theorem 3. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Following Theorem (2) 
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such that 

1 ,2 21 ,3 31 , 1 1,1
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and last row is satisfied: 

,2 21 ,3 31 , 1 1,1 ,1 12 ,3 32 , 1 1,2

,1 1, 1 ,2 2, 1 , 2 2, 1 ,1 1, ,2 2, , 1 1,

,1 12 13 1, ,2 21 23 2,

1 1
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This relation satisfis for other rows also 
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( ) 1.I H x B
∞

− <  

3) We propose ( )H x I S R= + +  such that S and R was explained in (18) and (20) respectively and show 
that 

( ) 1.I H x B− <  

Theorem 4. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Similar to proof of Theorems (2) and (3). 
4) We propose ( ) ( )H x I S m= +  with 

( ) ( ) for 1 ,

0 otherwise,
iik

ij

b i n j i
S m S

− ≤ < >= = 


                        (21) 

{ }min max , 1i ijj
k j a i n= ≤ <  

and show that 

( ) 1.I H x B− <  

Theorem 5. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Following Theorem (2) after expanding ( )I H x B−  according to the first row we have 

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1 1 12 1 2 13 1 3 1 1 1 1

1 1 1 1 1 1

1 1 12 1 2 13 1 3 1 1

1 1 1 1 1 1 1 1

1 1

0

k k k k k k k k k k

k k k k n k k n

k k k k k k k

k k k k k k k n k k n

k k

b b b b b b b b b b b

b b b b b b

b b b b b b b b b

b b b b b b b b

b b

− −

+ +

−

− + +

+ − + + − + + + − +

+ + − + + + − +

≤ + − + + − + + + −

+ + − + + + − +

=

�

�

�

�
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1 1

1 1 1

2 1 1

1

12 13 1 1 1 1 1

1 12 13 1 1 1 1 1 1.

k k k k k k n

k k n

k k k n

b b b b

b b b b b

b b b b b b

− +

≤

− +

− +

 
 + + + + + +
 
 

+ − + − + + − + − + + −

≤ + − + − + + − + − + + − ≤

� �
�������������������

� �

� �

 

This relation satisfis for other rows also 

( ) 1.I H x B
∞

− <  

5) We propose ( ) ( )H x I S m R= + +  such that ( )S m  and R  was explained in (21) and (20) respectively 
and show that 

( ) 1.I H x B− <  

Theorem 6. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Similar to proof of Theorems (3) and (5). 
6) We propose ( )H x I U= −  such that U is the strictly upper triangular part of A and show that 
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( ) 1.I H x B− <  

Theorem 7. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Following Theorem (2) after expanding ( )I H x B−  according to the first row we have 

12 21 13 31 1 1 13 32 14 42 1 2

12 23 14 43 1 3 12 2 13 3 1 1 1,

12 21 13 31 1 1 13 32 14 42 1 2

12 23 14 43 1 3 12 2 13 3 1 1 1,

1

n n n n

n n n n n n n

n n n n

n n n n n n n

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b

− −

− −

+ + + + + + +

+ + + + + + + + +

≤ + + + + + + +

+ + + + + + + + +

=

� �

� � �

� �

� � �

2 21 23 2 13 31 32 34 3
1 1

1 1 2 , 1 12 13 1
11

1

n n

n n n n n n

b b b b b b b b

b b b b b b b

≤ ≤

−

≤≤

   
+ + + + + + + + +      

   
 
 + + + + ≤ + + + ≤
 
 

��������������� �������������������

��������������������������������

� � �

� �

 

This relation satisfis for other rows also 

( ) 1.I H x B
∞

− <  

7) We propose ( )H x I U R= − +  such that U is the strictly upper triangular part of A and R was explained in 
(20) and show that 

( ) 1.I H x B− <  

Theorem 8. If A is diagonally dominated and ,i jB b =   , where ,i jb  is defined in (17) then 

( ) 1I H x B
∞

− <  

Proof: Similar to proof of Theorems (3) and (7). 
Now in the next section we apply ( )H x  for solving numerical examples. 

3. Numerical Results 
In this section, we present some numerical examples to apply HAM and HPM methods for solving linear system. 
We used of Matlab 2013 for numerical results. 

Example 1. Consider the linear system Ax b= , that 
4 1 1
1 6 2 ,

0 1 3
A

− 
 = − 
 − 

 
7
9
5

b
 
 =  
  

 and the exact solution is 

1
2
1

x
 
 =  
 − 

. 

Table 1 shows the iteration number,error,spectral radius of iteration matrix and computation time. 
According to Table 1 we obtain the desirable result for solving this system by seven iterations with HAM and 
( )H x I U R= − +  while by HPM method we used of fourteen iteration. 
In this example the matrices S and ( )S m  are same and the results are same too. 
Example 2. In this example we apply HAM method for solving the linear system 

Ax b=  
where A is a 1000 1000×  matrix, b is a 1000 1×  vector that its components are sum of the row components of 
the corresponding matrix and the exact solution is [ ]T1 1 1� . The numerical results are in Table 2. 
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Table 1. Camparision between HPM and HAM for 3 × 3 system. 

Method Iteration Error Spectral radius Times (s) 

HAM ( )( )H x I= (HPM) 14 10−5 0.4004 0.013 

HAM ( )( )H x I S= +  11 10−5 0.3057 0.010 

HAM ( )( )H x I R= +  9 10−5 0.2168 0.010 

HAM ( )( )H x I R S= + +  8 10−5 0.1806 0.014 

HAM ( ) ( )( )H x I S m= +  11 10−5 0.2918 0.010 

HAM ( ) ( )( )H x I S m R= + +  8 10−5 0.1806 0.014 

HAM ( )( )H x I U= −  8 10−5 0.2918 0.011 

HAM ( )( )H x I U R= − +  7 10−5 0.1667 0.011 

 
Table 2. Camparision between HPM and HAM for 1000 × 1000 system. 

Method Iteration Error Spectral radius Times (s) 

HAM ( )( )H x I= (HPM) 36 10−4 0.5258 16.378 

HAM ( )( )H x I S= +  32 10−4 0.5167 19.141 

HAM ( )( )H x I R= +  32 10−4 0.5157 17.176 

HAM ( )( )H x I R S= + +  32 10−4 0.5169 18.010 

HAM ( ) ( )( )H x I S m= +  32 10−4 0.5162 20.112 

HAM ( ) ( )( )H x I S m R= + +  32 10−4 0.5261 19.200 

HAM ( )( )H x I U= −  25 10−4 0.4143 11.731 

HAM ( )( )H x I U R= − +  20 10−4 0.4092 9.175 

4. Conclusion 
From the numerical results, we have seen that the HAM method with different ( )H x  produces a spectral ra-
dius smaller than the HPM and with the less iteration we obtain the desirable result. 
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