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Abstract 
In this paper we have considered a non convex optimal control problem and presented the weak, 
strong and converse duality theorems. The optimality conditions and duality theorems for frac-
tional generalized minimax programming problem are established. With a parametric approach, 
the functions are assumed to be pseudo-invex and v-invex. 
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1. Introduction 
Parametric nonlinear programming problems are important in optimal control and design optimization problems. 
The objective functions are usually multi objective. The constraints are convex, concave or non convex in nature. 
In [1]-[3], the authors have established both theoretical and applied results involving such functions. Here we 
have considered a generalized non-convex programming problem where the objective and/or constraints are 
non-convex in nature. Under non-convexity assumption [4] on the functions involved, the weak, strong and 
converse duality theorems are proved. Mond and Hanson [5] [6] extended the Wolfe-duality results of mathe-
matical programming to a class of functions subsequently called invex functions. Many results in mathematical 
programming previously established for convex functions also hold for invex functions. Jeyakumar and Mond [7] 
introduced v-invex functions and established the sufficient optimality criteria and duality results in multi objec-
tive problem [8] in the static case. In [9] under v-invexity assumptions and continuity, the sufficient optimality 
and duality results for a class of multi objective variational problems are established. Here we extend some of 
these results to generalized minimax fractional programming problems. The parametric approach is also used in 

http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2014.42006
http://dx.doi.org/10.4236/ajor.2014.42006
http://www.scirp.org
mailto:sasmita.1047@rediffmail.com
mailto:jyotinayak@soauniversity.ac.in
http://creativecommons.org/licenses/by/4.0/


S. Mishra, J. R. Nayak 
 

 
54 

[10] by Baotic et al. 

2. Preliminaries 
Consider the real scalar function ( ), ,f t x u , where ( )0 , ft t t∈ , nx R∈  and nu R∈ . Here t  is the independent 
variable, ( )u t  is the control variable and ( )x t  is the state variable. u  is related to x  by the state equations 
( ), ,G t x u x=  , Where ⋅  denotes the derivative with respect to t . 

If ( )T1 2, , , nx x x x=  , the gradient vector f  with respect to x  is denoted by  
T

1 2, , ,x n
f f ff
x x x
∂ ∂ ∂ =  ∂ ∂ ∂ 


 where T  denotes the transpose of a matrix. 

For a r-dimensional vector function ` the gradient with respect to x is  
1

1 1

1

r

x
r

n n

R R
x x

R
R R
x x

 ∂ ∂
 ∂ ∂ 

=  
 
∂ ∂  ∂ ∂ 



  



. 

Gradient with respect to u  is defined similarly. It is assumed that ,f G  and R  have continuous second de-
rivatives with the arguments. The control problem is to transfer the state variable from an initial state 0x  at 0t  to 
a final state fx  at ft  so as to optimize (maximize or minimize) a given functional subject to constraints on the 
control and state variables. 

Definition 1. A vector function ( )1 2, , , nF F F F=   is said to be v-invex [8] if there exist differentiable vector  

functions ( ) 0 0, , : nt x x I X X Rη × × →  with ( ), , 0t x xη =  such that for each 0,x x X∈  and to 1,2, ,i p=  , 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
0

d, , , , , , , , d
d

ft

i i ix i ix
t

F x F x f t x t x t t x t x t t x t x t f t x t x t t
t

η η − ≥ +  ∫   

Definition 2. We define the vector function ( )1 2, , , nF F F F=   to be v-pseudo invex if there exist functions 

0 0: pI X X Rη × × →  with 0η =  for each 0,x x X∈  [4] [9] [11] [12]. 
Definition 3. Let S be a non-empty subset of a normed linear space X . The positive dual or positive conjugate  

core of S (denoted S+) is defined by ( ){ }: 0,S x X x x x X+ + + += ∈ ≥ ∀ ∈  (where X +  denotes the space of all 

continuous linear functionals on X , and ( ) ( ),x x x x+ += ) is the value of the functional x+  at x . 

3. The Optimal Control Problem 
Problem P (Primal): 

Minimize ( ) ( ) ( )( )
0

, , d
ft

i i
t

F x f t x t u t t= ∫  

subject to 

( ) ( )0 0 , f fx t x x t x= =                                       (1) 

( ), ,G t x u x=                                            (2) 

( ), , 0R t x u ≥                                           (3) 

The corresponding dual problem is given by: 
Problem D (Dual): 
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Maximize ( ) ( ) [ ] ( )
0

T T d
ft

i
t

F x t G x t R tλ µ − − − ∫    

subject to  

( ) ( )0 0 , f fx t x x t x= = , ( ) ( ) ( )ix x xf G t R t tλ µ λ− − =  , ( ) ( ) ( )0, 0iu u uf G t R t tλ µ µ− − = ≥  

where 0: , n
ft t Rλ   →   and e 0: , r

ft t Rµ   →   

( )x t  and ( )u t  are required to be piecewise smooth functions on 0 , ft t   , their derivatives are continuous 
except perhaps at points of discontinuity of ( )u t , which has piecewise continuous first and second derivatives. 
[13] [14]. 

4. Previous Results 
Theorem 1: (Weak Duality) 

If ( )
0

T T d
ft

i
t

f G x R tλ µ − − − ∫  , for any nRλ∈  and rRµ∈  with ( ) 0tµ ≥ , is pseudo invex with respect  

to η  then ( ) ( )inf P Sup D≥  [3] [6] [9] [11]. 
Theorem 2: (Strong Duality) 
Under the pseudo invexity condition of theorem 1, if ( ),x u∗ ∗  is an optimal solution of (P) then there exist  
( )tλ  and ( )tµ  such that ( ), , ,x u λ µ∗ ∗  is optimal for (D) and corresponding objective values are equal.  

[1] [2] [5] [6]. 
Theorem 3: (Converse duality) 

If ( ), , ,x u λ µ∗ ∗ ∗ ∗  is optimal for (D), and if 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ixx x x iux x xx x u u

ixu u u iuu u ux x u u

f G R f G R

f G R f G R

λ µ λ µ

λ µ λ µ

 − − − −
  − − − − 

 is non-singular  

for all 0 , ft t t ∈    then ( ),x u∗ ∗  is optimal for (P), and the corresponding objective values are equal [1] [2] [5] 
[6]. 

Sufficiency: 
It can be shown that, pseudo-convex functions together with positive dual conditions are sufficient for opti-

mality [11] [12]. 

5. Main Result 
Optimality conditions and duality for generalized fractional minimax programming problem: 

We consider the following generalized fractional minimax programming problem: 

( ) ( ) ( )
( )

0
1

, ,
min max d

, ,

ft
i

x X i s
it

f t x u
GP t t

h t x u
λ∗

∈ < ≤
= ∫ , i ih G x= −  , where 

1) ( ){ }, , , , 0, 1, 2, ,n n
jX x R u R R t x u j m= ∈ ∈ ≤ =   is non empty and complete set in nR . 

2) , , 1, 2, , , , 1, 2, ,i i jf h i s R j m= =   be differentiable functions. 

3) ( ), , 0, 1, 2, ,ih t x u i s> =  . 
4) If ih  is not affine then 0if ≥  for all 1, 2, ,i s=   and x X∈ . 
Consider the following minimax nonlinear parametric programming problem. 

( ) ( ) ( ) ( ) ( )
0

1
min max , , , , d

ft

i ix X i s
t

P f t x u t h t x u tλ φ λ λ∗

∈ < ≤
 = − ∫ . 

Lemma 1: If ( )GP  has an optimal solution ( ),x u∗ ∗  with an optimal value of ( )GP -objective function as 
λ∗ , then ( ) 0φ λ∗ = . Conversely, if ( ) 0φ λ∗ =  at 0t  and ft , then ( )GP  and ( )Pλ

∗  have some optimal solu-
tion. 

Lemma 2: In relation to Pλ  we have an equivalent programming problem for given ( )tλ  
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EPλ  Minimize ( )
0

, , d
ft

t

f t x u t∫  

subject to ( ) ( ) ( ) ( ), , , ,i if t x u t h t x u tλ λ∗ − ≤ 
 , ( ), , 0jR t x u ≤ . 

Lemma 3: If ( ), , ,t x u λ  is ( )EPλ -feasible, then ( ), ,t x u  is (GP)-feasible. If ( ), ,t x u  is (GP)-feasible  
then there exist ( )tλ  and ( )tλ  such that ( ), ,t x u  is ( )EPλ -feasible. 

Lemma 4: ( ), ,t x u∗ ∗  is ( )GP -optimal with corresponding optimal value of the ( )GP -objective equal to 

λ∗  if and only if ( ), , , ,t x x λ λ∗ ∗ ∗
  is ( )EPλ -optimal with corresponding optimal value of the ( )EPλ -objective  

equal to zero i.e. ( ) 0tλ∗ = . 
Theorem 4: (Necessary conditions) 
Let ( ), ,t x u∗ ∗  be an optimal solution of ( )GP  with an optimal value of ( )GP -objective equal to λ∗ . Let 

the conditions of lemma 1 be satisfied i.e. ( ),x u∗ ∗  be a feasible solution for P  and ( ),B x u∗ ∗  be the set of  
binding constraints. i.e. ( ),j R x u∗ ∗∈  if and only if ( ), , 0jR t x u∗ ∗ =   

Then 0jxR <  for  

( ),j B x u∗ ∗∈                                     (4) 

and juR < ∞  for  

( ),j B x u∗ ∗∈                                     (5) 

Hence from (4) and (5) x F∈  
Then there exist nRλ∗ ∈ , nRµ∗ ∈ , sRξ ∗ ∈ , 0 , ft t t ∈    such that ( ), , , ,t x u λ ξ µ∗ ∗ ∗ ∗ ∗  satisfy 

( ) ( ) ( ) ( )
0

T
, , , , , , d 0

ft

i i j
t

f t x u h t x u R t x u tξ λ µ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  − − ≥   ∫  

( ) ( )
( )
( )
( )

( )
1

, , , , 0

, , 0

, , 0

0

0, 1, 0

i i
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f t x u h t x u

G t x u

R t x u
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ξ ξ λ
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∗ ∗
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∗

∗ ∗ ∗

=
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− = 
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=
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≥ 

≥ = =


∑

                           (6) 

Theorem 5: (Sufficient conditions) 
For some sRξ ∈ , mRµ∈ , rRλ∗ ∈ , let ( ) ( ) ( )T Tf h Rξ λ µ− +      be proper v-pseudo invex. At  

nx R∗ ∈  and mu R∗ ∈  let ( ) ( ) ( ) ( )T T, , , , , ,f t x u h t x u t R t x uξ λ µ∗ ∗ ∗ ∗ ∗ ∗ − +   be finite and conditions (6) be  

satisfied. Then ( ),x u∗ ∗  is an optimal solution for ( )GP  with corresponding value of the objective function 
λ∗ . 

Two duals ( )GP  are introduced Wolfe-type dual. 

( )1D  Max ( ) ( ) ( ) ( )
0

T T, , , , , , d
ft

t

f t x u h t x u t R t x u tξ λ µ − +   ∫  

subject to 
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( ) ( ) ( ) ( )T, , , , , , 0T
x x xf t x u h t x u R t x u tξ λ µ− − ≥   , ( ) ( ) ( ) ( )T T, , , , , , 0u u uf t x u h t x u R t x u tξ λ µ− − =    

sRξ ∈ , ( ) 0tξ ≥ , 
1

1
s

i
i
ξ

=

=∑ , ( ) mt Rµ ∈ , ( ) 0tµ ≥ , ( ), , nt x u R∈ , Rλ∈  

Weir and Mond type dual. 

( )2D  Max ( ) ( ) ( )
0

T , , , , d
ft

t

f t x u t h t x u tξ λ − ∫  

subject to 

( ) ( ) ( )T T 0x x xf w h w R wξ λ µ− − ≥   , T 0xRµ ≥ ; ( ) ( ) ( )T T 0u u uf w h w R wξ λ µ− − ≥   , T 0uRµ ≥  

sRξ ∈ , ( ) 0tξ ≥ , 
1

1
s

i
i
ξ

=

=∑ , ( ), , nt x u w R∈ ∈ , T mRµ ∈ , ( ) 0tµ ≥ , Rλ∈  

Proof of the corresponding duality results for the above two duals follow the same lines as the proofs of the 
theorems 2, 3, 4. 

7. Conclusion 
Here in this presentation we have considered a non convex optimal control problem in parametric form and es-
tablished the weak duality theorem, the strong duality theorem and the converse duality theorem. The results 
which are available in literature for v-invex functions are hereby extended to v-pseudo invex functions in a mi-
nimax fractional non convex optimal control problem. 
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