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ABSTRACT 

Convergence problem of an economic variable represents an underlying forecast of neoclassical economic growth 
model. This paper aims to analyze the convergence of provincial per capita GDP stability in Vietnam over the period of 
1991-2007. This can be done by two approaches including bias data-based regression method for testing convergence 
and Markov chain model for describing features of long-term tendency of per capita income in Vietnam growth in 
provinces. The regression method results in the signs of convergence. To apply Markov process, we divide total pattern 
into 5 per capita income classes. Result estimated from the Markov chain model shows the poor convergence. 
 
Keywords: Convergence; Regression Method; Markov Proces 

1. Introduction 

Suppose that we observe an economic variable ( ),t xη η=  
being a stochastic process dependent on parameter 0t ≥  
(time), x X∈  (space) with considered area X. Observa- 
tions ( ): ,ik iy k xη=  at time (period) t k= ( )0 -k T=  
are known, and we consider following convergent con- 
ception of economic variable ( ) ( ){ }: ,y t E t xη=  (t is 
unlimited over time) as the convergence of function 

( )y t  for finite value ( )y ∞  (called “convergence state”) 
at sub-regions (province) ( )  1 -ix x X i N= ∈ =  

( ) ( )lim
t

y t y
→+∞

= ∞                     (1) 

Growth coefficient ( )ŷ t  of the economic variable re- 
veals variable rate (the variable level of a unit), variable 

( )y t  in a unit of time at time t : 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

ˆ     0

ˆ

y t t y t
y t t

t y t

y t
y t

y t

+ Δ −
≈ Δ ≈

Δ ×

 =


       (2) 

For the model (1) with y  assigned to income or pro- 
ductivity, the convergence in income and productivity is 
among the most-receiving attention economic issues in 
recent years. There is an urgent need for research on the 

convergence due to its theory and practical value. Theo- 
retically, analyzing the convergence can help to distin- 
guish the different growth theories based on its forecast 
on economic growth. Otherwise practically, convergence 
researching can contribute to planning and evaluating the 
provincial policy measures at time when the economic 
differences between sub-regions in a region are pro- 
foundly gained. Therefore, convergence researches are 
conducted widely between many nations and regions. 
Many authors focused on the convergence in income, 
however, studying the convergence in GDP according to 
regions also provides many such important information. 
Globally, implementing the Barro recurrent in conver- 
gence researches was mentioned in many countries but 
only the information of the initial and final stages of the 
researches was analyzed. Exploiting this information at 
all stages was not set forth yet. In Vietnam, as the authors 
recognized, the implementation of classic Markov me- 
thod in examining the convergence in income per capita 
and productivity, growth rate hasn’t been studied yet. 
Therefore, this study is designed to introduce a new 
method to Vietnam’s economic growth research at the 
region levels. 

This paper aimed to evaluate the convergence level in 
provinces of Vietnam (sub-regions) based on income per 
capita which is examined through their data on GDP, 
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population and manpower in the period 1990-2007. 
The idea of convergence in economics (also some- 

times known as the catch-up effect) is the hypothesis that 
poorer economies’ per capita incomes will tend to grow 
at faster rates than richer economies. As a result, all 
economies should eventually converge in terms of per 
capita income. Developing countries have the potential to 
grow at a faster rate than developed countries because 
diminishing returns (in particular, to capital) are not as 
strong as in capital-rich countries. Furthermore, poorer 
countries can replicate the production methods, tech- 
nologies, and institutions of developed countries. 

In economic growth literature, the term “convergence” 
can have two meanings. The first kind (sometimes called 
“sigma-convergence”) refers to a reduction in the disper- 
sion of levels of income across economies. “Beta-con- 
vergence” on the other hand, occurs when poor econo- 
mies grow faster than rich ones. Economists say that 
there is “conditional beta-convergence” when economies 
experience “beta-convergence” but are conditional on 
other variables being held constant. They say that “con- 
ditional beta-convergence” exists when the growth rate 
of an economy declines as it approaches its steady state. 

2. Theoretical Basis 

2.1. Economist View of Considered Approaches 

Generally, convergence results from neoclassical growth 
theory where for certain set of economies, their economic 
growth is infinitively unstable and lessening at the end, 
and their speed is likely to come to stationariness as pro- 
duction function drives downward performances by cap- 
ital size. If these groups of economics have similar eco- 
nomic structures, they would converge at a same stable 
condition, narrowing the income gap. At that case, an 
absolute convergence occurs. However, in the case the 
economics see differences in their structures, they wit- 
ness diverse “stable conditions” and uncertain decrease 
in income-gap, which is called conditional convergence. 
Differences in their “stable conditions” will be partially 
explained in some additional variables (see [1]). This 
paper only focuses on absolute convergence. 

When analyzing a standard convergence, researchers 
investigate (the presence of) the convergence which pre- 
sents a declining income-gap and the convergence dis- 
playing whether the poor nations witness a faster eco- 
nomic growth than the developed ones. It’s said that ab- 
solute convergence takes place when initial income and 
its later development have a negative relationship. From 
this theoretical economic point, the classical Barro re- 
current models are widely implemented (see [1-3]), it’s 
reckoned that: in the observed time ( )0,T , the growth 
pace of economic variable ( )y t  is defined as: 

Barro model 

( ) ( )0ˆ ln   0y t y tα β= + ≥            (3) 

With ( ) 00 :y y=  is the initial value of economic var- 
iable; ,α β  server as parameter which are estimated 
based on the correspondent regression equations: 

( )0
0

1
ln ln 1 -iT

i i
i

y
y i N

T y
α β ε

 
= + + = 

 
    (4) 

(Barro regression equation) 
With iε  -observed error, N —sub-region number (pro- 

vinces, cities, localities…) survived in X  (nations, 
zones….); ( )0 0,i iy xη=  and ( ),iT iy T xη=  is the 
observed value in sub-region ( )1 -ix i N=  of economic 
variable at the starter 0t =  and t T=  in the studied 
time ( )0,T . After estimating the parameters in the 
above recurrent formula, the Neoclassical economics pa- 
radigm is employed to provide sufficient signs for vari- 
able ( )y t  to converge ( )t → ∞ . Nevertheless, before 
this sign is used (when economic variable presents for 
income or productivity), it’s a must to check the form of 
Cobb-Duglass in the function for manufacturing or the 
concave condition of combined function for manufacture. 
This can’t always be achieved, especially in the Barro 
recurrent when only the information of its initial and fi- 
nal steps are studied ( )0,T . Additionally, these men- 
tioned sufficient signs can’t help the researchers come to 
a certain conclusion about the inability of convergence of 
economic variable ( )y t . Therefore, the group of authors 
will introduce a new method named “expanded Barro 
recurrent method” in the next 2.2 to surmount this defect. 
A second method: Markov method (see [4,5]), which is 
usually used in published document, will be also intro- 
duced in the 2.3. This method requires the information 
about transitional move of the researched units included 
in cross-selection and temporal chain. The authors come 
to a conclusion that convergence takes shape if long-term 
forecasts for these movements go toward to 0 when fore- 
cast range increase. 

In Section 3, the mentioned methods will be utilized to 
analyze the convergence in per capital income in Viet- 
nam’s provinces during 1991-2007, and then to picture 
the typicality in the long-term tendency in the capital per 
income growth of Vietnam’s provinces. Calculation out- 
comes show the consistence between 2 methods used in 
the thesis and the over-advantages of “expanded Barro 
recurrent” (compared to classic Barro recurrent). 

2.2. Expanding Barro Regression Model 

In the differential equation linguistics, to deal with prob- 
lem (1), we need to build Cauchy problem responding to 
differential Equation (2) under form: 

( ) ( ) ( ) ( ) ( ) 0ˆ  0 ,  0y t y t y t t y y= > =      (5) 
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where 0y  is income per capita (GDP) at the beginning 
of research (t = 0), and ( )ŷ t  represents growth rate of 
GDP at t. For economic thesis that economic growth rate 
definitely develops, where per capita growth rate nega- 
tively depends on primary income and gradually be- 
comes lower and then convergent at stationary state at 
the end (if these economies have very similar structures), 
we consider 2 following models from Barro models in 
[1,2] for growth rate as: 

Expanding Barro Model 

( ) ( )0ˆ e ln 0 0ty t A y tλλ −= − > ∀ ≥         (6) 

When considering model 1, we put:  

( ) ( ) ( ): 1 e ; :  0tt t t A tλβ α β−= − = ∀ ≥       (7) 

And we get solution for (6) under form: 

( ) ( ) ( ) 0ln
0e    0t t yy t y tα β−= ∀ ≥               (8) 

Then, it’s easy to see the form of convergence condi- 
tion for the problem: 

( )0 1 0 0t tβ λ< < ∀ ≥ ⇔ >             (9) 

From this condition, we infer: 

( ) ( )lim e :A

t
y t y

→∞
= = ∞                  (10) 

To identify regression model for determine parameters 
A, λ in the model at studying time (0, T), (8) is taken a 
logarithm and we obtain: 

( ) ( ) ( ) 0
0

ln ln      0
y t

t t y t
y

α β= − ∀ ≥       (11) 

And following algorithm. 
Algorithm 2.1. (Convergence of Expanding Barro mo- 

del): 
Step 1: For every period (year) t = 1 - T at time study, 

we set up N linear regression equations in accordance 
with parameters α(t), β(t) based on (11): 

( ) ( ) 0
0

ln ln +  1 -it
i it

y
t t y i N

y
α β ε= − ∀ =     (11a) 

where ity  is observable data ( ), it xη  at sub-region (pro- 
vince) ( )1 -ix i T=  with respective error . 

Let ( ) ( ) ( )ˆˆ ,  1 -t t t Tα β =  are least square estimators  

of parameters ( ) ( ) ( ),  1 -t t t Tα β =  achieved from 
above regression model. 

Step 2: Apply (9) to check convergence condition 
( )0 1tβ< < : 

a—if the condition (9) is unsatisfied with every t = 1 - 
T, problem (1) will be concluded not to be convergent 
and then stop computing. 

b—with all ( ) ( )0
ˆ  1t t T Tβ = ÷ ≤  for instance we  

next to Step 3 if the condition is satisfied. 

Step 3: We obtain least square estimators for model 
parameters based on (7): 

( )( )

( )
( )

0

0

10

10

ˆln 11ˆ : ;

ˆ1ˆ :
ˆ

T

t

T

t

t

T t

t
A A

T t

β
λ λ

α
β

=

=

−
≈ =

≈ =




          (11b) 

where λ̂  represents convergence speed of the economy 
and from (10), we refer: ( ) ˆ

eAy ∞ ≈ . 
In comparison models in the algorithm with classical 

Barro model, we initially consider the regression model, 
and defined parameters α, β in function: 

( ) ( )

( ) ( ) ( )
1

0

1 1 0

e ;

; , : ln

X ty t y

X t X t yα β α β
=

= = +
     (12) 

where ( ) ( ) ( )0 0 ; ,y y x y t y t x= =  with 0 ,y y  as ob- 
servable variables; t = T is time control variable; 

1, , Nx x x=   represent space control variables (sub-re- 
gion). Attaching resulting observations, we set: 

( )

( ) ( )
0 0

1

0, ;

, , : ln

i

iT
iT i i

iT

y y x

y
y T x X T

y
η

=

 = =


        (13) 

( ) ( )

( ) ( ) ( )
1

0

1 1 0

e ;

ˆ ˆˆ ˆ: ; , : ln

X ty t y

X t X t yα β α β

 =


= = +




    (14) 

where ˆˆ ,α β  are least square estimators of α, β from the 
system of N regression Equations (4). We then have state- 
ment as follow: 

Lemma 2.1: If 
0
1y ³  and denote: 

0
1

1
2

0 0
1 1

11 121
1

21 22

ln

: ;

ln ln

N

i
i

N N

i i
i i

N y

M

y y

M
σ σ
σ σ

=

= =

−

 
 
 =
 
 
 
 

=  
 



          (15) 

With all ( )0 1p p< <  we have: 

( ) ( ) 1
1 1 ;

1

S
P X t X t p

p

  − < ≥ −  
      (16) 

where ( )1 11 22 0: ln , 0S y t Tσ σ= + ≤ ≤ . 
Proof: When we put 

( ) ( )( )
( ) ( )

0: 1, ln ;

ˆ ˆˆ, ; ,

f x y x

θ α β θ α β

 ′=
 ′′ = =

            (17) 

We have (see (12), (14)): 
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( ) ( ) ( ) ( )1 1
ˆ;X t tf x X t tf xθ θ′ ′= =       (18) 

From (14), we also refer classical Barro regression Equa- 
tion (4) with linear form as: 

( ) ( ) ( )1 ; 0    1i i iX T Tf x E i Nθ ε ε′= + = ≤ ≤ . 

Hence, for least square estimator θ̂  of θ , we have 
(see (15)): 

2 1
1

ˆ ˆˆ , ;E E D T Mα α β β θ − −= = =        (19) 

Besides, for symmetric and positive determination of 
matrix D, we also have: 

2
11 22 11 22 12

ˆˆ , ,D Dα σ β σ σ σ σ= = > . 

Then, from (18) and (19) we have: 

( ){ } ( ) ( ) ( )

( ) ( )
( ){ } ( )

2
1

2
2

11 12 0 22 0

2
2

1 11 22 0 1

ˆ

2 ln ln

ln

D X t t f x D f x

t y y t
T

D X t y S

θ

σ σ σ

σ σ

′=

= + +

 < + =





    (20) 

Besides, from (12), (14), (19), we refer: 

( ){ } ( )
( ) ( )

1 0

0 1

ˆˆ ln

ln

E X t E E y t

y t X t

α β

α β

= +

= + =


. 

Then, use Chebyshev inequality from (23): 

( ) ( )
( ){ }

( ) ( ) ( )

1

1 1

1
1 1

1

0 .
1

D X t
p P X t X t

p

S
P X t X t t T

p

 
 ≤ − < 

−  
  ≤ − < ≤ ≤ 

−  






 

This established the result.  
Now, we consider Expanding Barro Model attaching 

defined parameters λ > 0, A in (10), (11). In this case we 
have: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1
0 1 0e ;   : ln

: e 1, :

Y t

t

y t y Y t t t y

t t t t Aλ

α β

γ β α γ−

 = = +


= − = − =


   (21) 

where ( ) ( ) ( )0 0 , ,y y t y x y t x= =  with 0 ,y y  as ob- 
servable parameters; t = T represents time control pa- 
rameter and 1, , Nx x x=   are space control parameters 
(at sub-region ix x= ). 

For each t = k (1 ≤ k ≤ T) we put: 

( ) ( )

( )

( ) ( ) ( )

0

1
0

0, , , ,

ln : , ,

,

i i ik i

ik
i k k k

i

k k

y x y k x

y
Y

y

k k k

η η

θ α β

α α γ γ β

= =

′= =

= = = −

        (22) 

N regression Equation (11a) for specifying ( ) ,t tα α=  

( ) ( )t t tγ β γ= = −  (t = k) have linear form as: 

( ) ( )1 0ln ; 1i k k i ikY k y i Nα γ ε= + + ≤ ≤      (23) 

Let ( )ˆ ˆˆ: , ,k k kθ α β ′=  is least square estimator of pa-  

rameters ( ): , ,k k kθ α β ′=  in (23). Not to loose general- 
ity, we suppose: 

( )0ˆ0 1; 1k k T Tγ< − < ≤ ≤ ≤  

Let ˆ ˆ, Aλ  are respective least square estimators of λ, A 
in corresponding regression equations: 

( ) ( )0

ˆ ;

ˆ 1
k k

k k

k

k A k T T

γ λ ε
α γ ε

′− = +
′′− = + ≤ ≤ ≤

     (24) 

Put:  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

1
0

1 0

e ;  

: ln  

ˆ: , :

Y ty t y

Y t t t y

t t t t A

α γ

γ λ α γ

 =
 = +


= − = −

         (25) 

And we obtain proposition as: 
Lemma 2.2. If 0 1y   and 1Tλ   (small enough), 

we have: 

( ) ( ) 1
1 1 ;

1

KS
p P Y t Y t

p

  ≤ − < 
−  

        (26) 

where ( ) ( ) ( )
2

2

0 0 0

12
:     0

1 2 1

T
K t T

T T T
= ≤ ≤

+ +
, 

0 < p < 1 and we obtain approximate value of ˆ ˆ, Aλ  for 
(11b) at ( ) ( )0

ˆ ˆ0 : 1   1kt k Tβ γ< = − ≤ ≤  
Proof: 
For vectors of ( )f x  in (17), the N regression equa- 

tions are displayed under form: 

( ) ( ) ( )1     1i i k iY k f x i Nθ ε′= + ≤ ≤  

On the linear form of parameters ( ),k k kθ α γ ′= , least 
square estimators ( )ˆ ˆ ˆ,k k kθ α γ ′=  for parameters kθ  are 
likely to be achieved, where (see (15)):  

( )

1
1

11 22 0

ˆˆ ˆ; ,

ˆ ˆ, 1
k k k k

k k

E E D M

D D k T

α α γ γ θ
α σ γ σ

− = = =

 = = ≤ ≤

    (27) 

Similarly, for 0T  primary regression equations in (24), 
as they are under parameter λ-based linear form and ob- 
servable variable ( )ˆkγ−  includes variance { } 22ˆkD γ σ− = , 

least square estimator λ̂  of λ satisfies: 

0
1

2
22

1

ˆ ˆ;
T

k

E D kλ λ λ σ
−

=

 
= =  

 
           (28) 

When repeating the above provement for 0T  of the se- 
cond regression equations in (24), we can see that thanks 
to observable variable with variance { } 11ˆkD α σ− =  (see 
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(27)), we have: 

0
1

2
11

1

ˆ ˆ;
T

k

EA A DA kσ
−

=

 
= =  

 
           (29) 

with Â  is least square estimator of A. 
Due to ( )0 01  1k T T k Tλ λ λ< ≤ ≤ ≤ , it can be re- 

ferred from (21): 

( ) ( ) ( )2 2 2     1k k k k k Tγ λ γ λ≈ −  ≈ ≤ ≤  

Then, from (21), (25), (28), (29), we have 

( ){ } ( ) ( ){ } ( )

( ){ }

( )

0

0

2

1

2 2
11

1

1

2 2
11

1

ˆ;

0

T

k

T

k

E t t D t t DA

D t t k

T k t T

α α α γ

α σ

σ

−

=

−

=

= =

 
 =  

 

 
≤ ≤ ≤ 

 





  (30) 

( ){ } ( )
( ){ }

( )

0

0

0 0

0

1

2 2 2
0 22

1

1

2 2 2
0 22

1

ln ln ;

ln

ln

ln 0

T

k

T

k

E t t y t y

D t y

t y k

T y k t T

γ λ γ

γ

σ

σ

−

=

−

=

= − ≈



 
=  

 

 
≤ ≤ ≤ 

 





     (31) 

From (30) and (31), we can employ inequality Cheby- 
shev to gain: 

( ) ( )

( )

( ) ( )

( )

0

0

11
1 2

2

1

2

22 0
1 2

2

1

2

1 0 , 0

ln

1 0 ,

T

k

T

k

T
P t t

k

t T

T y
P t t

k

t T

σ
α α

δ

δ δ

σ
γ γ

δ

δ δ

=

=

 
 
 − ≤ 

  
  
  

≥ − ≤ ≤ >

 
 
 − ≤ 

  
  
  

≥ − ≤ ≤ >





 

in succession. 
At that time: 

( ){ } ( ){ } ( )2 2
1 2,    0P t P t t Tδ δΩ < Ω < ≤ ≤  

( ) ( ) ( )

( )

0
1 2

2
1 11

1

21 0 ,

T

k

t t t T k

t T

α α σ δ

δ

=

     Ω = − ≤       
≥ − ≤ ≤


 

( ) ( ) ( )
0

1 2

2
2 22 0

1

ln
T

k

t t t T y kγ γ σ δ
=

     Ω = − ≤       
  

Base on this algorithm and D’Morgan rule, we 
achieve: 

( ) ( ){ } ( ) ( ){ }
( ){ } ( ){ } ( )

( ) ( ){ }

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

0

0

1 1 1 1

2
1 2

2
1 1

0

11 22 0

1 2

2

1

0 0

11 22 0

1 2

2

1

2   0

1 2

ln

ln

ln ln

ln

T

k

T

k

P t t P t t

P t P t t T

P t t

P t t t t y

T y

k

P t t y t t y

T y

k

δ

δ

α α γ γ

σ σ

δ

α γ α γ

σ σ

δ

=

=

Ω Ω = Ω Ω

≤ Ω + Ω ≤ ≤ ≤

 − ≤ Ω Ω



≤ − + −






+ ≤ 
          



≤ + − +       







+ ≤ 
       





 







 

That means (review (21), (25), (26)): 

( ) ( ) ( )
0

21
1 1 1 2

2

1

1 2  0
T

k

TS
P Y t Y t t T

k

δ
δ

=

 
− < ≥ − ≤ ≤ 

  
  

  


 

Because ( )( )
0

1 2

2
0 0 0

1

1
1 2 1

6

T

k

k T T T
=

 
= + + 

 
  so when  

setting above formula as 21 2p δ= − , we get (26)  
When ( )ˆ ˆ0 : 1kkβ γ< = −   we have: 

( ) ( )( ) ( )( )
( ) ( ) ( )0

ˆ ˆˆ ˆln 1 ln 1 ln 1

ˆˆ      1

k k

k

k k

k k k T

γ γ β β

γ γ β

− ≈ − + = − − = −

≈ = − ≤ ≤
 

At that point, recurrent Equation (24) is approximately 
at: 

( )( ) ( )
( )

( ) ( )0

ˆln 1 ˆ
; ;

ˆ

ˆ ˆ: 1

k k

k

k k
A

k k

k k T

β α
λ ε ε

β
α α

−
= + = +

= ≤ ≤
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Therefore, we can evaluate the least square estimators 
ˆ ˆ, Aλ  of , Aλ  in the mentioned recurrent equations by 

Formula (11b). 
Aiming to indicating the preeminent advantage of ex- 

panded Barro, we provide following algebraic clause: 
Theorem 2.3. If the conditions of Lemma 2.2 are met 

and 

( )( )2
0 0 012 1 2 1T T T T< + +            (32) 

We can examine the relative error ( ) ( ),y t y tδ δ   of 
the approximate function ( )y t  (under classic Barro) 
and ( )y t  (under expaned Barro) by the formulas: 

( ) ( ) ( )
( )

1 1: e 1:S p
y t y t

P y t y p
y t

δ δ−
 − = < + = ≥ 
  


 


 (33) 

( ) ( ) ( )
( )

( )

1 1: e 1:

, 0

KS py t y t
P y t y

y t

p t T

δ δ−
 − = < + = 
  

≥ ≤ ≤

    (34) 

With the reliability p, the estimated value of relative 
error under classic model sees small disparity compared 
to its of expanded model: 

( )( )11 1 11e 1 e 0K S pS py yδ δ − − −−− = − >    (35) 

where 

( )( )

1 2

0

0 0

12
1

1 2 1

T
K

T T

 
> ≥   + + 

        (36) 

Proof: Firstly, from the value of constant K  in (26) 
and condition (32), (36) can easily found. Besides, (12) 
(14) infer: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1 1

1 1

1 1

0e e 1

e 1

e 1   0 .

X t X t X t

X t X t

X t X t

y t y t y

y t

y t t Tδ

−

−

−

− = −

≤ +

 ≤ + ≤ ≤

 











 

At this point, (16) can lead to: 

( ) ( )

( ) ( )

( )

1

1 1

1

1
1 1

1

1

1

e 1 e 1

1 e

s
X t X t p

s

p

S
p P X t X t

p

P

P y t yδ δ

− −

−

  ≤ − < −  

  = + < + 
  

  ≤ < + = 
  





   

That means we successfully prove (33). 
Similarly, from (21) and (25), we also get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1 1

1 1

1 1

0e e 1

e 1

e 1   0

Y t Y t Y t

Y t Y t

Y t Y t

y t y t y

y t

y t t Tδ

−

−

−

− = −

≤ +

 ≤ + ≤ ≤

 

Therefore, we have 

( ) ( ) ( ){ }1
1 1

1

KS
p P Y t Y t P y t y

p
δ δ

  ≤ − < ≤ < 
−  

 

from (26) and (34) is demonstrated. Finally, from ex- 
pression of yδ   (in (33)) and yδ  (in (34)), we can use 

1K <  in (36) to get (35).  
The algorithms to evaluate errors (35) and (36) intro- 

duced in above theorem aim to compare classic Barro 
with its expanded one in the period [ ]0,T when they 
fully meet the conditions in (32) (close evidently). For 
example, when 0T T= , this condition is satisfied with 

5T ≥ . 
However, when solving a problem, we need to take 

some following factors into account. 
Note. Because the LS estimated ˆ ˆ,k kα γ  of parameters 
( ) ( ),k kα γ  in linear regression model (26) is steady 

estimation: 

( ) ( ) ( )0ˆ ˆlim , lim 1k k
N N

P k P k k Tα α γ γ− −→∞ →∞
= = ≤ ≤  

In the same way, for the LS estimated ˆ ˆ, Aλ  in recur- 
rent models (24) we have: 

0 0

ˆ ˆlim , lim
T T

P P A Aλ λ− −→∞ →∞
= =  

Now, (review (24), (25)): 

( ) ( )
0 ,
lim .

T N
P y t y t− →∞

=  

That means 0 , 1T N   (enough big) leads to 1T  . 

2.3. Markov Chain Models 

Consider problem (1) with ( ) ( )0y t t ≥  being a per ca- 
pita income process, ( ) ( )0t tη ≥  is regarded as a/an 
(stochastic) income per capita process in fact such that 

( ){ } ( ) ( )0E t y t tη = ≥ . Divide the income per capita  
into n levels ( )1 - 1 -i ia a i n− =  with 0 1 na a a< < <   

and put ( )1, , n
t t tF F F ′=   as probability distribution of 

( )tη  following mentioned earnings level: 

( ){ } ( )1   1 -i
i i tP a t a F i nη− ≤ < = =  

We have 

( )
( ) ) ( ) [ ){ }

( )

1

1 1

; : ;

: 1 , ,

0

t t ij n n

ij j j i i

F P F P p

p P t a a t a a

t

η η

+ ×

− −

′= =

= + ∈ ∈
∀ ≥

   (37) 
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If Markov chains are then homogeneous responding to 
ergodic transition probability matrix P , we have: 

( )
( ) ( ){ }

( )

( ) ( )

1

1
1

1
1

lim : , ,

lim lim

1
lim

2

1
:

2

n
t

t

t t

n
i

i i t
t i

n
i

i i
i

F F F F

y t E t

a a F

a a F y

η

∞ ∞ ∞→+∞

→+∞ →+∞

−→+∞ =

− ∞
=

′= =

 =

= +

= + = ∞







         (38) 

This is the reason for us to convert convergent prob- 
lem (1) research into valuate the homogeneous and er- 
godic Markov chains. Homogenisation suggests that the 
probability of some province belongs to i  at t  will 
fall into j  at 1t +  as constant over time. A maximum 
likelihood estimation is given by: 

1

1

1
ˆ

1

tT
ij

ij t
t i

N
p

T N

−

=
=

−   

Here, t
ijN  is the number of provinces transferring 

from i  to j  at t , t
iN  is total provinces in i  at t  

and T  represents processes. To test the invariability of 
the transition probability over time, we evaluate twin of 
following hypotheses: 

Hypothesis: 

0 ˆ: t
ij ijH p p=  

With all t  and its assumption as: 

1 ˆ: t t
ij ijH p p=  

where 

ˆ
t
ijt

ij t
i

N
p

N

 
=   
 

 

is transition probability estimate at t . For these hypo- 
theses, likelihood ratio is defined by: 

ˆ
,

ˆ

t
ijN

ij

tt ij
ij

p

p
λ

 
= Π Π  

  
 

where, 
1

ˆ
t
ij

T
N
ij

t ij
p

=
Π Π  are determined in hypothesis 0H  and 

( )
1 ,

ˆ
t
ij

T Nt
ij

t i j
p

=
Π Π  are determined in hypothesis 1H . 

And 2 log λ−  is distribution of ( ) ( )
2

1 1T n n
χ − −  

 if 0H  
is true. Therefore, 

( )22

,

ˆ ˆ ˆt t
i ij ij ij

i t j

N p p pχ = −  

Have distribution if ( ) ( )1 1T n n− −    square is free 
order. Here, T  is the number of processes, n  is state 
class of Markov chains. 

3. Experimental Estimating Results 

Barro Model: 
Set independent variables are growing logarithm of per 

capita income in the province at late ( )iy T , and de- 
pendent ones represent income per capita at early stages. 
After removing inappropriate variables, final estimation 
for the period of 1990-2007 is as: 

( )

( ) ( )

0
0

2

Ln 0.1153 0.0084Ln

              0.038       0.0052

0.043;  1.747

iT
i

i

y
y

y

Se

R DW

 
= − 

 

= =

 

Estimated results shows that negative coefficient β have 
no 10%  lower significance level 11% . We also split 
into small periods to estimate above equation but no ones 
see coefficient β statistically better than that of the whole 
period 1990-2007. 

Expanding Barro Model: 
From above theoretical models and per capita income 

data of 59 provinces over Vietnam, we used analysis of re- 
gression to analyze the convergence of economic vari- 
able GDP (income per capita). For each period (year) 

( )1 -17 1991-2007t = , we build 17 regression equations 
by virtue of cross data: 

( ) ( )

( )

0
0

ln ln

1 - 59, 1 -17

it
i i

i

y
t t y

y

i t

α β ε
 

= − + 
 

∀ = =

 

For these equations, we obtain the estimators for eco- 
nomic convergent speed: 

( )( )17

1

ˆln 11ˆ 0.010558
17 t

t

t

β
λ

=

− −
= =  

and value 

( )
( )

17

1

ˆ1
Â 12.0061

ˆ17 t

t

t

α
β=

= =  

Average earnings at convergent state is  

( ) ( )ˆ
e 163748000 vndAy ∞ ≈ ≈ . 

We can use following model to forecast average in- 
come in coming years: 

( ) ( ) ( ) ( )( )0.010558
00

ˆ1 e lnˆ ˆ ˆ ln
0 0ˆ e e

t A yA t t yy t y yβ β
− ∗− −−= =    (39) 

We obtain forecasted results as below Table 1. 

Here, we denote GDP  is estimator for GDP . 
Markov Chain Model: 
Consider parameter tF  which represents provincial 

per capita GDP distribution. To disconnect tF  under 
form (12), we use an experimental procedure which  
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Table 1. Average earnings forecasts (unit: 1000 vnd). 

t  2009 2010 2011 2012 2013 2014 

GDP  6115.9 6330.7 6550.7 6775.9 7006.4 7242.2

t  2015 2016 2017 2018 2019 2020 

GDP  7483.3 7729.7 7981.6 8238.9 8501.6 8769.9

 
calculates tF  in the primary period of 0 1990-1992t =  
or 0 1990-1993t =  first, and then sorts them in progres- 
sive order. What more, we will divide 0tF  into several 
intervals so that every interval includes minimum vari- 
ances. Arranged turning points in 0tF  correspond to 
thresholds in the intervals, so we have  

[ ] [ ] [ ]
[ ] [ ]

1 2 3

4 6

0;1.500 , 1.500;2.000 , 2.000;2.500 ,

2.500;3.000 , 3.000;

C C C

C C

= = =

= = ∞
 

for gross rate. Experimental results from Markov chains 
provide deep understanding about changing features of 
dynamic changing distribution of provincial per capita 
GDP. mean of tP  in the periods is considered as an 
estimator of transition probability matrix P. Distribution 

tF  consists of residual values between provincial aver- 
age GDP and that of Vietnam. tF  is calculated and rank- 
ed in order of each process. 
• If a period comprises 3 years, we will have 6*59 ob- 

servations from 1990 to 2007. The economy will di- 
vide into 5 states: 

State 1: Average GDP ≤ vnd 1.5 million. 
State 2: vnd 1.5 million < Average GDP ≤ vnd 2 mil- 

lion. 
State 3: vnd 2 million < Average GDP ≤ vnd 2.5 mil- 

lion. 
State 4: vnd 2.5 million < Average GDP ≤ vnd 3 mil- 

lion. 
State 5: Average GDP > 3 million. 
We have transition matrix system as: 

0.4249 0.5751 0 0 0

0 0.4727 0.4263 0.0464 0.0545

0 0.0571 0.2773 0.4837 0.1818

0 0 0 0.3333 0.6667

0 0 0 0 1

 
 
 
 
 
 
  

 

As in this matrix, State 1 provinces with lower VND 
1.5 million per capita GDP will consist of 42.49%  per- 
centage of those who stays at State 1 and 57.51%  per- 
centage left comes to State 2 with per capita GDP float- 
ing around VND 1.5 - 2.0 million. The remaining does 
the same. We can see from above matrix that transition 
probabilities from State 1 to State 2 are greater than State 
2 transition probabilities coming to State 3 which remain 
bigger than State 3 probabilities turning to State 4 after 

completing a period. This is also convergent sign of the 
economies. 

After 5 processes, we have transition probability ma- 
trix: 

0.0138 0.1416 0.1637 0.1929 0.4879

0 0.0419 0.0630 0.1184 0.7767

0 0.0084 0.0130 0.0369 0.9417

0 0 0 0.0041 0.9959

0 0 0 0 1.0000

 
 
 
 
 
 
  

 

This is the upper triangular matrix with decreasing per 
capita GDP at States 1 and 2 which indicates conver- 
gence mark of the economy. As in this matrix, provinces 
with high per capita GDP are likely to fall into 0% states 
after states after 5 development periods. Similarly, 
48.79% of province with of province with lower VND 
1.5 million per capita GDP ups to higher VND 3 million. 
We continue to consider convergence at time by far. We 
obtain following transition probability matrix after 10 
periods: 

0.0002 0.0093 0.0133 0.0263 0.9509

0 0.0023 0.0035 0.0078 0.9865

0 0.0005 0.0007 0.0016 0.9972

0 0 0 0.0000 1.0000

0 0 0 0 1.0000

 
 
 
 
 
 
  

 

Therefore, 30 years behind remains state 5 called ab- 
sorbed state. This means that some process falls into state 
5 won’t be likely to come to others. Probability distribu- 
tion during the period of 2005-2007 as: 

( )
2005-2007

0.0339 0.1864 0.3898 0.0169 0.3729

F =
 

We have probability distribution forecast for period 
2008-2010 as: 

( )
2008-2010

0.0144 0.1299 0.1876 0.2029 0.4652

F =
 

The data indicates 1.5%  percentage of province with 
lower VND 1.5 million per capita income, 13%  fluctu- 
ating from VND 1.5 - 2 million, 18.76%  with per cap- 
ita income from VND 2 - 2.5 million, 20.29%  remain- 
ing income per capita from VND 2.5 to 3 million, and 
46.25%  with higher VND 3 million per capita income 
during period 2008-2010. 

Consider process consisting of one year from 2003 to 
2007, there remains 4*59  observations. We just con- 
sider lowest state (lower VND 2 million) and highest 
state (higher VND 3.5 million) for enormous income per 
capita during this period. We cut our economy in 5 fol- 
lowing states: 
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State 1: Per capita GDP ≤ VND 2 million. 
State 2: VND 2 million ˂ per capita GDP ≤ VND 2.5 

million. 
State 3: VND 2.5 million ˂ per capita GDP ≤ VND 3 

million. 
State 4: VND 3 million < per capita GDP ≤ VND 3.5 

million. 
State 5: Per capita GDP ˃ VND 3.5 million. 
We obtain transition probability matrix as: 

0.6632 0.2511 0 0 0.0857

0 0.5235 0.4599 0.0167 0

0 0 0.3413 0.6587 0

0 0 0 0.4663 0.5337

0.0096 0 0 0.0096 0.9808

 
 
 
 
 
 
  

 

Statistics Chi-square for testing the invariance of pro- 
bability matrix over time is: 

( )22

,

ˆ ˆ ˆ 30.31315951.t t
i ij ij ij

i t j

n p p pχ = − =  

Statistics 

( )22

,

ˆ ˆ ˆt t
i ij ij ij

i t j

n p p pχ = −  

has distribution Chi-square with free order 

( ) ( )1 1T n n− −   . 

Here, 5T =  is the number of periods, and 5n =  
serves as the number of state layers in Markov chains. 
Limitation probability with significance level 5%α =  
is: 

0.05
4 5 4 101.8794718.χ ∗ ∗ =  

Therefore, we can affirm tested transition probability 
matrix and use it for forecasting and researching consid- 
ered ergodic Markov process. In this case, Markov chain 
is ergodic because all positive elements belong to transi- 
tion probability matrix level 5 

0.1326 0.1610 0.1605 0.2018 0.3441

0.0050 0.0398 0.0876 0.2800 0.5877

0.0131 0.0025 0.0050 0.1029 0.8764

0.0192 0.0057 0.0018 0.0374 0.9359

0.0239 0.0096 0.0045 0.0192 0.9427

 
 
 
 
 
 
  

 

And limitation transition probability represents a tran- 
sition matrix behind 28 or 30 steps. We have transition 
probability matrix after 30 years as: 

0.0263 0.0139 0.0097 0.0290 0.9212

0.0263 0.0139 0.0097 0.0290 0.9212

0.0263 0.0139 0.0097 0.0290 0.9212

0.0263 0.0139 0.0097 0.0290 0.9212

0.0263 0.0139 0.0097 0.0290 0.9212

 
 
 
 
 
 
  

 

Based on this result, State 5 is living but others are 
nearly gone out. Yet, State 1 remains 2.63% . Hence, we 
have distribution forecast for 2008, 2009, 2010 and 2020 
as follow: 

( )
( )
( )
( )

2008

2009

2010

2020

0.0384 0.0394 0.0697 0.2213 0.6312

0.0316 0.0303 0.0419 0.1558 0.7405

0.0280 0.0238 0.0282 0.1079 0.8121

0.0262 0.0137 0.0096 0.0290 0.9215

F

F

F

F

=

=

=

=

 

Estimated results show that although there are signs of 
convergence, this process takes place in a very long fu- 
ture, about 30 years more. Predicted average value in 
2009 was approximately calculated as follows: 

( ) ( ) ( )
5

1
1

1
6089000 vnd

2
i

i i t
i

y t a a F−
=

≈ + =  

In 2010, it is 6397000 (vnd) and it will be 8701000 
(vnd) in 2020. 

4. Comparison to Classic Barro Models 

Attaching the same data set N = 59, T = 17 of Vietnam’s 
provinces within 1991-2997, we found that the results 
calculated under the algorithm 2.1 share the general point 
with Markov chain algorithm in the fact that the results 
indicate the common characteristic, the convergence of 
the model (1). 

However, if using classic Barro models for the same 
data set, we have not yet found common characteristics 
mentioned above. This is also explained by theorem 2.3 
related to the lack of accuracy in classic Barro models 
compared to corresponding extended models. 

5. Conclusions 

This research has used different methods to study the 
income convergence of Vietnam’s provinces within 
1990-2007. The estimation results from Barro regression 
models show that Barro model (1) doesn’t have statistic 
meaning. Estimated results from expansion Barro regres- 
sion models based on cross data indicate signs of con- 
vergence over the whole study period. Results from ex- 
tended Barro model are consistent with the results under 
approaching method based on Markov chains and it has 
been proved that the error from extended models is smaller 
than from classic Barro models. 

With current situation and no change in policy and re- 
gime, according to expanding Barro model, Vietnam’s 
income per capita is about 8000 USD/year which is very 
low compared to the developed economies today. Mar- 
kov chain model is used to illustrate long-term fluctua- 
tions within average growth in income per capita among 
59 provinces across Vietnam in 1990-2007. Estimation 
result from Markov chain model indicates convergence 
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signs in distribution but it should be in over 3 decades’ 
time. The reason might be obstacles in regime which 
slows down technology transition process leading to lim- 
ited mobility. Moreover, lack of necessary infrastructure 
and unfair distribution causes technology diffusion slow- 
down. The speed of this process may vary among prov- 
inces. 
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