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Abstract 
Anthropogenic activities, such as mining of natural resources, manufacturing 
industries, modern agricultural practices and energy production have resulted 
in the release of heavy metals with resultant harmful impacts in some natural 
environments. Toxic heavy metals are harmful to living organisms even at 
low concentrations. Therefore, heavy metal contaminated sites should be re-
mediated as heavy metals do not decompose into less harmful substances and 
are retained in the soil. Conventional methods are used for remediation of 
heavy metal contaminated soils such as heavy metal extraction, immobiliza-
tion and removal of soils to landfill produce large quantities of toxic products 
including insoluble hydroxides and are rarely cost effective. The advent of 
bioremediation technologies like biosparging, bioventing and bioaugmenta-
tion has provided an alternative to conventional methods for remediating 
heavy metal contaminated soils. A subset of bacteria found in the rhizosphere 
has been found to increase the tolerance of plants to heavy metals in soil. 
These bacteria commonly known as plant growth promoting rhizobacteria or 
Plant Growth Promoting Rhizobacteria (PGPR) are showing promise as a 
bioremediation technique for the stabilisation and remediation of heavy met-
al contaminated sites. PGPR can improve plant growth via a variety of me-
chanism including fixing atmospheric N to improve N status and making 
plants more tolerant of heavy metals. Scattered literature is harnessed to re-
view the principles, advantages and disadvantages of the available technolo-
gies for remediating heavy metal contaminated soils and is presented. 
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1. Introduction 

One of the environmental problems caused by industry is an increase in the 
concentration of heavy metals in the air, land and water. Pollution of the bios-
phere by heavy metals is a global hazard that has accelerated since the beginning 
of the industrial revolution [1] by the spillage and disposal of waste materials. 
Heavy metals released from different sources accumulate in soil and, where bio-
availability is high enough; can adversely affect soil biological functioning and 
other properties, leading to the loss of soil and ecosystem fertility and health. 

Heavy metals that are necessary for living organisms at low concentrations 
can become toxic at higher concentrations [2]. Toxic heavy metals are those 
which are not essential for life and are thus often toxic at lower concentrations 
than essential heavy metals [3] [4]. Heavy metals can enter organisms via direct 
soil ingestion, inhalation, dermal contact and intake through food and water [5]. 
Accumulation of heavy metals in soil is of concern to the agricultural production 
sector because of the potential threat to food quality and quantity as a result of 
increased absorption of heavy metals by plants [6]. Agricultural exports are in-
ternationally marketed on the basis of environmental safety and sustainability 
and so regulating heavy metal contamination is an important issue [7]-[13]. 

2. Remediation of Metal Contaminated Soils 

Soil remediation is described as the use of several procedures to reduce, remove 
or mitigate the contamination of a certain area or land [14]. Remediation may be 
done to stabilise the site, reduce movement of contaminants offsite via soil ero-
sion or water flow, to reduce toxicity of the contaminants and/or to protect en-
vironmental/human health [15]. With an increase in public awareness regarding 
the consequences of contaminated soil, many researchers are focussing on de-
veloping soil remediation technologies which are cost effective and socially ac-
ceptable [15]. A specific contaminated site may necessitate a group of procedures 
to permit the optimum remediation that reduces the environmental and human 
health risks to acceptable levels [16]. Conventional techniques for soil clean-up 
of heavy metals involve heavy metal extraction and immobilization that lead to 
excavation of the land [17]. Contaminated land can be remediated by physical, 
chemical or biological approaches which may be used in combination with each 
other to decrease the contamination to a safer and acceptable level [16] [18]. 

3. Bioremediation 

Bioremediation, or biological remediation, is a cost effective and eco-friendly 
biotechnology that involves the use of organisms such as plants and/or bacteria 
to remediate and stabilize contaminated sites [19] [20] [21]. The technology in-
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volves biological agents such as plants and microorganisms to transform or de-
grade contaminants into nonhazardous or less-hazardous substances [22] [23]. 
Various organisms like bacteria, fungi, algae and plants have been reported to 
efficiently bioremediate pollutants [24]. The technology of bioremediation offers 
an alternative pathway to more traditional techniques for the remediation of 
contaminated sites. 

Bioremediation uses natural processes and relies upon organisms to alter 
contaminants and environmental conditions as these organisms undergo their 
normal life functions [25]. Their metabolic processes are capable of using chem-
ical contaminants as an energy source, rendering the contaminants harmless by 
reducing their bioavailability or producing less toxic products [25] [26]. Biore-
mediation is being used as an effective means of mitigating hydrocarbons, or-
ganic solvents and organic compounds, pesticides and herbicides, nitrogenous 
compounds and heavy metals [23]. 

By definition, bioremediation provides techniques for purging up pollution by 
augmenting the same biodegradation processes that take place in nature [27]. 
Despite bioremediation occurs naturally over time, environmentalists have es-
tablished myriads of ways to speed up the whole bioremediation process. The 
technology uses naturally occurring bacteria and fungi or plants or fertilizers to 
degrade or detoxify substances hazardous to human health and/or the environ-
ment. The microorganisms may be indigenous to a contaminated area or they 
may be isolated from somewhere else and transported to the contaminated site 
[24]. For bioremediation to be operative, microorganisms should enzymatically 
attack the pollutants and convert them to innocuous products [28]. These belong 
to the groups of oxidoreductases, hydrolases, lyases, transferases, isomerases and 
ligases. Many enzymes have remarkably varied degradation ability due to their 
specific as well as nonspecific substrate affinity. Bioremediation technology is 
principally based on biodegradation. It refers to thorough removal of organic 
toxic pollutants in to innocuous or naturally occurring compounds including 
carbon dioxide, water, inorganic compounds which are safe for human, animal, 
plant and aquatic life [29]. Numerous mechanisms and pathways have been elu-
cidated for the biodegradation of a wide variety of organic compounds; for in-
stance, it is completed in the presence and absence oxygen. 

Microorganisms used to perform the function of bioremediation are known as 
bioremediators [21]. Typically, microbes like bacteria, archaea and fungi are the 
leading bioremediators [24]. There are lots of different types, they grow very ra-
pidly and they can be easily modified genetically. Examples of this type of bio-
remediators include Aspergillus niger, Pseudomonas aeruginosa, Penicillium 
chrysogenum, Pseudomonas putida, Bacillus subtilis and Rhizobium sp. 

These bioremediators are grouped into two broad categories: aerobic and 
anaerobic. Aerobic microorganisms work in presence of oxygen and can degrade 
pesticides and hydrocarbons with many of these microbes use the pollutant as 
the source of energy [21]. Anaerobic microorganisms work in absence of oxygen 
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and are less frequently used in comparison to aerobic ones [21]. Bioremediation 
involves two different strategies: in situ and ex situ. 

3.1. In Situ Bioremediation 

In situ bioremediation is remediation without excavation of contaminated land 
[18]. Often, it is applied to the breakdown of contaminants in saturated soils. It 
uses beneficial micro-organisms to degrade the chemicals in the contaminated 
environment and costs less than conventional remediation technologies [29]. In 
situ bioremediation includes techniques like biosparging, bioventing and bio-
augmentation [21]. 

Biosparging is injecting oxygen under pressure in to the saturated zone to 
transfer volatile compounds to the unsaturated zone for biological breakdown by 
naturally occurring microorganisms [21]. Biosparging is relatively cheap, easy to 
install and quickly distributes oxygen across the site to maximise microbial func-
tioning [30]. Bioventing involves using a low flow of air to provide adequate 
oxygen for sustaining microbial activity [31]. Bioventing is typically used to treat 
contaminants that are biodegradable under aerobic conditions. Bioventing acce-
lerates natural processes as it provides a low flow of air, which augments the 
growth of microorganisms naturally present in soil [32]. Bioaugmentation in-
volves naturally occurring microbial strains or genetically engineered variants to 
treat contaminated soil [33]. This approach is commonly used in municipal 
wastewater treatment [34]. Maintenance of this system is difficult as it requires 
monitoring to ensure the complete degradation of the contaminants [21]. Also 
optimising the efficiency of the microorganisms in an uncontrolled external en-
vironment is difficult to achieve and assess [35]. 

3.2. Ex Situ Bioremediation 

Ex situ bioremediation involves removing contaminated soils from the ground 
for treatment that can occur in another location either on or off site [18]. It is 
often considered to be less advantageous than in situ remediation because the 
contamination is moved elsewhere and has the possibility to create significant 
risks in the excavation and transport of harmful material [29]. Ex situ biore-
mediation includes techniques such as land farming, composting and biopiling 
[21] [29]. 

Land farming is a technique where contaminated soil is taken and spread in a 
thin layer over a ground surface of a treatment site until the contaminants are 
degraded by aerobic microorganisms [36]. Microorganisms are frequently added 
to the soil to achieve rapid degradation and the soil must be well mixed in order 
to increase the contact between the contaminants and microorganisms [16]. 
Large areas of land are required for land farming, which is a limitation to the 
suitability of this technology [16]. 

Composting is a controlled process by which organic materials are degraded 
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by microorganisms under elevated temperature, resulting in the production of 
organic and/or inorganic by-products [37]. The increased temperature results 
from the heat released by microorganisms during the degradation of the organic 
materials in the waste. Typical compost temperatures are in the range of 55˚ to 
65˚C [38]. The volume of material often increases after composting due to the 
addition of amendment agents, which is a limitation of this technology [39]. 
Nevertheless this is a cost-effective technology [21]. 

Biopiling is a technology where excavated soils are piled and get mixed with 
microorganisms by using applied aeration. The piles should be covered to pre-
vent overflow, evaporation and to advance solar heating [40]. The contaminants 
are often condensed to carbon dioxide and water [41]. Biopiling is similar to 
land farming but in the latter the soil is aerated artificially. 

4. Phytoremediation 

Phytoremediation involves using plants to remediate contaminated land. [42] 
[43] [44] [45]. Phytoremediation is a rising technology, that remediates a broad 
range of environmental pollutants in situ [21]. Growing and harvesting plants in 
contaminated sites is seen as an inexpensive, solar-energy driven and ecological-
ly friendly method of remediation that can be used to remediate these sites [44]. 
A number of heavy metal accumulating plants have been used for removing tox-
ic metals from soil [46], which in addition, also provide the vegetation cover, to 
control soil erosion on contaminated sites, and thus, the movement of contami-
nants offsite [47]. For example, high Ni accumulation and tolerance has been 
reported in 7 genera and 72 species of the family Brassicaceae [48]. It is estab-
lished that certain species of this family exhibit a strong ability to gather and 
translocate heavy metals, such as Cd, Cr, Pb, Zn and Ni through the roots to the 
shoot [49]. Phytoremediation has several subcategories including Phytoextrac-
tion, Phytotransformation, Phytodegradation, Phytostabilisation and Rhizore-
mediation [1] [21] [50]. 

Phytoextraction or phytoaccumulation is the process that is used to accumu-
late contaminants into the roots and shoots of plants [46]. It is rather less expen-
sive but more time consuming than many other soil clean-up process [21]. Phy-
totransformation or phytodegradation is the uptake of organic pollutants from 
soil or water and their transformation into lower risk forms [21]. Rhizofiltration 
is the remediation of contaminated groundwater. Pollutants maybe absorbed by 
roots or adsorbed onto the surface of the roots [49]. Phytostabilisation is a tech-
nique where plants reduce the bioavailability and/or mobility of contaminants in 
the soil or reduce the relocation of contaminated soil, e.g. via erosion, thus im-
mobilising contaminants within the soil profile [21] [50]. Elements that are ad-
sorbed and bound into the structure of plants form a stable mass within the 
plant and do not again enter the environment [21]. Rhizoremediation is phyto-
remediation that uses rhizobacteria, where combinations of plant and the bacte-
ria work together within the plant rhizosphere to remediate the soil [1] [51]. 
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Approximately, 400 species of terrestrial plants have been identified as hy-
per-accumulators of various heavy metals [52] which may serve as potentially 
useful bioagents for phytoextraction of heavy metals. Generally, the threshold 
for hyper-accumulation of Ni by plants is set at 1000 mg/kg (0.1%) dry mass 
[53]. Efficiency of phytoaccumulation depends upon the rate of heavy metal up-
take and enhanced production of biomass with minimal phytotoxicity [54]. Still, 
it has been speculated that most of the known hyperaccumulators are not suita-
ble for phytoextraction due to their slow growth and low biomass in heavy metal 
contaminated soil [49]. These limitations have led to the exploration of the pos-
sibilities of enhancing the biomass of heavy metal accumulators using rhizobac-
teria as plant growth promoting bioinoculants. Considerable attention is being 
paid to using plants as well as plant-microbe interactions for the removal or 
immobilisation of heavy metals and other toxic wastes in soil [55]. 

5. Rhizoremediation 

Rhizoremediation is the remediation of soil by rhizobacteria i.e. bacteria that 
inhabit the rhizosphere of plants [56]. Combining the benefits of microbe-plant 
symbiosis within the plant rhizosphere into an effective remediating technology 
is a relatively new approach that has the potential to provide practical remedia-
tion outcomes [1]. 

To tolerate heavy metal stress in contaminated soils, some microbes have de-
veloped certain mechanisms that they apply to withstand the uptake of heavy 
metals (Figure 1). These mechanisms comprise; 1) exclusion: pumping heavy 
metal ions outside to the cell, here the metal ions are kept at bay and away from 
the target sites; 2) extrusion: where the metals are pushed out from the cell 
through plasmid/ chromosomal mediated events; 3) accommodation: where 
metals form complex with different cell components including metal binding 
proteins, that is gathering and sequestration of the metal ions inside the cell; 4) 
biotransformation: where the toxic metal is reduced to a less toxic form by con-
version; 5) methylation and demethylation and 6) desorption/adsorption of 
heavy metals [1]. These defence mechanisms enable tolerant microorganisms to 
function metabolically in heavy metal polluted environments. 

6. Plant Growth Promoting Rhizobacteria 

Plant growth promoting rhizobacteria or PGPR are a number of species of soil 
bacteria that grow in the rhizosphere of plants and stimulate plant growth by a 
variety of mechanisms [57]. The roots of plants interact with large number of 
diverse microorganisms and these interactions together with soil conditions im-
pact on plant growth. The colonization of the rhizosphere by bacteria is known 
to be helpful for bacteria but their presence can also be beneficial to plants [55]. 
Plant growth promoting rhizobacteria are used in some agricultural systems to 
improve crop yield and quality [58] [59] [60]. For example, the le-
gume-rhizobium symbiosis turns atmospheric N into forms plants can use and is  
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Figure 1. Metal tolerance mechanisms developed by soil microbes (partially adapted from [1]). 

 
a vital part of the N cycle [61]. As leguminous plants are important sources of 
protein for humans and the animal world, the use of rhizobial inoculants for le-
gumes to ensure efficient N fixation has been occurring for over 100 years [62]. 
Simultaneously inoculant markets were also developed in Myanmar [63], Thail-
and [64] [65] and Bangladesh [66]. 

In addition to use in agricultural systems, there is the potential for utilising 
the properties of PGPR in other systems such as to use PGPR in the remediation 
and stabilisation of contaminated land [67]. Some PGPR have also been shown 
to protect their host plant from pathogenic microorganisms [68] and heavy met-
als [69]. The effectiveness of various bioremediation strategies are summarized 
in Table 1. 

6.1. Mechanism of Action of PGPR 

Plant growth promoting rhizobacteria are usually applied to plants for the pur-
pose of growth enhancement, including increased seed germination, plant 
weight, and harvest yields [68]. The general mechanisms of plant growth pro-
motion by PGPR includes resource acquisition from the atmosphere (e.g. 
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Table 1. The effectiveness of different types of bioremediation strategies of metal contaminated soils. 

Mode of Bioremediation Examples Advantages/Effectiveness Disadvantages Ref. 

In situ Biosparging Bioventing 
Bioaugmentation 

Most Cost effective; Natural  
attenuation process; Relatively 
passive; Treats soil and water; 

Extended treatment time; Monitoring 
difficulties; Environmental constraints; 

[21] [24] 

Ex situ 
Land farming Composting 

Biopiling 
Low cost; Can be done on site; 

Space requirement; Extended treatment 
time; Bioavailability limitation; 

[24] [29] 

Phytoremediation 

Phytoextraction  
Phytotransformation  

Phytodegradation 
Phytostabilisation  
Rhizoremediation 

Cost of the phytoremediation lower 
than that of traditional processes 
both in-situ and ex-situ; Can be 
easily monitored; Uses naturally 

occurring organisms and preserves 
the natural state of the  

environment; 

The toxicity and bioavailability of  
biodegradation products are not  
permanently known; Too high  

concentration of contaminants can 
result in plants death; 

[50] [70] 
[71] 

Rhizoremediation 

Exclusion Extrusion  
Accommodation  

Biotransformation  
Methylation Demethylation  
Desorption/adsorption of 

heavy metals 

Uptake of metals in plant roots; 
Roots absorb Zn, Pb, Cd, As; 

Groundwater adsorb pollutants, 
mainly metals, from water and 

aqueous waste streams; 

May require a longer period than other 
remedial approaches; Phytoremediation 

is limited to the depth that the plant 
roots can reach and to sites with low 
contaminants concentrations because 

concentrations that are too high can be 
toxic to plants; 

[21] [72] 
[73] 

 
Plant Growth promoting 

Rhizobacteria 

resource acquisition including  
assimilation of N from atmosphere, 

protection of host plant from  
pathogenic microorganisms and 

heavy metals 

[74] [75] 

 
atmospheric N) [74] [75], producing particular compounds used by plants (e.g. 
siderophores and phytohormones) [76] [77], solubilising nutrients (e.g. P, Fe), 
facilitating uptake of nutrients from soil (e.g. P, Fe) [78] [79] [80], protecting 
plants from possible microbial attack [81] [82], and decreasing the toxicity of 
heavy metals [25]. Nevertheless the mechanisms of PGPR-mediated expansion 
of plant development are not entirely understood [83]. For instance, the produc-
tion of siderophores effect plant growth promotion in multiple ways such as 
bio-control, providing plants with micronutrients like Fe and protecting plants 
from heavy metal intoxication by chelating heavy metals and reducing their 
bioavailability [55] [70]. Plant growth promoting rhizobacteria strains can pro-
mote plant growth and development either directly or indirectly [84]. 

Direct stimulation involves resource acquisition, which includes assimilation 
of N from atmosphere, solubilising nutrients particularly mineral phosphate, 
sequestering Fe, modulating phytohormone levels, producing cytokinins, gibbe-
rellins, indoleacetic acid (IAA) [85] [86]. Indirect stimulation is related to the 
ability of the bacteria to prevent the proliferation of plant pathogens by produc-
ing antibiotics and lytic enzymes [87] [88], producing siderophores which can 
prevent some phytopathogens from acquiring a sufficient amount of Fe thereby 
limiting their ability to proliferate [89], the ability of bacteria to compete with 
pathogenic microbes for available nutrients in soil, lowering inhibitory levels of 
stress ethylene by producing ACC deaminase and thereby increasing root 
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growth [90], enhanced resistance to drought [91] [92], salinity [93], waterlog-
ging [94] oxidative stress [95] and heavy metals [69] [96]. 

6.2. PGPR in Heavy Metal Contaminated Soil 

The potential of using beneficial bacteria to increase plant growth has shown 
considerable promise in laboratory and greenhouse studies, but responses have 
been variable in the field [97]. The use of PGPR has been extended to remediate 
contaminated soils in association with plants [25]. Research has found that 
PGPR play an active role in plants grown in heavy metal contaminated soils by 
improving plant growth and tolerance to heavy metals [55] [67] [70] [98] [99] 
[100] [101]. As an example, the heavy metal tolerant PGPR Bacillus subtilis 
strain SJ-101 improved the growth of Indian mustard (Brassica juncea) in Ni 
contaminated soil [55] [101]. 

Several rhizobial species are known to increase the nutrient status of plants 
grown on contaminated soils but most importantly some PGPR are both heavy 
metal tolerant and improve plant growth under exposure to excess heavy metals 
[67]. For example, Bradyrhizobium strain RM8 is tolerant to Ni and Zn; Rhizo-
bium sp. RL9, isolated from lentil nodules is tolerant of Zn; and Rhizobium sp. 
RP5, isolated from pea nodules is tolerant of Zn and Ni and produces substantial 
amounts of IAA. A variety of PGPR strains aid in heavy metal induced toxicity 
in plants (Table 2). 

A range of rhizobacterial strains help in amending heavy metal induced plant 
toxicity [108]. For instance, PGPR strains, pseudomonads and Acinetobacter 
enhance uptake of Fe, Zn, Mg, Ca, K and P by crop plants [112]. Studies on cer-
tain rhizobacteria in heavy metal uptake indicated that this group of bacteria for 
example, Pseudomonas are able to grow and produce siderophores in presence 
of heavy metals in chickpea plants grown in Ni contaminated soil [55]. 

Numerous strains of plant growth promoting rhizobacteria possessing heavy 
metal reducing ability have been identified. As an example, certain rhizobacteria 
are able to tolerate arsenic accumulated by the silverback fern (Pityrogramma 
calomelanos) [113]. Rhizosphere microbes that were collected from roots of P. 
calomelanos increased the biomass and as concentration of plants significantly 
suggesting that rhizosphere bacteria improved phytoextraction of as [114]. In 
similar studies, it was found that fern Pteris vittata is an as hyper accumulator 
and adding as reducing bacteria plant biomass increased by 53% and as uptake 
by 44% [115]. In another study, the growth promoting effect of Bradyrhizobium 
japonicum CB1809 with soybean plants grown in as contaminated growing me-
dium was investigated [69]. In this study, however, the bacteria improved plant 
growth of soybean but the plant uptake of as was not increased by inoculation 
with the Bradyrhizobium and thus the bacteria has potential for use in site phy-
tostabilisation. 

Recently, plant growth promoting rhizobacteria Arthrobacter mysorens 7, 
Azospirillum lipoferum 137, Agrobacterium radiobacter 10 were isolated from  
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Table 2. Examples of plant growth promoting rhizobacteria able to tolerate a variety of 
heavy metals in plants. 

PGPR Plant Tolerated metals Reference 

Bacillus subtilis SJ-101 
Brassica juncea  

(Indian mustard) 
Ni [101] 

Pseudomonas sp. Chickpea Ni [55] 

Bradyrhizobium sp.  
(vigna) RM8 

Greengram (Vigna radiate) Ni [102] 

Sinorhizobium sp. Pb002 Brassica juncea Pb [103] 

Brevibacillus Trifolium repens Zn [104] 

Pseudomonas sp, Bacillus sp. Mustard Cr [105] 

Bradyrhizobium  
japonicum CB1809 

Glycine max 
(Soybean) 

As [69] 

Pseudomonas putida KNP9 Mung bean Pb and Cd [106] 

Pseudomonas sp. RJ10,  
Bacillus sp. RJ31 

Brassica napus Cd [107] 

Rhizobacteria Triticum aestivum L. (wheat) 
Hordeum vulgare L.(barley) 

Cd [108] 

Rhizobium sp. RL9 Lentil Zn [109] 

Rhizobium sp. RP5 Pea Zn and Ni [110] 

Rhizobacterium sp. D14 Populus deltoides LH05-17 As [111] 

 
barley plants grown in Cd and Pb-treated soil [111]. In barley plants, that were 
cultivated in uncontaminated and contaminated soils, the heavy metal resistant 
bacterial strains colonized the rhizosphere. Inoculated barley had improved up-
take of nutrient elements and growth compared to control plants when grown in 
soil contaminated with Cd and Pb [111]. It was concluded from this study that 
accumulation of Cd and Pb in barley plants was reduced by the bacteria which 
accounted for increased growth of inoculated plants. In another study, Cr tole-
rant rhizobacteria were isolated from the rhizosphere of a Cr contaminated site. 
These bacteria were used to inoculated Vigna radiata in Cr contaminated soil 
and the inoculated plants were found to have an increase in biomass, root length 
and shoot length over non-inoculated plants grown in the same soil [108]. Inte-
restingly, the inoculated plants had a significant enrichment in Mn, Fe, Ni, Zn, 
Cr, Pb, Cd and Cd accumulation (P < 0.001) compared to non-inoculated plants 
despite the inoculated plants having higher biomass [108]. So, improving plant 
microbe interaction and introducing useful rhizospheric microorganisms are 
important to increased biomass production and heavy metal tolerance of plants. 

6.3. Prospective of Bioremediation 

This review comprehensively covers the salient features of bioremediation, its 
limitations and recent developments in waste management through bioremedia-
tion. It is acknowledged that no single specific technology could be considered as 
a solution for all contaminated site problems. Microorganisms play essential role 
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in bioremediation; therefore, their assortment, opulence and internal structure 
in polluted environments provide understanding of the fate of any bioremedia-
tion techniques. Genomics, metabolomics, proteomics and transcriptomics—all 
“Omics” molecular technics have contributed towards the better understanding 
of microbial identification, functions and associated metabolic and catabolic 
pathways [27]. Genetically engineered microorganisms (GEMs) have exhibited 
potential for bioremediation applications in soil and groundwater, showing en-
hanced degradative capabilities including a wide range of chemical contaminants 
[116]. GEMs can enhance degradative performances using various strategies in-
cluding modification of enzyme specificity and affinity, pathway construction 
and regulation, bioprocess development, monitoring, and control, toxicity re-
duction, and end point analysis. Further, engineering microorganisms with de-
gradative capacity for a specific compound using synthetic biology approach can 
increase bioremediation efficacy. The use of nanoparticles can diminish the tox-
icity of pollutants to microorganisms [117]. Nanoparticles enhance surface area 
and lesser activation energy, thus accumulating the efficiency of microorganisms 
in degradation of waste and toxic materials, resulting in overall reduction in re-
mediation time and cost.  

6.4. Concluding Remarks 

Metal contamination issues in plants and soils are becoming increasingly com-
mon throughout the world. Metal toxicities are often associated with a range of 
symptoms and an overall decrease in plant growth [118] [119] [120]. Back-
ground knowledge of available different strategies and potential risks of heavy 
metals is necessary for the selection of appropriate remedial options. Bioremedi-
ation technologies including in situ and ex situ bioremediation are frequently 
listed provides methods for remediating heavy metal contaminated soils. The 
environmental benefit of the approach of using beneficial bacteria to increase 
plant growth and to reduce heavy metal toxicity and/or bioavailability in conta-
minated lands fits with sustainable management practices [55] [67] [96] [100] 
[101] [121]. These bacteria have demonstrated a considerable decrease in the 
toxicity of metals to the host plant and a subsequently improved overall devel-
opment and yield of plant species [110] [122]. The growth promoting properties 
of rhizobia to an array of heavy metals for the remediation and stabilisation of 
contaminated land is an area of research that needs to be further explored. 
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