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ABSTRACT

Agricultural control systems are characterized by complexity and uncertainly. A skilled grower can deal well with crops
based on his own intuition and experience. In this study, an intelligent optimization technique mimicking the simple
thinking process of a skilled grower is proposed and then applied to dynamic optimization of temperature that mini-
mizes the water loss in fruit during storage. It is supposed that the simple thinking process of a skilled grower consists
of two steps: 1) “learning and modeling” through experience and 2) “selection and decision of an optimal value” th-
rough simulation of a mental model built in his brain by the learning. An intelligent control technique proposed here
consists of a decision system and a feedback control system. In the decision system, the dynamic change in the rate of
water loss as affected by temperature was first identified and modeled using neural networks (“learning and modeling™),
and then the optimal value (I-step set points) of temperature that minimized the rate of water loss was searched for
through simulation of the identified neural-network model using genetic algorithms (“selection and decision™). The
control process for 8 days was divided into 8 steps. Two types of optimal values, a single heat stress application, such as
40°C, 15°C, 15°C, 15°C, 15°C, 15°C, 15°C and 15°C, and a double heat stress application, such as 40°C, 15°C, 40°C,
15°C, 15°C, 15°C, 15°C and 15°C, were obtained under the range of 15°C < T < 40°C. These results suggest that appli-
cation of heat stress to fruit is effective in maintaining freshness of fruit during storage.
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1. Introduction

Storage temperature for fruits is usually maintained con-
stant at low level. This is because the low temperature
effectively reduces microbial spoilage and water loss of
the fruit. In recent years, however, there has been much
interest in heat treatments that reduce the quality loss of
fruit during storage [1,2]. It has been reported that heat
treatment is effective for inhibiting ethylene production
and delaying the ripening [3-7], for controlling insect
pests and for reducing chilling injury [4,8] of fruit. It has
been also reported that heat treatment can improve fruit
quality [9-11].

It is known that the exposure of living organisms to
heat stress produces several types of heat shock proteins
(HSPs) in their cells, which acquire transient thermal tol-
erance [12,13]. Recently, the relationships between the
heat treatment and HSPs have been investigated to elu-
cidate the effects of heat treatment [14]. Acquiring ther-
mo tolerance may lead to the reduction of water loss for
fruits during storage [15]. It is, therefore, important to
know how to apply the heat stress to the fruit in order to
minimize loss of quality. A dynamic optimization tech-
nique will give us the solution.
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It is, however, very difficult to treat and realize opti-
mization control of water loss of fruits during storage
when we take the response of thermo tolerance caused by
heat stress into consideration. This is because the phy-
siological behaviors between the temperature and the
water loss of the fruit, including the effect of thermo tol-
erance, are quite complex and uncertain. They are char-
acterized by strong non-linearity and time-variation.

A skilled grower can deal well with complex systems
such as many types of crops during cultivation and fruits
during storage using his own intuition and experience. In
order to realize the optimization control of complex sys-
tems such as agricultural production processes, therefore,
it seems very useful to imitate the thinking process of a
skilled grower [16,17].

It is well known that intelligent approaches such as
neural networks and searching technique using genetic
algorithms are effective tools for imitating the skilled
grower’s thinking process. Neural networks mimic the
human learning process and can identify nonlinear rela-
tionships between inputs and outputs of a system with
their own high learning abilities [18]. Genetic algorithms
mimic the biological evolutionary process and search for
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an optimal value in parallel with a multi-point search
procedure, based on crossover and mutation in genetics
[19,20]. An intelligent control technique combining neu-
ral networks with genetic algorithms has been developed
for realizing the optimization of cultivation and storage
processes [16,17,21]. It is also thought that the problem
of time-variation of the physiological status of the fruit is
possible to solve by repeating identification (learning)
and modeling of the input and output system.

In this study, an intelligent optimization technique mi-
micking a skilled grower’s simple thinking process is
proposed and then applied to find the variable tempera-
ture profile (I-step set points of temperature) of the stor-
age chamber to minimize water losses of tomatoes. With
this technique, neural networks and genetic algorithms
are successfully employed for mimicking the “learning
and modeling” and “selection and decision” of a skilled
grower.

2. Speaking Fruit Approach (SFA) for
Dynamic Optimization Control

Storage temperature for fruit is usually maintained con-
stant at a low level, already determined as an optimal
value, without any consideration of the physiological
status of the fruit. In order to achieve the qualitative im-
provement of the fruit, however, it is essential to control
the environment flexibly and optimally, taking the
physiological status of the fruit into consideration.
Measurement of the fruit responses and control based on
the fruit’s physiological information are major tasks for
realizing the optimization of the storage process. The
storage environment should be controlled optimally
based on fruit responses. This approach is called a
“speaking fruit” approach (SFA) [22]. Figure 1 shows a
schematic diagram of a computer control system for fruit
and vegetables during storage under the SFA concept.
The control system consists of several sensors to measure
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Figure 1. The concept of a “speaking fruit approach
(SFA)”.
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the physiological responses of the fruit, a computer to
determine the optimal set points of the environment, and
control devices to control the environment based on the
optimal set points. Non-destructive measurements of fruit
responses are essential for realizing dynamic optimiza-
tion control. Thus, in this study, the dynamic optimiza-
tion control is carried out based on the fruit responses,
aiming at the qualitative improvement of the fruit during
storage.

3. Optimization Problem

Tomatoes (Solanum lycopersicum L. Momotaro) were
used for the experiment. Freshness is one of the most
important evaluation factors that consumers use to select
tomatoes at market. In order to maintain the freshness of
tomatoes during storage, the storage temperature is usu-
ally maintained constant at a lower level. In recent years,
however, it has been reported that a heat stress applica-
tion is also effective for maintaining the quality of to-
mato [9-11]. This is probably due to thermo tolerance of
the fruit acquired by heat stress. The aim for optimization
in this study is to minimize the rate of water loss of to-
mato during storage by optimal control of the tempera-
ture.

Let Wr(k) (k =1, 2, ---, N) be a time series of the rate
of water loss, as affected by temperature T(k) at time k.
An objective function, F(T), is given by the average
value of the rate of water loss during the last period
(N_ <k <N) of the control process.

F(T)=2W; (k)/(N=N_+1) (1)

where N and N are the first and last time points, respec-
tively, in the evaluation period.

Note that the rate of water loss was evaluated at the
last period (NL <k <N) in the control process. This is
because the influence of heat stress is thought to appear
at the latter half stage if heat stress was applied to the
fruit during the first period of the control process.

For realizing optimization, the control process was di-
vided into 8 steps, because the length of the control
process was 8 days. Therefore, the optimization problem
here is to determine the 8-step set points of the tempera-
ture, which minimize the objective function F(T). That is,
an optimal value is given by the optimal combination of
the 8-step set points for temperature (Top, -, Tops). AS
for the constraint of the temperature, we had two mini-
mum temperatures (5°C as a normal temperature for a
refrigerator, and 15°C as an average temperature for shelf
life in Japan) in order to investigate the influence of the
heat stress at adequate temperature levels. As for the
maximum temperature, 40°C was determined to be best
for heat stress from previous literature [1-3] and from
considerations for a one-day application of heat stress.
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minimize F (T) ?
subject to 5°C,15°C <T (k) < 40°C

4. Measuring Systems

Mature green tomatoes of uniform size (about 8 cm in
diameter) were stored in a storage chamber (Tabai-espec,
LHU-112M), where the temperature and relative humid-
ity are strictly controlled by a personal computer with an
accuracy of +0.1°C and +2% RH, respectively. Three
tomatoes were used for each experiment. The rate of wa-
ter loss of the tomato was estimated from the weight loss.
The weight loss of the tomato was continuously meas-
ured by hanging a cage containing three tomatoes using
an electronic balance (Sartorius, LP-620S). In this case,
the electronic balance was set outside of the chamber in
order to remove the effect of the temperature change.
The relative humidity was maintained constant at 60% +
2% RH while only the temperature was flexibly changed
based on a system control manner. The sampling time
was 10 min.

5. Design of a Control System
5.1. A Skilled Grower’s Thinking Process

A skilled grower can deal well with crops based on his
own intuition and experience. Figure 2 shows the con-
ceptual diagram of a simple thinking process for his cul-
tivation strategy. It mainly consists of two steps. The first
step is a “learning and modeling” process. A grower first
cultivates a crop by trial and error over several years and
learns the growth behaviors of the crop from experience.
This is the process of making a mental model of crop
growth in his brain through learning. The second step is a
“simulation (or prediction) and decision” process for
selecting the best cultivation method. A grower predicts
and simulates the crop growth using the mental model
built in his brain and selects the best strategy for the next
cultivation from among many results obtained by simula-
tion. After a decision, a grower takes an action for the
best strategy.

RN

Modeling

Figure 2. Conceptual diagram of a decision procedure of a
skilled grower on the basis of his simple thinking process.
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5.2. An Intelligent Control System for Dynamic
Optimization

The procedure shown in Figure 2 can be realized by in-
troducing neural networks and genetic algorithms. Fi-
gure 3 shows the block diagram of an intelligent control
system mimicking a simple thinking process of a skilled
grower, which is applied for realizing the optimization
control of the rate of water loss [16,17,21]. It consists of
a decision system and a feedback control system. The
decision system, consisting of neural networks and ge-
netic algorithms, determines the optimal set point trajec-
tory of the temperature. In the decision system, the rate
of water loss, as affected by temperature, is first identi-
fied using the neural network, and then the optimal com-
bination of the I-step set points of the temperature that
minimize the objective function is searched for through
simulation of the identified neural-network model using
the genetic algorithm. The diagrammatical view of this
simulation method is shown in Figure 5.

It is found that this control technique including neural
networks and genetic algorithms well reflects a human
thinking process. The first action, identification and mod-
eling, using neural networks, are similar to the manner in
which a skilled grower makes a mental model in his
brain through learning or experience (learning). In the
second step, the way to obtain an optimal value corre-
sponds to the procedure by which a skilled grower selects
a better (or best) strategy from his own experience and
prediction (decision).

It will be found that if these two procedures, identifi-
cation and the search for an optimal value, are repeated
periodically during the storage process to adapt to the
time variation of the physiological status of the fruit, then
both optimization and adaptation can be satisfied.

5.3. Neural Network Application for
Identification

Neural networks are used for identifying the dynamic
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Figure 3. An intelligent control system for realizing the op-
timal control of the storage process based on the SFA con-
cept.
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response of the rate of water loss as affected by the tem-
perature and for creating a black-box model for simula-
tion. Figure 4 shows a time-delay neural network used
for dynamic identification. It consists of three layers and
has arbitrary feedback loops that produce time histories
of the data for dynamic identification [23]. The input
variable is the temperature, T(k), and the output variable
is the rate of water loss, W+(k). The well-known time-
delay neural-network model is given as [24]:

W, (k)= f (T (k),T (k-1),
T (k=) Wy (k=1),---, Wy (k_n))

where n is the system order (system parameter number).
The unknown function f(-) can be approximated by the
neural network.

For the learning of the neural network, the (n+1)th his-

torical input data {T (k),---,T(k—n)} and the nth his-

torical output data {W; (k—1),--- W, (k—n)} are ap-
plied to the input layer, and the current output, W; (k),
is applied to the output layer as a training signal
k=0,L---,N—n,N: data humber). The learning (train-
ing) method is error back-propagation [25]. It tunes wei-
ghts and biases of the neural network so that the squared
error between the network output and the training signal
is minimized. Through these procedures, a dynamic mod-
el is obtained.

For prediction, the current output, W, (k), is esti-
mated from both the (n + 1)th past historical input data
{T(k),~--,T(k—=n)} and the nth past historical output
data {W; (k—1),---W; (k—n)} like an ARMA model
procedure [23,26]. The time series of

{WT (k)'WT (k_l)""'WT (k_n)}

are obtained by applying backward shift operators
(z%,2%,,2") to the variable Wx(k) through the fol-

lowing procedures:

©)

Input { Tk
Time series :
of input i

T(k-n

past time | V(KL
series of :
output :

— | Wr(k-n

Time delay

Figure 4. Structure of a three-layer neural network with
time-delay operator.
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71 W, (k) =W, (k—1),22 W, (k)
W, (k=2),, 27" W, (K) =W, (k—n).

The data for identification are divided into two data
sets, a training data set and a testing data set. The former
is used for training the neural network, and the latter is
used for evaluating the accuracy of the identified model.
The testing data sets have to be independent of the train-
ing data sets.

The most important task for determining the model’s
structure is the choice of the system parameter number.
Here, the system parameter number and the hidden neu-
ron number of the neural-network were determined based
on the cross-validation [27].

5.4. Genetic Algorithm Application for
Searching for an Optimal Value

Here, genetic algorithms are used for searching for the
optimal 8-step set points of the temperature that mini-
mize the objective function through model simulation.
Figure 5 shows a diagrammatical view of this simulation
method. The total combination number of the input (8-
step stet points of temperature) under the constraint of
15°C to 40°C was 26° sets because we took the increment
of 1°C between 15°C and 40°C in each step. Therefore,
numerous output responses of the rate of water loss are
obtained through simulation.

In order to use genetic algorithms, an “individual” for
evolution should be defined as the first step. Each indi-
vidual represents a candidate for an optimal value. Since
an optimal value to be obtained here is the 8-step set
points of temperature, an individual can be given by the
8-step set points of temperature {T,,T,,---, T} . They
were all coded as 6-bit binary strings, which gives nu-
merical values between 0 (000000) and 63 (111111).

Individual i = {T,,T,,,-, T}
— {101010,111000, ---,010011}

Input Output
Model

8 step set points of

temperature Response of the rate

of water loss

| Combination number = 26° |

A 2
g -
© 2 g Minimize
5 o S
g |1 8 5 N
5] —— — Q
E 15 s
= >

Days Days

Figure 5. A method for finding an optimal value (combina-
tion of the 8-step set points) of the temperature that mini-
mizes the rate of water loss through simulation.
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A set of individuals is called a “population”. They
evolve toward better solutions. Genetic algorithms work
with a population involving many individuals.

Fitness is an indicator for measuring an individual’s
survival quality. All individuals are evaluated by their
fitness values. During the evolution process, therefore,
individuals having higher fitness reproduce, and indi-
viduals with lower fitness die in each generation. An in-
dividual having the maximum fitness is regarded as an
optimal solution. Fitness is similar to the objective func-
tion. So, fitness can be represented by Equation (1).

Fitness = F (T) 4)

The crossover operation is a single crossover. Two in-
dividuals (e.g., 000011 and 101111) are first mated at
random. These binary strings are cut at the 3-bit position
along the strings and then two new individuals (000111
and 101011) are obtained by swapping all binary charac-
ters from the 1-bit to the 3-bit position. The mutation
inverts one or more components of the binary strings,
selected at random from the population, from 0 to 1 or
vice versa. Here, a two point mutation was used. One
individual (e.g., 101111) is first selected at random, and
then a new individual (001011) is created by inverting
two characters, selected at random, from 0 to 1 or 1 to 0.
The mutation operation increases the variability of the
population and helps to avoid the possibility of falling
into local optima [28]. The selection of individuals was
carried out based on the elitist strategy by which an indi-
vidual with maximum fitness is compulsorily remained
for next generation. However, the operation’s searching
performance can easily fall into a local optimum because
only the superior individuals with higher fitness are
picked in each generation. In this study, therefore, dif-
ferent individuals in another population were added into
the original population in order to maintain the diversity.

Figure 6 shows the flow chart of the genetic algorithm.
The procedure is as follows. (Step 1): The initial popula-
tion consisting of N; (=6) types of individuals is gener-
ated at random. (Step 2): N, (=100) types of individuals
are added to the original population from another popula-
tion in order to maintain the diversity of the original
population. (Step 3): Genetic operations, crossover and
mutation, are applied to those individuals. Through the
crossover, N, sorts of individuals are newly created ac-
cording to the crossover rate P, (= 0.8) , and N, sorts of
individuals are then newly generated according to the
mutation rate P, (=0.6). From these operations,
N(=N;+N,+N,+N,_) types of individuals are ob-
tained. (Step 4): The fitness (values of the objective
function) of all individuals are calculated using the neu-
ral-network model, and their performances are evaluated.
(Step 5): Superior individuals, N, (=300) individuals
with higher fitness, are selected and retained for the next

Copyright © 2013 SciRes.

ET AL. 211

Individual i = T, Tiz, ..., Tis

Another
population

0o 2

Original
population
® o
A© O a ©
A a

Compute the fitness of all
individuals using the NN

T(K) —)2@)_} WK
W(k-1) -

Iteration
number?

Optimal value

Figure 6. Flow chart of the genetic algorithm used for se-
arching for an optimal value.

generation based on elitist strategy selection. (Step 6):
Steps 2 to 5 are repeated until the fitness continues to
keep the same minimum value with increasing generation
number. An optimal value is given by an individual with
minimum fitness.

6. Dynamic Responses of the Rate of Water
Loss to Temperature

Figure 7 shows a typical dynamic response of the rate of
water loss as affected by the up and down of temperature.
The temperature was first increased from 25°C to 35°C to
40°C and then decreased from 40°C to 35°C to 25°C. The
rate of water loss of the fruit increased in proportion with
temperature. However, comparing to the two values of
the rate of water loss at the same temperature, before
increasing and after dropping the temperature, it is found
that the values after dropping the temperature are lower
than those before increasing the temperature at both the
25°C and 35°C conditions. These results suggest that a
temperature operation that first rises to the high level
(35°C to 40°C) and then drops to the prior level has a
tendency to reduce the rate of water loss, as compared to
when the temperature was maintained constant through-
out the control process. This is probably due to the effect
of thermo tolerance of the fruit caused by high tempera-
ture stress. It is, therefore, difficult to identify and model
the water loss of the fruit as affected by temperature us-
ing a conventional mathematical equation.

The data for identification were obtained. Figure 8
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Figure 7. A dynamic response of the rate of the water loss,
as affected by the temperature.
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Figure 8. Typical dynamic changes in the rate of the water
loss, as affected by temperature (8 patterns).

shows typical eight types of dynamic changes in the rate
of water loss as affected by temperature for about 192 h.
Here, 13 types of date sets on the controlled input and
output were obtained. Among them, twelve data sets
were used for training and one data set was used for va-
lidation of the neural network. The temperature was
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flexibly changed between 5°C and 40°C to identify
clearly the dynamics of the rate of water loss as affected
by temperature. Short-term heat stresses of 40°C for
about 24 h were included in several temperature opera-
tions. From the figure, it is found that, in all cases, the
rate of water loss dynamically changes with the tem-
perature.

7. ldentification Result of the Rate of Water
Loss to Temperature

The system parameter number and the hidden neuron
number of the neural network were determined based on
the cross-validation. Figure 9 shows the relationship
between the system parameter number n and the esti-
mated error in the identification. It is found that the esti-
mated errors for the 15™ system parameter number gave a
minimum error. Through these considerations, the sys-
tem parameter number n and the hidden neurons ny, were
determined to be 15 and 20, respectively.

Figure 10 shows the comparison of the estimated re-
sponse, calculated from the neural network model, and
the observed response for the rate of water loss. A testing
data set, which is quite different from the training data
sets, was used for this comparison. It was found that the
estimated response was very closely related to the ob-
served response. Significant decreases in the rate of wa-
ter loss after dropping the temperature from higher levels
to lower levels, which are thought to be caused by ther-
mo tolerance, observed in the model response of 60 to
120 h. That is, the values of the rate of water loss after
dropping the temperature from 40 — 35 at 96 h and 35°C
— 27°C at 108 h are lower than those before increasing
the temperature from 35 — 40 at 84 h and 27°C — 35°C
at 72 h, respectively. These results mean that the neural-
network model could acquire such complex response as a
thermo tolerance, and we succeeded in making a suitable
model for searching for an optimal value.
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02 r@
015 @

0.1

0.05 .. ° ®
®e®

Estimated error (g/kg FW/h)

O L
0 5 10 15 20 25 30
System parameter number

Figure 9. Relationship between the system parameter num-
ber n and the estimated error.
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Figure 10. Comparison of the estimated and observed re-
sponses of the rate of the water loss.

Figure 11 shows the estimated relationship between
the temperature and the rate of water loss of a tomato,
calculated from the simulation of the identified neural-
network model. Open squares represent real observed
data. It is found that the estimated values are closely re-
lated to the observed values. The rate of water loss in-
creases with temperature. In the range over 35°C, it has a
tendency to decrease with temperature. This means that
the water loss was significantly suppressed by high tem-
perature. It is also found that the relationship between
temperature and the rate of water loss is non-linear.

8. The Search for an Optimal Value
Through Model Simulation

Next, the optimal combination of the 8-step set points for
temperature was searched for through simulation of the
identified neural-network model using the genetic algo-
rithm. Figure 12 shows the evolution curves in searching
for an optimal under the different crossover and mutation
rates. The horizontal axis is the generation number for
evolution and the vertical axis is the fitness of the best in-
dividual in each generation. The fitness dramatically de-
creased with generation number, and then lowered down
to the minimum value. The search was stopped when the
fitness continued to keep the same minimum value, and
that individual was considered to give the minimum fit-
ness as an optimal value.

It was found that the convergence speed was larger for
the higher crossover and mutation rates (P, = 0.8 and Py,
= 0.6) than for the lower crossover and mutation rates (P,
= 0.1 and P,, = 0.01). The fitness could not decrease to
the minimum value and fell into a local optimum when

Copyright © 2013 SciRes.
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Figure 11. The static relationship between the temperature
and the rate of the water loss, obtained from simulation of
the identified model.
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Figure 12. An evolution curve in searching for an optimal
value when the evaluation length is the latter half stage of
the control process (96 to 192 h).

the crossover and mutation rates decreased to lower val-
ues. The searching performance usually depends on the
diversity of the population [16]. A global optimal value
could be obtained if the diversity in the population was
maintained at a high level in each generation. Higher
crossover and mutation rates were shown to be effective
in keeping a higher diversity in the population, but ex-
cessively high crossover and mutation rates are time
consuming. The values of P, = 0.8 and P, = 0.6, which
were determined through a trial and error, were enough
high to avoid a local optimum.

There is no guarantee that genetic algorithms yield a
global optimal solution. It is, therefore, important to con-
firm whether an optimal value determined by genetic
algorithm is global or local. In this paper, the confirma-
tion was mainly carried out using a round-robin algo-
rithm, which systematically searches for all possible so-
lutions around the optimal solution at the proper step.
This is because a near global optimal solution can at least
be obtained by genetic algorithms. An optimal solution
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was confirmed with a different initial population and
different methods of crossover and mutation.

Through these investigations, several types of optimal
values were obtained under different constraints of the
temperature. When the constraint was 5°C < T, < 40°C,
two optimal values, a combination of only the lowest
temperature T, = {5°C, 5°C, 5°C, 5°C, 5°C, 5°C, 5°C, 5°C}
and a combination of heat stress and the lowest tempera-
ture Ty = {40°C, 5°C, 5°C, 5°C, 5°C, 5°C, 5°C, 5°C}, were
selected. There was no significant difference in the rate
of water loss between the two operations after the heat
stress. This is because, under a low temperature, these
two responses were very small; consequently, it was dif-
ficult to compare their values.

Next, therefore, we increased the minimum tempera-
ture level and defined the constraint as 15°C < T, < 40°C
in order to extract the effect of the heat stress. In this
constraint, we had two optimal values under the different
evaluation lengths of the control process. For example,
when the evaluation length was the latter half stage (96 —
216 h) of the control process, a single heat stress applica-
tion of 40°C during the first 24 h, T, = {40°C, 15°C, 15°C,
15°C, 15°C, 15°C, 15°C, 15°C} was found to be an opti-
mal value. The length of each step is 24 h. A double heat
stress application, T; = {40°C, 15°C, 40°C, 15°C, 15°C,
15°C, 15°C, 15°C}, was also found to be an optimal value
when the evaluation length was restricted to only the last
two steps (168 — 216 h) of the control process. Two op-
timal values (single and double heat stresses) were char-
acterized by the combination of the highest temperature
(40°C) and the lowest temperature (15°C).

9. Optimal Control Performances

Finally, the optimal values for single and double heat
stresses obtained were applied to a real storage system.
Figure 13 shows an optimal control performance of the
rate of water loss when a single heat stress (T, =40°C,
15°C, 15°C, 15°C, 15°C, 15°C, 15°C, 15°C) was applied
to the fruit. Here, the responses of the water loss obtained
by integrating the rate of water loss are also shown in the
figure in order to compare their total amount of water
loss. The bold line shows the case of optimal control, and
the fine line shows the case of a constant-temperature T, =
{15°C, 15°C, 15°C, 15°C, 15°C, 15°C, 15°C, 15°C}. The
initial temperature was kept at 15°C for 24 h, and then
the optimal control started. The 8-day control process
from 24 to 216 h was divided into eight steps. In this case,
the evaluation length is the latter half step of the control
process (96 — 216 h = 5 days), and the constraint of the
temperature is 15°C < T < 40°C. It is found that, after the
single heat stress application, the rate of water loss be-
came lower in the optimal control than in the constant-
value control.

Copyright © 2013 SciRes.

Figure 14 shows an optimal control performance of
the rate of water loss when double heat stresses (T, =
40°C, 15°C, 40°C, 15°C, 15°C, 15°C, 15°C, 15°C) was
applied to the fruit. The bold line shows the case of the
optimal control, and the fine line shows the case of a
constant-temperature (T, = {15°C, 15°C, 15°C, 15°C,
15°C, 15°C, 15°C, 15°C}). The evaluation length was
only the last two steps of the control process (168 — 216
h = 2 days), and the constraint was 15°C < T < 40°C. The
initial temperature was kept at 15°C for 24 h, and then
the optimal control started.

From the optimal control performance, the rate of wa-
ter loss after the second heat stress (double heat stress) is
lower than that after the first heat stress (single heat
stress). Thus, the rate of water loss had a tendency to de-
crease after each application of the heat stress. After the
double heat stresses, therefore, the value becomes much
lower than that in the constant-value control. However,
the degree of the reduction caused by the heat stress
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Figure 13. An optimal control performance of the rate of

the water loss as affected by the single heat stress when the

evaluation length is the latter half stage of the control proc

ess (96 to 192 h) under the temperature range (15°C < T(k)

<40°C).
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Figure 14. An optimal control performance of the rate of

the water loss as affected by the double heat stress when the

evaluation length is only last two steps of the control proc-

ess (144 to 192 h) under the temperature range (15°C < T(k)

<40°C).

decreases with the application number of the heat stress.
In addition, the values of the rate of water loss during the
second heat stress application were much lower than that
during the first heat stress application. This is because
the first heat stress significantly suppressed the water
loss of the fruit. It was confirmed that this significant
reduction after the second heat stress application contin-
ues for at least 3 or 4 more days from other experiments.

In this study, we focused on the rate of water loss, not
the total amount of water loss, in order to apply a dy-
namic control for optimization. This is because the rate
of water loss, against the temperature, is more sensible
and controllable than the amount of the water loss. It is
also clear that since the total amount of water loss is ob-
tained by integrating the rate of water loss, the response
speed is always slow.

The reduction of the water stress caused by the heat
stress suggests that the heat-stress fruits acquired a tran-
sient thermo tolerance. Controlling temperature so that it
first rises to the highest level and then drops to the lowest
level seems to be especially effective at reducing the wa-
ter loss of the fruit during storage, as compared with
15°C-constant control. This means that the optimal ap-
plications of the heat stress to a low temperature opera-
tion is more effective than only a low temperature opera-
tion in order to reduce the water loss of fruit during stor-
age. It is also suggested that the physiological responses
of the fruit can be improved by applying heat stress op-

Copyright © 2013 SciRes.

timally to the fruit. This is a marked characteristic of a
living thing. In any cases, a control method that changes
flexibly and optimally on the basis of fruit responses is
useful to improve fruit quality during storage.

10. Conclusions

In this study, the optimal 8-step set points of the tem-
perature that minimize the rate of water loss of the fruit
during storage was determined using neural networks and
genetic algorithms. The length of each step is 24 h. Un-
der the range of 15°C < T < 40°C, two types of optimal
operations, a single heat stress operation {40°C, 15°C,
15°C, 15°C, 15°C, 15°C, 15°C, 15°C} and a double heat
stress operation {40°C, 15°C, 40°C, 15°C, 15°C, 15°C,
15°C, 15°C}, were obtained for different evaluation leng-
ths of the control process. These are characterized by the
combinations of the highest temperature (40°C) and the
lowest temperature (15°C). It is especially emphasized
that the sudden drop of the temperature from the highest
level (40°C) to the lowest level (15°C) had a tendency to
decrease the water loss of the fruit compared to when the
temperature was maintained at the lowest level. The re-
duction of the water stress caused by the heat stress sug-
gests that the heat-stress fruits acquired a transient ther-
mo tolerance. These results suggest that a control method
that applies the 40°C - 50°C heat stress to the fruit opti-
mally on the basis of fruit responses is a better way to
maintain fruit quality during storage than a conventional
control manner that simply maintains the temperature at
the lowest level.
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