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Abstract 
Ambrosia artemisiifolia L. (common ragweed) is an annual ruderal plant that 
is native to Northern America but nowadays is also spreading across Europe, 
and its pollen is known to be highly allergenic. Air pollution, e.g. NOx and 
climate change may affect the plant growth, pollen production and duration 
of the entire pollen season. In this study, ragweed plants were grown over an 
entire vegetation period under 40 ppb NO2/clean air (control) and 80 ppb 
NO2 (treatment). The inflorescence length was not affected by this air pollu-
tant. However, the pollen amount increased, while the seed production de-
creased in both populations upon elevated NO2 concentrations. Regarding 
phenolic metabolites elevated NO2 had no effect on the amount of total phe-
nolic metabolites, while individual metabolites showed significant changes. 
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1. Introduction 

Ambrosia artemisiifolia (common ragweed) is native to North America; it is a 
monoecious and wind-pollinated herbaceous annual plant that belongs to the 
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Asteraceae family and has expanded its distribution out of its native range to 
Europe, Australia, Asia, South Africa and South America [1] [2] [3] [4]. Moreo-
ver, for Europe, the models of future expected climate change scenarios indicate 
a dramatic northward shift of A. artemisiifolia, also accompanied by an increase 
in pollen production [5] [6]. 

Environmental changes may increase the severity of pollen as stimulated 
atopic disease by influencing the large-scale distribution and local incidence of 
allergenic species, the flowering time, the pollen production and the allergenicity 
of individual pollen grains [7] [8] [9] [10]. It has been shown that elevated CO2 
concentrations result in an increase of A. artemisiifolia growth and pollen pro-
duction [9] [10] [11] [12]. In addition to climate change parameters, air pollu-
tion might also influence the allergenicity of A. artemisiifolia pollen [13] [14] 
[15] [16]. However, the fumigation of A. artemisiifolia plants with 80 ppb O3 did 
not alter the pollen amount [12]. Atmospheric NO2 is either harmful or benefi-
cial to plants, depending on the concentration and plant species [17] [18] [19] 
[20] [21]. For the vegetation the critical value is about 15 ppb per year  
(http://www.umweltbundesamt.de/sites/default/files/medien/1/dokumente/infob
latt_stickstoffdioxid.pdf). However, in urban traffic areas up to 90 ppb NO2 can 
be measured, whereas in rural regions up to 20 ppb can be found  
(http://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten). A 
reduced pollen viability of Pinus nigra under ambient NO2 levels was found in a 
field study [22]. Similarly in vitro fumigation of pollen from three tree species 
reduced the viability and germination [23]. The in vitro fumigation of pollen 
with NO2 did not induce new allergens in birch or A. artemisiifolia and had no 
effect on the allergen release from grass pollen [24] [25]. Using high concentra-
tions of NO2 (ppm range), the content of several Phleum pratense grass allergens 
(Phl p) decreased [26]. However, treatment of pollen from four different tree 
species with moderate NO2 concentrations (40 - 300 ppb) resulted in greater 
immunoglobulin E (IgE) recognition by immunodetection [23] [27]. Pollen iso-
lated from A. artemisiifolia that was fumigated with realistic NO2 concentrations 
(80 ppb) also showed a higher IgE recognition [16]. Similarly NO2-fumigated 
pollen of P. pratense stimulated the production of chemokines by an increased 
Th2-cell response in human cells [28]. These studies suggest that changes in NO2 
concentrations will affect the allergenic potential of pollen and play a role in 
human health diseases that are related to allergic rhinitis and asthma. 

Flavonoids are important secondary metabolites that protect pollen from 
UV-B irradiation, especially during the long-distance transport [29]. In addition, 
flavonoids are crucial for the germination process in many plant species [30] 
[31]. Moreover, these compounds may also be involved in the allergenic re-
sponse of pollen [32] [33]. Flavonoids can interact with allergens [34] [35], and a 
direct link between the binding of a quercetin glycoside to Bet v 1 and the in-
flammation responses was recently reported [36]. 

From these perspectives, a detailed analysis of the allergenic pollen and seed 
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production would allow to understand the anticipated changes in the pollen 
amount and seed dispersal in response to elevated NO2 concentrations. In pre-
vious studies, we had shown that elevated levels of O3 had no effect on the pollen 
production of A. artemisiifolia, whereas CO2 increased and drought decreased 
the pollen amount [12]. In this study, we altered the gaseous air pollution by 
linking the pollen and seed production of A. artemisiifolia with elevated NO2 le-
vels. We emphasize that this environmental change affects the pollen amount, as 
well as phenolic metabolites, which is relevant to human health. 

2. Material and Methods 
2.1. Plant Growth Conditions 

A. artemisiifolia seeds were collected from a single plant at an outdoor stand 
(Bad Waldsee, Baden-Württemberg, Germany) to prevent epigenetic-caused ef-
fects [37]. Seeds were sown in standard soil (Floradur®, Bayerische Gärtnerei 
Genossenschaft, München, Germany) in small multiflor palettes (6 × 6 cm) and 
transferred into four Plexiglas sub-chambers (1.1 m × 0.9 m × 0.8 m) that were 
placed in Phytotron walk-in chambers [38] 
(http://www.helmholtz-muenchen.de/en/eus/facilities/phytotron/index.html). 
All physical parameters, including the wind velocity were identical in the 
sub-chambers. After germination, the seedlings were planted in pots (Ø17 cm). 
One plant was grown per pot and 10 pots were placed into the sub-chambers. 
Plant growth and NO2 fumigation were performed as described by [16]. Briefly, 
plants were treated with 40 ppb NO2 (control) or 80 ppb NO2 (treatment) for 61 
d (10 h/d), and pollen was harvested during the last 28 d of fumigation (1st pop-
ulation), using a modified ARACON system (BETATECH, Ghent, Belgium) that 
covered the male inflorescences (Figure 1). Five inflorescences from each plant 
were randomly selected for the sampling of the pollen. The collected pollen 
 

 
Figure 1. Sampling of ragweed pollen using a modified ARACON system. 
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samples were stored at −80˚C. In addition, seeds from the 40 ppb NO2 treatment 
were collected and used in a second experiment the following year (2nd popula-
tion). For technical reasons (an additional ozone experiment was carried out) 
the second population was treated with clean air (control) and 80 ppb NO2 
(treatment) [16]. For each population morphological data like inflorescence 
length, the pollen and seed amount was measured.  

2.2. Analysis of Phenolic Metabolites 

Frozen pollen (15 mg) was extracted with 1.5 ml of phosphate buffer saline 
(PBS) for 1 h at room temperature. After centrifugation, the PBS supernatant 
was kept, and the residue was re-extracted with 1.5 ml of methanol 
(high-performance liquid chromatography (HPLC) grade). The reverse-phase 
high-performance liquid chromatography (RP-HPLC) (Beckman HPLC System 
Gold, Beckman, Munich, Germany; column 240 × 4.5 mm ProntosilSpheribon-
dODS2, NC, 5 µm, Bischoff, Leonberg, Germany) of both extracts was per-
formed as described by [39], using 10 µl of PBS samples. In the case of the me-
thanol extraction, 25 µl of H2O was added to 75 µl of the methanolic samples, 
then centrifuged, and 10 µl were used for RP-HPLC separation. Solvents and 
gradient conditions for RP-HPLC separations were as described by [39]. Detec-
tion was at 280 nm with a UV/visible diode-array detector (Beckman Model 
168). 

2.3. Statistics 

To calculate significant differences between samples, an unpaired t-test was car-
ried out. The Shapiro-Wilk normality test or the Mann-Whitney rank sum test 
was used (SigmaPlot 12; Systat Software, Erkrath, Germany). 

3. Results and Discussion 
3.1. Morphological Plant Growth and Pollen Data 

Regarding morphological parameters, increased NO2 had no effect on the inflo-
rescence length (Table 1), which is similar to the air pollution O3, also showing 
no effect on this parameter, whereas elevated CO2 resulted in an increased length 
of the main inflorescence [12]. Regarding allergenicity, the pollen amount clearly 
increased in both years of the study by approximately 70 to 80% (Table 1). This 
result parallels the increased number of flowers found in tomato plants upon 
NO2 fumigation [40]. The increased pollen amount in A. artemisiifolia, similar 
to that under elevated CO2 [12], may result in a higher pollen concentration in 
the air, with expected negative effects on the atopic population [41]. The total 
seed production and seed amount clearly decreased under elevated NO2 (Table 1). 
This may be caused by a reduced pollen viability and germination rate upon NO2 
exposure [22] [23]. An important point for seed production in ragweed is the 
plant density [42]. As the plant density was the same in all sub-chambers the 
seed production could only be influenced by NO2. This result is in contrast to 
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Table 1. Morphological data of ragweed plants that were grown in exposure chambers 
and fumigated with elevated NO2 concentrations. 

NO2 (ppb) 
Inflorescence 

(cm) ± SD 
Pollen/Inflorescence 

(mg) ± SD 
Seeds/plant 
(mg) ± SD 

Weight of 50 grains 
(mg) ± SD 

1st 40 23.73 ± 1.12 79 ± 6 1329 ± 85 229 ± 18 

1st 80 25.18 ± 1.57 132 ± 11 905 ± 69 199 ± 10 

p-value 0.327 1.8 × 10E−5* 2.3 × 10E−3* 1.9 × 10E−3* 

2nd 0 24.48 ± 1.35 85 ± 8 1637 ± 77 237 ± 16 

2nd 80 24.61 ± 1.77 159 ± 12 1024 ± 53 209 ± 9 

p-value 0.568 2.7 × 10E−5* 3.5 × 10E−3* 2.9 × 10E−3* 

Number of plants N = 20, 5 inflorescences per plant, t-test, *p-value < 0.05. Five inflorescences from each 
plant were randomly selected. 

 
black turtle bean (Phaseolus vulgaris), which showed an increased seed number 
and seed weight [19]. 

3.2. Secondary Metabolites 

The total amount of analyzed phenolics is shown in Figure 2(a). However, no 
significant changes between the controls and treatments in either year were evi-
dent. This result is similar to that of A. artemisiifolia plants that were fumigated 
with ozone or elevated CO2 or were grown under drought stress [14] [43]. Typi-
cal RP-HPLC diagrams of water-soluble extracts revealed six prominent com-
pounds (Figure 3(a)). Diode array spectra of the respective peaks indicated 
compounds DA 1, 2, 4 and 6 as quercetin derivatives and compound DA 5 as a 
kaempferol derivative, whereas compound DA3 could not be identified (Figure 
3(b), Figure 3(c)), and the highest amounts were found for DA 2, 5 and 6 
(Figure 2(b)). Methanol-extractable phenolics additionally also showed six 
compounds that were characterized as hydroxycinnamic amides according to 
their diode-array spectra (Figure 3(d), Figure 3(e)). Significant changes with an 
increased amount were only observed in the 2nd population for the water-soluble 
metabolite DA 6 and the methanol-extractable metabolites DA 5 and 6 (Figure 
2(b)). In contrast, in the 1st population, the water-soluble metabolites of DA 1 
and 4 clearly decreased under elevated NO2 (Figure 2(b)). These differences 
might be explained by the different control treatments in both years: 40 ppb NO2 
in the first year and clean air in the second year. Changes in individual phenolic 
metabolites have also been reported in A. artemisiifolia pollen upon CO2 and/or 
drought stress [43], whereas no changes were observed upon ozone fumigation 
[14]. The pollen of several other plants species that were sampled from polluted 
and less-polluted areas showed an increased amount of individual flavonoids 
[44] [45]. These data indicate that individual stress will differentially affect the 
flavonoid composition. As we did not find significant differences in the total 
flavonoid amount, it is unlikely that there is a direct effect of flavonoids on IgE  
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(a)                                                             (b) 

Figure 2. (a) Total amount of water-soluble and methanol-extractable phenolic metabolites in ragweed pollen. The separation was 
performed by RP-HPLC. Plants were fumigated with 40 ppb NO2 (1st control) or clean air (2nd control) or with 80 ppb NO2 (1st 
and 2nd treatment); bars indicate ± SD; N = 8 plants, 5 inflorescences per plant). (b) Amount of individual PBS-soluble and me-
thanol-extractable phenolic metabolites in pollen of A. artemisiifolia. C1 = 1st population of control; T1 = 1st population of treat-
ment; C2 = 2nd population of control; T2 = 2nd population of treatment. The bars indicate ± SD and significant differences are 
indicated by asterisks (N = 8 plants, 5 inflorescences per plant; t-test, *p-value < 0.05). 

 
recognition, as elevated NO2 resulted in a higher IgE recognition in immunob-
lots [16]. However, flavonoids can play a modulating role on immunity and in-
flammation [46] and may influence membrane translocation of allergens [47]. 

4. Conclusion 

Our data on A. artemisiifolia fumigated with elevated NO2 support the hypothe-
sis that the overall allergenicity might be increased by an increased pollen 
amount. However, differences in the estimation of allergen exposure between 
pollen amount and ELISA data must be considered [48] [49]. As the overall seed 
production decreased under elevated NO2, the dispersal of A. artemisiifolia 
should not be affected by this air pollutant. 
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Figure 3. RP-HPLC diagram of water-soluble and methanol-extractable phenolic metabolites. (a) shows a typical HPLC run of a 
PBS extract from A. artemisiifolia pollen at an absorbance of 280 nm, resulting in 6 distinct peaks; (b) represents the diode array 
spectra of the respective peaks between 250 and 430 nm; (c) indicates the elution times and maxima of the corresponding peaks, 
and preliminary structural assignments are given; (d) gives a typical HPLC run of a methanol extract, following the PBS extrac-
tion, from A. artemisiifolia pollen at an absorbance of 280 nm. The HPLC run resulted in six distinct peaks; (e) diode array spectra 
of the respective peaks between 250 and 430 nm; (f) indicates the corresponding retention time and the peak maxima for each 
single peak. 
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