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ABSTRACT 

In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as 
a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable 
and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is 
used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computa-
tional details. 
 
Keywords: Selective Maintenance; Weighted Tchebycheff Technique; Multi-Criteria Optimization; Stochastic 

Programming; Chance Constrained; Modified E-Model; System Reliability 

1. Introduction 

We consider a system which requires performing a se-
quence of identical production runs after every given 
(fixed) period. A production run in the system consists of 
several subsystems where each subsystem can work pro- 
perly if at least one of its components is operational. The 
following assumptions are also made: 

1) all the components can be repaired if deteriorated or 
failed; 

2) all component states are independent. 
We assume that the system comprises two types of 

subsystem. One is the type of subsystems in which the 
components are very sensitive to the functioning of the 
whole system and, therefore, on deterioration these 
should be replaced by new ones. Let these subsystems 
range from 1 to 

paired and then replaced. Let such subsystems range 
from 

s . The other type of subsystems is those 
in which the components after deterioration can be re-  

1s   to . In Figure 1 the Group X consists of 
the 

m
s  subsystems with sensitive components which on 

failure are replaced by new ones and Y the remaining 
 m s  subsystems in which the components can be 
repaired (see Ali et al. [1]). 

Ideally, all the failed components in all the subsystem 
of Group X are replaced by new ones prior to the begin-
ning of the next mission/ run. In a similar way, ideally all 
the failed components in subsystem of Group Y are re-
paired and then replaced prior to the beginning of the 
next mission/run. However, due to the constraints on the 
cost and time it may not be possible to repair and replace 
all the failed components in Groups X and Y. For this a 
mathematical programming frame-work is established 
for assisting decision-makers in determining the optimal 
subset of maintenance activities to perform prior to begin-
ning of the next mission. This decision-making process 
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Figure 1. Parallel components in repairable and replaceable subsystem.     
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is referred to as selective maintenance. The selective 
maintenance models presented allow the decision-maker 
to consider limitations on maintenance time and budget, 
as well as the reliability of the system. Selective mainte-
nance is an open research area that is consistent with the 
modern industrial objective of performing more intelli-
gent and efficient maintenance. 

For this let us suppose i  be the total failed compo-
nents in the subsystems and i  be the number of com-
ponents in the  subsystem, which can be repaired and 
replaced prior to the beginning of the next mission (See 
Rice et al. [2]). Thus under the selective maintenance the 
number of components available for the next mission in 
the subsystem will be  

thi

thi

                 (1) 

Therefore the reliability of the subsystems range from 
1 to  for a production run is given by s

  1 1
s

iR d                 (2) 

and the reliability of the subsystems range from s
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to  for a production run is given by m

  1 1
m

iR d            (3) 

The maintenance time constraint for the system is 
given as 

                 (4) 

and the maintenance cost constraint for the system is 
given as 

                (5) 

However, in the event the reliability of the subsystems 
of Groups X and Y time are of equally serious concern. Let 
us consider, for instance, the following multi-objective 
problem (please see the Equation (6) below). 

Secondly, a Bi-objective programming problem in 
which time and the cost spent on system maintenance is 
minimized simultaneously for the required reliability 

 i i  (say). The mathematical model of the problem 
is given as Equation (7) below. 
R d
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Recently many authors have discussed the allocation 
problem of repairable components. Among them are 
Rice et al. [2], Schneider and Cassady [3], Rajaopalan 
and Cassady [4], Schneider et al. [5], Iyoob et al. [6], Ali 
et al. ([1,7-10]), Faisal and Ali [11] and many others. 

In this paper, we have formulated stochastic system 
maintenance problem as a multi-objective programming 
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problem. We have discussed components repairable and 

ii)
 

e above pro i  
i ib
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   0 0 ,P f d T p               (9) 

Since number of components within the 
as

 

replaceable time and cost as a random variable in the 
constraint and has Gamma and Normal distribution re-
spectively. The Probabilistic constraints function is then 
converted into an equivalent deterministic non-linear 
programming form by using chance constrained pro-
gramming. 

2. The Chance Constrained Programming 

In many practical situations the constraint Equations (i
and (iv) are not fixed and taken as probabilistic. Thus the 
above problem (6) can be written in the following chance 
constrained programming form as Equation (8) below, 
where 0 0,0 1p p   is a specified probability. 

In th blem (8), let us assume that t and 
c  are independently gamma and normally distr uted 

ndom variables.  
Let us assume that , 1, ,t i m 

m variables 
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(iii), i.e.,  ~ , .i i it G     

Then the, 

 Mean i
i

i

t



 ,   2
Variance i

i
i

t



 . 

 
1

m

i i
i

Now let 

f d t d


   

 

Then mean is 

 
1 1

m m
i

i i i
i i i

t d

 

  
 

 distributed we have 

E f d d E

Further, as it are independently , 

    2
m m

iV f d t V d d


   2
1 1

i i i
i i i   

written asNow the constraints 8 (iii) can be  

system are 
sumed to be large we have from Liapounoff’s central 

limit theorem 

       ~ ,f d N E f d V f d . 
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 is a standard normal variate 

with mean zero and variance one. Thus the probability of 
realizing   f d  less than or equal to 0T  can be writ-
ten as 
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where  z  represents the cumulative density function 

 
of the standard normal variable evaluated at Z. If K  
represents the value of the standard normal variable at 
which   0K p  , then the constraint (10) can be writ-
ten as  
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3. Modified E-Model 

Consider the situations in which the time taken and cost 
spent on maintenance are not fixed and taken as prob-  

abilistic in the objective function in Equations (i) and (ii). 
Thus the above problem (7) can be written in the follow-
ing probabilistic objective function form as: 
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Using Modified E-model technique, the problem (16) is formulated as 
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Miettinen [14] also showed that if the objectives and 
constraints are differentiable form of problem (23) can 
be defined as 
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The values of i  can be defined as the minimum individual values of the following problems: 
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5. Numerical Illustrations 

Consider a system having the Group X consisting of 3 
subsystems and also the Group Y consisting of 4 subsys-
tems. The available time between two missions for re-
pairing and replacing is 150 time units. The available  

cost of maintenance for repairing and replacing f  
next mission is 860 units. For simplicity we have con-
sidered in the above numerical illustration: the reliability 

e, cost spent 
p

5.1. Solution of Chance Constrained 
Programming by Using Weighted 
Tchebycheff Technique 

Before applying the Weighted Tchebycheff Technique  
firstly we find the individual optimum values 



or the

of each component in a subsystem is sam
and time taken on replacing and re airing each compo-
nent within a subsystem are same. The remaining pa-
rameters for the various subsystems are given in Table 1.  

 1 2,i   .  

For the values given in Table 1, the SNLPP (26) for the 
first optimum value is 

 

            
 

1 2 33 2 4

1 1

1 2 3 4 5 6 7

2 2 2 2 2 2 2
1 2 3 4 5 6 7

1 2 3 4 5 6

Min 1 1 0.8 1 1 0.75 1 1 0.8 ,

Subject to 2 3 20 28 22 22

2.99 0.33 0.60 0.10 2.86 3.11 1.83 2.2 150

120 110 120 40 30 45 65

d d d

iR d

d d d d d d d

d d d d d d d

d d d d d d d

                       

     

       

      7

2 2 2 2 2 2 2
1 2 3 4 5 6 72.99 13 10 15 4 3 5 6 860

,7.

d d d d d d d











        


            (33) 

(33) provided by LINGO is  

1 2 3 6 72, 3, 2, 0,d d d d d d            

with the value of objective function as  

0 , are int eger , 1,2,i i i i id a d n a i     
 

The optimal solution of 





 1 0.9986398.ijR d   

nd opti-

   

4 50, 0,d   0 Similarly using (27) the SNLPP for the seco
mum values 
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iled components and the resp
 

Table 1. The number of fa ective cost and time etc. in the various subsystems. 

Group Y (Repair) Group X (Replaced) 

Subsystem 1 2 3 4 5 6 7 

in  6 5 10 7 9 12 10 

ir  0.8 0.75 0.8 

i

0.8 0.75 0.8 0.7 


 

12 15 10 140 252 264 220 

i  
6 5 10 

 

7 9 12 10 

i
i

i

E t



  2 3 1 22 

 

20 28 22 

2

i
i

i
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2

ic

 40 30 45 65 
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a  3 3 6 5 7 9 7 i
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1 2 3
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Subject to 2 3 20 28 22 22
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d d d

iR d

d d d d d d d
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3 23
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d a d n a i

2 2
6 76 860d d









          

    




  (34) 

 
The optimal solution of (34) provided by LINGO is  

6 71, 2d    

with the 

0

 (33) and (34) t optimu ues 

 

1 2 3 4 50, 0, 0, 2, 1,d d d d d d        

value of objective function as  

 2 ijR d .9788431. 

From the Equations he m val

 0.9986398, 0.9788431   . For simplicity we as- 

su ed that th

  

e reliability of both the Groups X and Y  

2 0.5 .  

For the values gi , the SNLPP (25) effi-
cient solution is ob  the weighted Tche-
bycheff Technique 
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ven in Table 1
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The optimum allocation under the Weighted Tcheby-
 

cheff Technique 

 Tcheb 1 2 3 4 5 6 7, , ,d d d d d     

1 2 3 4 5 6 72, 3, 0, 2, 2, 0, 1.d d d d d d d         

The corresponding value of objective function is  

0.00076. 

5.2. Solution of Modified E-Model by Using 
Weighted Tchebycheff Technique 

The individual optimum values  1 2,i

, , ,d d d   

is obtained as  
    

   . For th  

lues given in Table 1 and for simplicity take k1 = k2

then the SNLPP (29) for the first optimum value is 
 

 

e va- 

 = 0.5 

 1 1 0.8         

2 1 2 3 4

3 2d d      31 0.8  


     (36) 
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And the SNLPP (30) for the second optimum value 
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at is 1 2 0.5w w  . For 
, the SNLPP (28) efficient 

e weighted Tchebycheff 

 
From the Equations (36) and (37) the optimum values 
 101.73, 418.40  . 

For simplicity we assumed that the maintenance time 

systems are equally important, th
the values given in Table 1
solution is obtained by using th

 

 

taken and cost spent for both the Groups X and Y sub-
 

Technique
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The optimum allocation under the Weighted Tcheby- cheff Technique 
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 Tcheb 1 2 3 4 5 6 7, , , , , ,d d d d d d d d         

is obtained as 

6 71, 2.d    

The corresponding value of objective function is 6.48. 
The individual optimum values of Model 1 are 
 .47, 0.9994  . Therefore, the optimum allocation 

e Weighted Tchebycheff Technique of SNLPP 
(31) is obtained as 

6 71, 1.d d d      

0.01306. 

herefore, the optim he Weighted 
Tchebycheff Technique of SNLPP (32) is obtained as 

6 70, 1.d    

The corresponding value of objective function is 
0.00299. 

The optimum allocations obtained corresponding to 
the various Bi-criteria models are summarized as given 
below in Table 2. 

6. Conclusions 

The multi-objective problem of allocation of repairable 
and replaceable components becomes complicated be-
cause an allocation that is optimal for one objective is 
usually far from optimal for other objectives. In such 

tuations, we need a compromise criterion that gives an 
l

 to the solution of optimum compromise 
allocation of repairable and replaceable com  

on problem of repairable and replaceable 
components for a parallel-series system considered  a 
Bi
cu
th

llocation of replaceable and repairable 
components under various Bi-criteria models. 

1 2 3 4 51, 3, 0, 3, 3,d d d d d d         

64
under th

1 2 3 4 51, 3, 1, 2, 1,d d d d      

The corresponding value of objective function is 

In the same manner, we obtained the individual opti-
mum values for Model 2 are  277.57, 0.9989   . 

the maintenance cost and time, maintenance cost and 
Group X subsystem reliabilities, maintenance time and 
Group Y subsystem reliabilities respectively are consid-
ered as two different objectives. Selective maintenance 
policy is used to select the repairable and replaceable 
components. 

An equivalent deterministic model of these
tive stochastic optimization problems is established by 
using Chance Constrained programming method. The 
following four different stochastic problems are then 
solved by using the Bi-criteria optimization technique, 
weighted Tchebycheff. The weighted Tchebycheff tech-

s of repairabl

r from method to method, so comparison can 
not be made. 
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