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ABSTRACT 

Through the real representations of quaternion matrices and matrix rank method, we give the expression of the real ma-
trices in least-squares g-inverse and minimum norm g-inverse. From these formulas, we derive the extreme ranks of the 
real matrices. As applications, we establish necessary and sufficient conditions for some special least-squares g-inverse 
and minimum norm g-inverse. 
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1. Introduction 

Throughout this paper,  stands for the real number 
field,  stands for the set of all m  matrices 
over the quaternion algebra 


m n n




2 2 2
0 1 2 3

0 1 2 3

= = =

          , , , .

a a i a j a k i j k ijk

a a a a

   



 = = 1, 
 

I, AT, A* and †A  stand for the identity matrix’ the 
transpose’ the conjugate transpose and the Moore-Pen- 
rose inverse of a quaternion matrix A. In [1], for a qua-
ternion matrix A,    m = dim .di A A    dim A

†

 
is called the rank of a quaternion matrix A and denoted 
by   .r A

The well known Moore-Penrose inverse A  of 
m nA   is defined to be the unique matrix m nX   

satisfying the following four Penrose equations 
1) = ,AXA A  
2) = ,XAX X  
3)   = ,AX AX

  = .


 

4) XA XA


 
A matrix X is called a least-squares g-inverse of A if it 

satisfies both 1) and 3) in the Penrose equations, and de-
noted by  a matrix X is called a minimum norm 
g-inverse of A if it satisfies both 1) and 4) in the Penrose 
equations, and denoted by  The general expres-
sion of 

 1,3 ;A

 1,3

 1,4 .A
A  and  1,4A  can be written as 

 1,3 †= A ,A A L V                  (1) 

 1,4 †= AA A WR                  (2) 

where  , the two matrices V 
and W is a arbitrary; see [[2], pp. 44-46]. 

†= ,AL I A A †=AR I AA

For convenience of representation, we suppose 

0 1 2 3=A A A i A j A k               (3) 

and 
 

 

1,3
0 1 2 3

1,4
0 1 2 3

= ,

=

A B B i B j B k

A C C i C j C k

  

  
         (4) 

where   0 1 2 3, , , ,m nA A A A  0 1 2 3, , , ,m nB B B B 

0 1 2 3, , , .n mC C C C   

For an arbitrary quaternion matrix 

1 2 3 4= ,M M M i M j M k    

we define a map ( )   from  to  by m n 4 4m n

 

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

= .

M M M M

M M M M
M

M M M M

M M M M



 
   
  
 

  

   (5) 

By (5), it is easy to verify that ( )   satisfies the follow-
ing properties: 

a)    = = .M N M N   

b)      = ,M N M N          = ,MN M N    

   = ,kM k M k  .  

c)     1 1= =m n m  nM T M T R M R      

          = ,m nS M S1  
*This research was supported by the Natural Science Foundation of China 
(11001115). where 

Copyright © 2011 SciRes.                                                                               ALAMT 



H. S. ZHANG 2 

0 0 0 0 0 0

0 0 0 0 0 0
= , = ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0
= , = , .

0 0 0

0 0 0

t t

t t
t t

t t

t t

t

t
t

t

t

I I

I I
T R

I I

I I

I

I
S t m n

I

I

   
     
  
  

  

 
 
 
 
 
 








 

d)     = 4 .r M r M  

The least-squares g-inverse and minimum norm 
g-inverse have a very wide range of applications in nu-
merical analysis and mathematical statistics and have 
been examined by many authors(see, e.g., [3-6]). Haruo 
[3] developed some equivalent conditions on least-squares 
general inverse in 1990. Tian [4] presented the maximal 
and minimal ranks of the Schur complement to least-squares 
g-inverse and minimum norm g-inverse in 2004. Tian [5] 
establish necessary and sufficient conditions for a matrix 
to be the least-squares g-inverse and minimum norm 
g-inverse from rank formulas in 2005. Guo, Wei and 
Wang [6] derived structures of least squares g-inverses 
and minimum norm g-inverse of a bordered matrix in 
2006. 

Quaternion matrices play an important role in me-
chanics, computer science, quantum physics, signal and 
color image processing and so on. More and more inter-
ests of quaternion matrices have been witnessed recently 
(e.g. [7-14]). 

Noticing that the properties of the real matrices in 
least-squares general inverse  1,3A  and minimum norm 
g-inverse  1,4A  (4) have not been considered so far in 
the literature. We in this paper use the real representa-
tions of quaternion matrices and matrix rank method to 
investigate (4) over . In Section 2, we first give the 
expression of the real matrices i  and  
in (4), then determine the maximal and minimal ranks of 
the real matrices i  and i  in (4). As 
applications, we establish necessary and sufficient condi-
tions for a quaternion matrix has a pure real or pure 
imaginary 



B

B

= 0C i

  = 0,1, 2,3iC i

2,3 ,1,

1,3A  and 1,4A . The necessary and suffi-
cient conditions for all 1, 3A  and  1,4A  are pure real or 
pure imaginary of a quaternion matrix are also presented. 

2. Main Results 

We begin with the following lemmas which proof just 
like those over the complex field. 

Lemma 2.1 (see [15]) Let A, B and C be  
 matrices over . Then , ,m n m k l n   

a)          , = =A Br A B r A r R B r B r R A  ,

,

L

 

b)         = =A C

A
r r A r CL r C r AL

C

 
  

 

c)       = .
0 B C

A B
r r B r C r R A

C

 
  

 

Lemma 2.2 (see [16]) Let   ,m nA  ,m pB 
q nC   be given. Then 

a) The maximal rank of A BXC  with respect to X is 

   max = min , ;
X

A
r A BXC r A B r

C

      
   

    (6) 

b) The minimal rank of A BXC  with respect to X is 

   min = .
0X

A A B
r A BXC r A B r r

C C

   
     

   
   

(7) 

Theorem 2.3 Suppose    is a least-   , =1,2,3,4ijX i j 4 4
squares g-inverse of   ,A  where ij  A and ,n mX 

 1,3A  are defined as (3) and (4). Then  
in (4) can be written as 

 1,2,3 = 0,iB i

 

 

 

 

0 11 22 33 44

1 12 21 43 34

2 13 31 24 4

3 41 14 32 2

1
= ,

4
1

= ,
4
1

= ,
4
1

= .
4

B X X X X

B X X X X

B X X X X

B X X X X

  

  

  

  

2

3

            (8) 

Written in an explicit form,  in (4) 
are 

  = 0,1, 2,3iB i

   

   

       

† †
0 1 1 2 2

† †
3 3 4 4

1

2
1 2 3 4

3

4

1 1
=

4 4

1 1
       

4 4

      , , , ,A A A A

B P A Q P A Q

P A Q P A Q

V

V
P L P L P L P L

V

V

   

 

 



 

 
 
      
 
 

  (9) 

   

   

       

† †
1 1 2 2 1

† †
4 3 3 4

2

1
1 2 4 3

3

4

1 1
=

4 4

1 1
       

4 4

      , , , ,A A A A

B P A Q P A Q

P A Q P A Q

V

V
P L P L P L P L

V

V

   

 

 



 

 
       
 
 

(10) 
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† †
2 1 3 2 4

† †
3 1 4 2

3

1
1 3 2 4

4

2

1 1
=

4 4
1 1

       
4 4

        , , , ,A A A A

B P A Q P A Q

P A Q P A Q

V

V
P L P L P L P L

V

V

   

 

 



 

 
 
       
 
 

(11) 

   

   

       

† †
3 1 4 2 3

† †
3 2 4 1

4

1
1 4 3 2

2

3

1 1
=

4 4
1 1

       
4 4

1
       , , , ,

4 A A A A

B P A Q P A Q

P A Q P A Q

V

V
P L P L P L P L

V

V

   

 

 



 

 
 
      
 
 

  (12) 

where 

   
  

1 2

3 4

= ,0,0,0 , = 0, ,0,0 ,

= 0,0, ,0 , = 0,0,0, ,

n n

n n

P I P I

P I P I 



 

   
  

1 2

3 4

= ,0,0,0 , = 0, ,0,0 ,

= 0,0, ,0 , = 0,0,0, ,

T T

m m

T T

m m

Q I Q I

Q I Q I
 

and V1, V2, V3 and V4 are arbitrary real matrices with 
compatible sizes. 

Proof. Suppose  
4 4

, = 1,2,3, 4ijX i j


  
  ,

 is a least- 

squares g-inverse of A X  where  i.e. ,n m
ij



     

    
4 4

4 4 4 4

= ,

= .

ij

ij ij

A X A A

A X A X

  

 





 

  

      
 

Then applying property (c) of ( )   above to them 
yields 

    

    

1 1 1

4 4

1 1

4 4 4 4

= ,

= ;

m n ij m n m

m n ij m n ij

T A T X T A T T A T

T A T X T A T X

 

 

  




 

 

   

      

 n
 

    

    

1 1 1

4 4

1 1

4 4 4 4

= ,

= ;

m n ij m n m n

m n ij m n ij

R A R X R A R R A R

R A R X R A R X

 

 

  




 

 

   

      


 

    

    

1 1 1

4 4

1 1

4 4 4 4

= ,

= .

m n ij m n m n

m n ij m n ij

S A S X S A S S A S

S A S X S A S X

 

 

  




 

 

  

      


 

Hence, 

     

    

1

4 4

1 1

4 4 4 4

= ,

= ;

n ij m

n ij m n ij m

A T X T A A

A T X T A T X T

  

 






 

 

  

      
 

     

    

1

4 4

1 1

4 4 4 4

= ,

= ;

n ij m

n ij m n ij m

A R X R A A

A R X R A R X R

  

 






 

 

  

      

 

     

    

1

4 4

1 1

4 4 4 4

= ,

= ,

n ij m

n ij m n ij m

A S X S A A

A S X S A S X S

  

 






 

 

  

      

 

which implies that  and 1 1

4 4 4 4
,n ij m n ij mT X T R X R 

 
      

1

4 4n ij mS X S 


    are also least-squares g-inverses of 

 A . Thus, 




1 1

4 4 4 4 4 4

1

4 4

1

4

     

ij n ij m n ij m

n ij m

X T X T R X R

S X S

 

  





           

   

 

is also a least-squares g-inverse of   ,A  where 



1 1

4 4 4 4 4 4

1

4 4 4 4
=

ij n ij m n ij m

ijn ij m

X T X T R X R

S X S X

 

  



 

           

      

 

and 





















11 11 22 33 44

12 12 21 43 34

13 13 31 24 42

14 41 14 32 23

21 21 12 34 43

22 11 22 33 44

23 41 14 32 23

24 24 42 13 31

31 13 31 24 42

32 41 14 32 23

= ,

= ,

= ,

= ,

= ,

= ,

= ,

= ,

= ,

= ,

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

  

  

  

  

  

  

  

  

  

  













33 33 44 11 22

34 21 12 34 43

41 41 14 32 23

42 24 42 13 31

43 12 21 43 34

44 33 44 11 22

= ,

= ,

= ,

= ,

= ,

= .

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X
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Let 

  

 

 

 

11 22 33 44

12 21 43 34

13 31 24 42

41 14 32 23

1
=

4

1
      

4

1
      

4

1
      ,

4

X X X X X

X X X X i

X X X X j

X X X X k

  

   

   

   

 

Then, by (5), 

  



1

4 4 4 4

1 1

4 4 4 4

1
=

4

                ,

ij n ij m

n ij m n ij m

X X T X T

R X R S X S

 

 

 

 

      

       

 

is a least-squares g-inverse of  A . Hence, by the 
property (a) of ( )   we know that X̂  a least-squares 
g-inverse of A. The above discussion shows that the 
least-squares g-inverse of  A  and the least-squares 
g-inverse of A are equivalent. Observe that ,ijX  i, j = 
1,2,3,4 in (8) can be written as 

ˆ= .ij i jX P XQ  

From (1), the least-squares g-inverse of  A  can be 
written as 

    
†= AX A L V   

where  and  1 2 3 4= , , ,V V V V V 4
1 2 3 4, , , p qV V V V   are 

arbitrary. 
Substituting them into (8) yields the four real matrices 

B0, B1, B2 and B3 in (9)-(12). 
According to Lemma 2 and Theorem 2, we can get the 

following extreme ranks formulas for the real matrices in 
the least-squares g-inverses. 

Theorem 2.4 Suppose that A and  1,3A  are defined 
as (3) and (4). Then 

a)      00max = min 4 , ;r B r A A r A n m      

    00min = .r B r A A r A     

b)      11max = min 4 , ;r B r A A r A n m      

    11min = .r B r A A r A     

c)      22max = min 4 , ;r B r A A r A n m      

    22min = .r B r A A r A     

d)      33max = min 4 , ;r B r A A r A n m      

    33min = ,r B r A A r A     

where 













































0 1 2

1 0 0
0 1 2 3

2 2 3

3 3 1

0
1 2 3

1 0 3 2
0

2 3 0 1

2 1 03

= , = , = , =

0 0 0

0 0 0
= , =

0 0 0

0 0 0

A A A

A A A A
A A A A

A A A

A A A

A

3

0

1

2

,

A

A

A

A A A

A A AA
A A

A A AA
A A AA

         
       
        
      




       
       
             

                     

,



,

,

 

and 

   

 



0 31 2

1 20 3
0 1 2 3

2 13 0

3 02 1

0 2 3 0 1 3

1 3 2 1 0 2
1 2

2 0 1 2 3 1

3 1 0 3 2 0

0 1

3

= , = , = , =

= , =

=

A AA A

A AA A
A A A A

A AA A

A AA A

A A A A A A

A A A A A A
A A

A A A A A A

A A A A A A

A A A

A

       
       
      
      
     

   


  

   



   
       
   
   

   

  2

1 0 3

2 3 0

3 2 1

.
A A A

A A A

A A A

 
 
 
 
 

 

 

Proof. Applying (6) and (7) to B0 in (9), we get the 
following 

    

      

0

0

max = min , ;

min = ,
0

m

m

P
r B r P P r

I

P P
r B r P P r P r

I

             

 
            

 

where 

    

   


       

† †
1 1 2 2

† †
3 3 4

1 2 3 4

1 1
=

4 4

1 1
     ,

4 4

= , , ,A A A A

P P A Q P A Q

P A Q P A Q

P P L P L P L P L   

 

 



  4

. 
 

 

By Lemma 1, it is not difficult to find that 
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1 2 3 4

1 2 3 4

0

1

2

3

0

   

0 0 0 0

= 40 0 0 0

0 0 0 0

0 0 0 0

0

0 0 0

0 0 0= 4

0 0 0

0 0 0

= 4 ,

r P P

P P P P P

A

r r A

A

A

A

A

P P P P

A A

A Ar r

A A

A A

r A A r A n









 





 
 
 
 
 
      
 
 
 
 
 
 
 

     
 
 
 
 
    

 

where    
0 1 2 3, , ,A A A A  and A  are defined as above. By 

the same manner, we can get extreme ranks of B1, B2 and 
B3. 

As one of important applications of the maximal and 
minimal ranks to real matrices, Theorem 2 can help to 
get the necessary and sufficient conditions for the exis-
tence of some special least-squares g-inverses. We show 
them in the following. 

Corollary 2.5 Suppose 0 1 2 3= .A A A i A j A k     
Then 

a) A quaternion matrix A has a real least-squares 
g-inverse if and only if 

    1 2 3= = =r A A r A A r A A r A           .  

b) All least-squares g-inverses of quaternion matrix A 
are real matrices if and only if 

    1 2 3= = = 4r A A r A A r A A r A n      ,       

where 1 2 3, ,A A A  and A  are defined as Theorem 2. 
Corollary 2.6 Suppose 0 1 2 3= .A A A i A j A k    Then 
a) A quaternion matrix A has a pure imaginary least- 

squares g-inverse if and only if 

  0 = .r A A r A    

b) All least-squares g-inverses of quaternion matrix A 
are pure imaginary matrices if and only if 

  0 = 4 ,r A A r A n     

where 0A  and A  are defined as Theorem 2. 
The following several theorems of minimum norm 

g-inverse can be shown by a similar approach, and their 
proofs are omitted here. 

Theorem 2.7 Suppose  is a  
4 4

, = 1, 2,3,4ijY i j


  
minimum norm g-inverse of   ,A  where  

A and 

,n m
ijY 

 1,4A  are defined as (3) and (4) Then  
in (4) can be written as 

  = 0,1,2,3iC i

 

 

 

 

0 11 22 33 44

34

42

23

1 12 21 43

2 13 31 24

3 41 14 32

1
= ,

4
1

= ,
4
1

= ,
4
1

= .
4

C Y Y Y Y

C Y Y Y Y

C Y Y Y Y

C Y Y Y Y

  

  

  

  

 

Written in an explicit form,   = 0,1,iC i 2,3  in (4) are 

   

   

 

 

 

 

 

2

4

1

2

3

4

,

Q

Q

R Q

R Q

R Q

R Q

 
 
 
 
 
 
  

† †
0 1 1 2

† †
3 3 4

1 2 3 4

1 1
=

4 4
1 1

    
4 4

1
    , , ,

4

A

A

A

A

C P A Q P A

P A Q P A

W W W W









 

 



 

  

   

  

 

   

   

 

 

 

 

 

1

3 4

2

1

3

4

,

Q

Q

R Q

R Q

R Q

R Q

 
 
 
 
 
 
  

† †
1 1 2 2

† †
4 3

1 2 4 3

1 1
=

4 4
1 1

    
4 4

1
    , , ,

4

A

A

A

A

C P A Q P A

P A Q P A

W W W W









 

 



 

  

   

  

 

   

   

 

 

 

 

 

4

2

3

1

2

4

,

A

A

A

A

Q

Q

R Q

R Q

R Q

R Q

 
 
 
 
 
 
  

† †
2 1 3 2

† †
3 1 4

1 3 2 4

1 1
=

4 4
1 1

     
4 4

1
     , , ,

4

C P A Q P A

P A Q P A

W W W W









 

 



 

  

   

  

 

   

   

 

 

 

 

 

† †
3 1 4 2

3 2 4

1 4 3 2

1 1
=

4 4
1 1

     
4 4

1
     , , ,

4

A

A

A

A

C P A Q P A

P A Q P

R Q

R Q
W W W W

R Q

R Q









 

 



 



3

† †
1

4

1

2

3

,

Q

A Q
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where 

   
   

  

  

1 2

3 4

1 2

3 4

= ,0,0,0 , = 0, ,0,0 ,

= 0,0, ,0 , = 0,0,0, ,

= ,0,0,0 , = 0, ,0,0 ,

= 0,0, ,0 , = 0,0,0, ,

n n

n n

T T

m m

T T

m m

P I P I

P I P I

Q I Q I

Q I Q I





 

and W1, W2, W3 and W4 are arbitrary real matrices with 
compatible sizes. 

According to Lemma 2 and Theorem 3, we can get the 
following extreme ranks formulas for the real matrices in 
minimum norm g-inverse. 

Theorem 2.8 Suppose that A and  1,4A  are defined 
as (3) and (4). Then 

a)    
0

0max = min 4 ,4 ;

A

r C r r A m n

A

  
      

  
    




 

 


 0

0min = .
A

r C r r A
A

 
  
  

 

b)  


 1

1max = min 4 ,4 ;
A

r C r r A m n
A

      
   





 

 


 1

1min = .
A

r C r r A
A

 
  
  

 

c)  


 2

2max = min 4 , 4 ;
A

r C r r A m n
A

       
    

 

 


 2

2min = .
A

r C r r A
A

 
  
  

 

d)  


 3

3max = min 4 , 4 ;
A

r C r r A m n
A

       
    

 

 


 3

3min = ,
A

r C r r A
A

 
  
  

 

where 

 

 

 

 

0 0 1 2 3

1 1 3 3 2

2 2 3 0 1

3 3 2 1 0

=

= ,

= ,

= ,



















0

1

2

3

2 3 0 1

0 1 0 3 2

0 1 2 3

3 2 1 0

1 1 0 3 2

0 1 2 3

3 2 1 0

2 2 3 0 1

0 1 2 3

3 2 1 0

2 2 3 0 1

1 0 3 2

0 0 0

0 0 0
= ,

0 0 0

0 0 0

= ,

= ,

= ,

=

A

A
A

A

A

A A A A

A A A A A

A A A A

A A A A

A A A A A

A A A A

A A A A

A A A A A

A A A A

A A A A

A A A A A

A A A A

 
 
 
 
 
 
  
  
   
   
 
   
   
 
   
   

 

 

.


 
 
 

 

As one of important applications of the maximal and 
minimal ranks to real matrices, Theorem 4 can help to 
get the necessary and sufficient conditions for the exis-
tence of some special minimum norm g-inverse. We 
show them in the following. 

Corollary 2.9 Suppose 0 1 2 3= .A A A i A j A k    Then 
a) A quaternion matrix A has a real minimum norm 

g-inverse if and only if 

  
 1 2 3

= = =
A A A

r r r r
A A A

     
     
          

.A  

b) All minimum norm g-inverse of quaternion matrix A 
are real matrices if and only if 

  
 1 2 3

= = = 4
A A A

r r r r A
A A A

     
      
          

,m  

where 1 2 3, ,A A A  and A  are defined as Theorem 4. 
Corollary 2.10 Suppose 0 1 2 3= .A A A i A j A k    Then 
a) A quaternion matrix A has a pure imaginary mini-

mum norm g-inverse if and only if 


 0

= .
A

r r
A

 
 
  

A  

,A A A A A

A A A A A

A A A A A

A A A A A

  







 

b) All minimum norm g-inverse of quaternion matrix A 
are pure imaginary matrices if and only if 


 0

= 4 ,
A

r r A
A

 
  
  

m  

where 0A  and A  are defined as Theorem 4. 
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