
American Journal of Operations Research, 2012, 2, 193-202 
http://dx.doi.org/10.4236/ajor.2012.22022 Published Online June 2012 (http://www.SciRP.org/journal/ajor) 

Immune Optimization Approach for Dynamic  
Constrained Multi-Objective Multimodal  

Optimization Problems* 

Zhuhong Zhang, Min Liao, Lei Wang 
Institute of System Science & Information Technology, College of Science,  

Guizhou University, Guiyang, China 
Email: sci.zhzhang@gzu.edu.cn 

 
Received March 13, 2012; revised April 15, 2012; accepted April 30, 2012 

ABSTRACT 

This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal opti-
mization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes 
mainly three functional modules, environmental detection, population initialization and immune evolution. The first, 
inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide 
the type of a new environment; the second generates an initial population for the current environment, relying upon the 
result of detection; the last evolves two sub-populations along multiple directions and searches those excellent and di-
verse candidates. Experimental results show that the proposed approach can adaptively track the environmental change 
and effectively find the global Pareto-optimal front in each environment. 
 
Keywords: Dynamic Constrained Multi-Objective Optimization; Multimodality; Artificial Immune Systems;  

Immune Optimization; Environmental Detection 

1. Introduction 

In real-world engineering problems, a great number of 
optimization problems often involve in multiple time- 
varying multimodal sub-objectives and constraints, such 
as portfolio investment, project planning management, 
chemical engineering design and transportation. These 
belong to dynamic constrained multi-objective multimo- 
dal optimization (DCMMO) which the sub-objective 
functions, constraints, dimensions of the objective space 
and design space may change over time. The major chal- 
lenge lies in that the global Pareto front may move to- 
ward another one with time; it is very difficult for a 
search procedure to keep the sufficient diversity and con- 
vergence, due to multiple local Pareto fronts and con- 
straints. Although some techniques are popular in the 
context of intelligent optimization, they expose many 
faults when directly applied to DCMMO problems, e.g., 
adaptation, genetic diversity and constraint-handling. Dy- 
namic multi-objective optimization (DMO) has become 
active in the recent years. Many researchers in the fields 
of evolutionary computation and immune optimization 
have made their efforts to study how the search proce-  

dure can adaptively track the environmental change and 
rapidly find the desired Pareto front [1-10]. DCMMO is 
one particular kind of DMO, presenting complex dy- 
namic behaviors such as dynamics and multimodality. In 
order to solve such special kind of problem, we must 
solve at least three crucial issues: 1) infeasible individu- 
als toward feasible ones, 2) population diversity, and (3) 
finding the well-distributed global Pareto front. 

Although immune optimization, a popular research 
branch, was proved to be potential for dynamic problems 
because of the inherent diversity and adaptation, more 
studies on it are concentrated on solving non-constrained 
dynamic single or multi-objective optimization problems 
[10-12]. It is not clear whether bio-immune inspirations 
are valuable for handling DCMMO. To our knowledge, it 
is possible to explore efficient and effective immune 
techniques for such kind of problem. Thereby, we in the 
present work try studying an immune-inspired optimiza-
tion approach, dynamic constrained multi-objective mul-
timodal immune optimization approach (DCMMIOA). 
The comparative experiments draw the strong conclusion 
that DCMMIOA is a competitive optimizer capable of 
rapidly tracking the environmental change and effec-
tively discovering the location of the global Pareto front 
in each environment. 
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2. Related Work Survey on Intelligent  
Optimization for DMO 

2.1. Dynamic Multi-Objective Evolutionary  
Algorithms  

DMO has recently gained great attention among resear- 
chers in the area of intelligent optimization. The key of 
designing an advanced technique for such problem is to 
consider such crucial factors as computational comple- 
xity, environmental adaptation and solution quality. Se- 
veral researchers [1-7] have reported their excellent achi- 
evements suitable for non-constrained DMO problems. 
For example, Farina, et al. [1] constructed five dynamic 
multi-objective test problems with slowly changing envi- 
ronments and fixed dimensions, based on the static 
benchmark test problems; meanwhile, one-directional 
search-based method was proposed to solve them. This 
method can obtain some Pareto-optimal solutions with 
somewhat uniform distribution for a given problem, but 
time consumption is expensive. In [2], two similar dy-
namic optimization techniques originating from NSGAII, 
i.e., DNSGAII-A and DNSGAII-B, were proposed to 
find a minimum frequency of change allowed in the 
problem to adequately track the theoretical Pareto front 
on-line. Their main difference is only with the aspect of 
generating their respective initial populations. One of 
their merits is that they can also solve DCMO problems. 
In the DMO studies done by Zhou and Hatzakis [4,5], 
some prediction-based inspirations were merged into one 
reported multi-objective evolutionary algorithm, in which 
the time serial analysis method was used to predict the 
location of the Pareto front. In addition, in the work 
made by Wang [6], a new evolutionary algorithm (DM- 
EA) was proposed to deal with DCMO problems, by 
improving the operators of crossover and mutation. In a 
study done by Tan [7], one competitive and cooperative 
mechanisms-based co-evolutionary multi-objective algo- 
rithm was developed to solve multi-objective optimiza- 
tion problems in dynamic environments. For one such 
algorithm, each species subpopulation competes to rep- 
resent a particular subcomponent of the multi-objective 
problem, while the eventual winners are required to co- 
evolve so that those better solutions can be found. 

2.2. Dynamic Multi-Objective Immune  
Optimization (DMIO) 

Since Carlos et al. proposed a simple artificial immune 
system to solve static multi-objective optimization prob- 
lems [13,14], multi-objective immune optimization has 
become increasingly active. Correspondingly, many ori- 
ginal or improved immune techniques [15-17], based on 
the humoral immune response principle, have been re- 
ported continually. This indicates that the artificial im- 
mune system paradigm is an interesting topic for multi-  

objective optimization problems. However, less work on 
DMIO is displayed in the literature. Shang et al. [8] sug- 
gested one clonal selection algorithm for dynamic non- 
constrained multi-objective optimization problems, while 
such approach was examined by two theoretical test 
problems. More recently, we also studied immune-based 
optimization techniques for such kind of problem [9]. 
Subsequently, we handled one general kind of DCMO by 
developing an immune agent-based artificial immune 
system (DCMOAIS) [10]. In this approach, the interac-
tive mechanism between B-cell and T-cell is our major 
bio-inspiration. The experimental results hint that such 
approach is a competitive optimizer for complex and 
high-dimensional DCMO problems. Despite of some 
reported achievements on DMIO, they might be difficult 
in solving multimodal optimization problems. Thereby, 
we in this work design DCMMIOA to solve specially 
DCMMO problems rather than general DCMO. It should 
be pointed out that although DCMMIOA and DCMOAIS 
share some bio-immune inspirations, their modules are 
completely different. For example, DCMMIOA does not 
include memory pool, while detecting the environmental 
change only by means of the joint environment; it carries 
out evolution on two sub-populations, in which the better 
subpopulation executes multiple evolution schemes so 
that some global Pareto-optimal solutions can be found. 

3. Problem Formulation and Immune  
Theory  

3.1. Problem Formulation 

Consider the dynamic constrained multi-objective mul- 
timodal optimization problem (VP): 
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with discrete time integer variable t, , and 
bounded and closed domain  in , where n(t) 
is the dimension at the moment ;  denotes the 
time-varying vector-valued objective function with at 
least one multimodal sub-objective function; gi(x,t), 
 

( )t

, are the linear or nonlinear inequality constraint 
functions. Since t takes integers in the interval [1, T], the 
above problem consists of a series of jointly static multi- 
objective multimodal problems; each static problem is 
called an environment; for example, we call the t-th static 
problem the t-th environment. Our task is to develop DC- 
MMIOA which can continually track the environmental 
change and rapidly search the global Pareto front in the 
t-th environment before the next environment arrives.  

Additionally, x  is said to be feasible for the 
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t-th environment, if it satisfies all the above constraints, 
and infeasible otherwise. For a given environment t and 

, we say that x constrained-dominates y if one 
of three conditions is true [2]: (1) x is feasible but y is not; 
(2) x and y are feasible and 

, Ω( )tx y

x y ; (3) x and y are both 
infeasible, but x has a smaller constraint violation 

. Here, ( , )G tx x y  denotes that fl(x,t) ≤ fl(y,t), 1 ≤ l ≤ 
m, and there exists j, 1 ≤ j ≤ m, such that fj(x,t) < fj(y,t); 
meanwhile,  represents the total of constraint 
violations at the point x for all the constraints; namely, 

 is the sum of 

( , )G tx

( , )G tx  ( , ),0g x tmax i i I with 1 
x

( )

. 
For a given environment t,  is called a local 
Pareto-optimal solution, if it is feasible, and there exists a 
neighborhood in x such that any element in such region 
does not constrained-dominate x;  is said to be 
a global Pareto-optimal solution, if it is feasible, and all 
elements in  do not constrained-dominate x. 

Ω( )t

Ω( )tx

Ω( )t

3.2. Immune Theory 

The immune response theory describes essentially a 
process that B and T cells learn an invader and ultimately 
eliminate it. T cells as detectors can monitor whether a 
change takes place in the immune system, being capable 
of identifying “self” and “non-self”. When an organism 
is attacked by the invader or antigen, T cells will experi-
ence three phases: initiation, reaction and elimination; 
namely, a large number of virgin cells are first generated, 
and then these cells become effectors which urge B cells 
to respond to the antigen. This stimulates these B cells to 
create plasma and memory cells through proliferation. If 
being active, such plasma cells suffer a process of affi- 
nity maturation through somatic maturation, and secrete 
antibodies neutralizing the triggering invader. Subse- 
quently, high-affinity B cells are selected into the B-cell 
pool, but others are eliminated. Besides, the memory 
cells will become long-lived ones. Once the previous in- 
vader is found in the immune system, these memory cells 
commence rapidly differentiating into plasma cells capa- 
ble of producing high-affinity antibodies.  

Summarily, by taking an analogy between the two pro- 
cesses of the immune response and solving DCMMO, it 
is not difficult to know that the task of such response is 
to create excellent B cells and the purpose of handling 
DCMMO is to find those best solutions. From the view- 
point of engineering application, such immune response 
is a bio-inspiration used in developing immune-inspired 
optimizers. In this work, two immune metaphors of T- 
cell surveillance and B-cell learning (cell selection, clo- 
nal expansion and somatic mutation) are simply simu- 
lated to construct our DCMMIOA. The first is adopted to 
design the module of environmental detection which de- 
tects the environmental change; the second is an impor- 
tant biological idea used to create valuable B cells or 
individuals. 

4. Algorithm Formulation and Module 
Illustration 

4.1. Algorithm Formulation 

As associated to problem (VP) as in Section 3, for the 
t-th environment antigen Ag t  is viewed as the attrib-
ute set of  ., tf  and  n t ,  ., tg , where ., tg

 

 is 
the vector-valued function composed of constraint func-
tions; B cells are regarded as real-encoded candidate so-
lutions; memory cells denotes those best B cells found 
until now (i.e., non-dominated candidates). DCMMIOA 
includes five modules of environmental detection, initiali-
zation, division, mutation and recruitment. Following 
these descriptions, it can be in detail described as follows. 
 

1. Input: Population size N, total of environments T, elitist  
subpopulation size Ne, clonal size mc, and mutation rates pm. 

2. While t ≤ T do 
3. Generate population A with size N, A :=Initialization(Ag(t)); 
4. While Ag(t) does not change do 
5. Divide A into elitist and unselected sub-populations,  

(S1, S2):=Division (A, Ne); 
6. Carry out elitist mutation on S1, B

 
1 :=Mutation (S1, N);  

7. Enforce uniform mutation on S2, and acquire population B2; 
8. Pick up N better cells in A B1 B2 to form population C;  
9. Recruit new cells, A := Recruitment (C); 
10. Implement environmental detection: Detection (Ag(t)); 
11. End while 
12. End while 
13. Output the optima found in each environment. 

 
Notice that in the above approach, steps 4 to 11 is a 

loop of optimization for the t-th environment. Through 
step 10, once such environment takes a change, the search 
process in the environment is required to stop. Steps 6 
and 7 formulate two sub-populations to evolve along 
different directions. Additionally, some optimization prob- 
lems usually include multiple constraints so that their 
feasible regions are empty or extremely narrow. In such 
case, it becomes difficult for any optimization approach 
to solve them. Thus, when handling this kind of hard- 
constraint problem, the requirement of feasibility is re- 
laxed. Here, we design a threshold index to decide 
whether an individual is feasible or not, namely 

N
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where n and Mn(t) denote the iteration number and the 
maximal iteration in the t-th environment, respectively. If 

t σx , we say that x is feasible. The main modules 
are designed below. 

4.2. Module Illustration 

Detection (Ag(t)). This module detects whether Ag(t) has 
made a change within the runtime, and decides the rela- 
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tion between Ag(t) and Ag(t + 1) if so. Note that Ag(t) 
comprises of three factors, i.e., n(t), f(., t) and  ., tg

( 1) ( )n t n t 

( 1) ( )n t n t 

. If 
any change takes place among such three factors, we say 
that the t-th environment has changed. Suppose that such 
environment has been converted to environment t + 1; so, 
we decide whether Ag(t + 1) is new or similar through 
the following way: 

1) If , Ag(t + 1) is regarded as a new an-
tigen; 

2) If , we pick randomly up K cells in 
the eventual population A acquired in the t-th environ- 
ment to constitute a sample set S, and then check the re- 
lation between Ag(t) and Ag(t + 1) through an identifica- 
tion factor defined as 
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where x  stands for the 2-norm of x. If  

0.1

, we say 
that Ag(t + 1) is similar to Ag(t); otherwise, Ag(t + 1) is 
new. Here, we take  

%

.  
Initialization (Ag(t)) includes N cells decided through 

the type of Ag(t). More precisely, if Ag(t) is new, such N 
cell are generated randomly; otherwise, some random B 
cells and   of elements from the eventual population 
gotten in the last environment constitute the initial popu-
lation. Here, we take 10  .  

Division (A, Ne) consists of two sub-populations S1 

and S2, where each element in S1 is superior to any one in 
S2. Precisely, relying upon the concept of constraint- 
dominance, population A is first sorted orderly into 
non-dominated classes F1, F2, ··· ,Fl, where the first is 
best and the last is worst. Suppose that F1 involves in np 
members. If np < Ne, pick up some elements in F2 with 
small concentrations, together with those in F1, to con-
stitute S1, where the concentration of x in F2, C(x), is 
decided by 
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Note that |A| denotes the number of elements in A, and 
we in this work take 0.1 ( )n t  . If 1 2 e , go 
on this process by substituting F3 for F2 in Equation (3), 
until that S1 includes Ne elements. If np > Ne, the conven-
tional crowding distance approach, proposed by Deb et al. 
[2], is applied to F1, and selects Ne elements with large 
crowding distances to form S1. Further, S2 consists of 
those elements in A but not in S1. 

NF F 

 20, ( )N ξ

Mutation (S1, N) comprises of new B cells acquired 
through multiple mutation fashions on S1. To this end, 
considering exploitation and exploration, we carry out a 
np-dependent mutation, where np is mentioned above. 
Namely, we first copy ξN better elements in S1 to prolif-

erate their clones with respectively clonal sizes mc; each 
of clones undergoes the following Gaussian mutation 
with the mutation probability pm, 

  x x

1( )n t

         (4) β

with variance ξβ, where γ is a randomly generated num-
ber in (0, 1), and we take ξ = 0.1 in this paper. Further, 
for a pre-defined threshold λ with 0 < λ < 1, if np < λN, 
each B cell in S1 changes its genes with the mutation 
probability  , relying upon Equation (4) but with 
variance  ; otherwise, if a randomly generated number 
  in (0, 1) satisfies   , each element in S1 shifts its 
genes as in the case of np < λN but with the variance  , 
and conversely, each B cell is mutated with the mutation 
probability pm through 

1rr  x x

  1

Tt
tA

              (5) 

where r and r1 are both randomly generated values in (0, 
1). After the three mutation fashions are completed, all 
mutated cells constitute a new subpopulation B1. 

Recruitment (C) includes those better cells in C and 
some new ones obtained through crossover. That is, take 
η% of the worse elements in C to interact with B cells 
randomly selected in the above best subclass F1, through 
crossover and with the crossover probability 1. After so, 
those new cells, together with the better cells in C, con-
stitute the desired population A.  

5. Performance Criteria 

To measure DCMMIOA’s performance, several evalua-
tion criteria are developed through extending the three 
conventional criteria [20], i.e., coverage rate (CR), cov-
erage density (CD) and coverage scope (CS). If two al-
gorithms A and B are executed respectively a single run 
in each of the T environments as in problem (VP) above, 
two series of non-dominated sets are acquired,   
and  TtB 1t . 

(A) coverage rate. This can be used to compare the 
qualities of non-dominated solutions gotten by algo-
rithms A and B, given by 
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Equation (6) shows that the non-dominated sets found 
by algorithm A are globally better than those gained by 
algorithm B if . 

(B) coverage density and scope. Coverage density CD 
is utilized to measure the whole distribution of the 
non-dominated solutions obtained by algorithm A in the 
environments, defined as 
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where  
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Equation (7) hints that the smaller the value CD, the 
better the distribution of the non-dominated solutions. 
Similarly, coverage scope is denoted by the average co- 
verage width of solutions acquired in the environments, 
given by 
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Obviously, Equation (8) shows that a larger value of 
CS means a wider coverage scope of the solutions. 

6. Experimental Study 

In this section, we execute all experiments on a computer 
with CPU/3.0 GHz and RMB/2.0 GB. In order to test 
DCMMIOA’s characteristics, three dynamic constrained 
multi-objective evolutionary algorithms reported are se- 
lected to compare against it, i.e., DMEA [6] and two 
similar versions of DNSGAII-A and DNSGAII-B [2]. In 
addition, we give seven DCMO problems DCTP1 to 
DCTP7 acquired by introducing a time-varying Rastrigin 
function into the seven static benchmark problems CTP1 
to CTP7 [18], and two dynamic engineering design prob- 
lems DSR and DPVM gained through modifying the 
coefficients of the two original versions [19,20]; more 
details can be found below. Such dynamic problems are 
utilized to examine the inherent properties of these four 
approaches. 

To analyze fairly the performance characteristics of 
the above algorithms, each approach with population size 
100 is admitted to execute 30 single runs on each test 
problem, and evaluates 105 times in each environment for 
DCTP6, DSR and DPVM but 50,000 times for other test 
problems. Take four environments for each test problem. 
The other parameter settings of the three compared algo- 
rithms can be known through their corresponding refe- 
rences. For DCMMIOA, we take mc = 5, pm = 0.3, Ne = 
50, α = 2.0 for all the test problems; we set λ = 0.8, β = 
0.1 for problems DCTP1 to DCTP5, DCTP7 and DSR, 
take λ = 0.4, β = 2.0 for DCTP6, and set λ = 0.8, β = 2 for 
DPVM. 

6.1. Benchmark Problems and Experimental 
Analysis 

Deb et al. designed a series of static constrained multi- 
objective test problems, i.e., CTP1 to CTP7 [18]. We 

modify their common function g(x) into the following 
time-varying Rastrigin’s multimodal function, 

 

and correspondingly, the static problems are extended in 
order into dynamic multi-objective multimodal problems 
DCTP1 to DCTP7. For either DCTP1 or DCTP7, the 
four environments are with dimensions 10, 10, 12 and 12 
in turn, but 10, 10, 10 and 10 for each other problem. 
Depending on the performance criteria as in section 5, 
we obtain the statistical results in Table 1 below, and the 
non-dominated fronts, found by such algorithms with 
respectively a single run, are presented in Figure 1 be-
low. In Table 1, A1, A2, A3 and A4 stand for DNSGAII- 
A, DNSGAII-B, DMEA and DCMMIOA, respectively. 

Relying upon Table 1 and Figure 1, DCMMIOA 
spends the least average runtime to solve all the test pro- 
blems except DCTP4 and DCTP7, and DMEA is secon- 
dary. We also notice that DNSGAII-A and DNSGAII-B 
demand globally more time to deal with the above prob- 
lems. 

The average coverage rates (ACR) illustrate clearly 
that DCMMIOA’s optimized quality for each of the 
above problems is globally best, as the qualities of the 
non-dominated solutions found by it in each environment 
are globally better than those gotten by any of the other 
algorithms for each problem, e.g., for DCTP1, the non- 
dominated sets acquired by DCMMIOA in each envi- 
ronment cover averagely 38%, 40% and 90% of those 
obtained by DNSGAII-A, DNSGAII-B and DMEA, re- 
spectively; conversely, the non-dominated solutions ac- 
quired by the latter three algorithms in each environment 
dominate in order only 6%, 6% and 1% of those found 
by DCMMIOA. This shows that DCMMIOA, with a 
rational balance between convergence and diversity, can 
effectively track the global Pareto front in each environ- 
ment per problem. In addition, Figure 1 hints that once 
the environment become severe, DNSGAII-B and DMEA 
degrade seriously their performances; in particular, they 
can only acquire the local Pareto fronts (see Figures 
1((a), (f) and (g)). Further, we note that only DCMMIOA 
can track the time-varying global Pareto front for DCTP6 
(see Figure 1(f)), which shows that those compared al- 
gorithms get easily into local search and hence expose 
their weak diversity. The statistical values on CS present 
that each non-dominated set found by DCMMIOA in 
each environment for each problem has the globally 
wider coverage scope than that acquired by any of other 
algorithms, which indicates that such approach can find 
those excellent and diverse non-dominated solutions. In 
addition, the statistical values on CD show that these 
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Table 1. Statistical comparison of non-dominated sets found for problems DCTP1 to DCTP7. 

ACR(A, B) (%) CD CS Prob. 
 

 
A1 A2 A3 A4 Mean Std. Dev Mean Std. Dev 

AT(s) 

A1 0 30 85 6 0.05 0.03 0.98 10–2 5.09 

A2 24 0 83 6 0.06 0.03 0.87 0.16 5.17 

A3 7 8 0 1 0.14 1.61 0.65 0.11 4.66 
1 

A4 38 40 90 0 0.01 0.01 1.05 10–3 3.64 

A1 0 28 74 7 0.05 0.04 1.22 10–3 4.57 

A2 24 0 72 5 0.06 0.05 1.21 10–4 4.48 

A3 7 8 0 3 0.24 2.07 1.07 0.08 4.35 
2 

A4 88 89 94 0 0.03 0.13 1.30 10–3 3.66 

A1 0 53 94 57 0.07 0.03 1.15 0.04 4.24 

A2 52 0 92 57 0.07 0.01 1.19 0.02 3.96 

A3 10 12 0 21 0.20 2.49 0.86 0.09 4.37 
3 

A4 58 60 90 0 0.03 0.06 1.17 0.03 3.27 

A1 0 47 87 35 0.08 0.02 0.86 0.07 3.23 

A2 58 0 93 44 0.07 0.01 0.82 0.04 3.13 

A3 12 8 0 11 0.20 1.32 0.48 0.11 3.95 
4 

A4 75 69 92 0 0.01 10–3 0.84 0.07 3.54 

A1 0 37 85 25 0.07 0.02 1.18 10–2 4.52 

A2 34 0 82 25 0.06 0.03 1.11 10–3 4.33 

A3 7 10 0 11 0.22 1.27 0.88 0.08 4.25 
5 

A4 78 79 87 0 0.02 0.01 1.12 0.01 3.54 

A1 0 26 48 20 0.06 0.07 1.15 0.91 10.1 

A2 29 0 50 15 0.08 0.09 1.24 0.81 9.93 

A3 7 8 0 6 0.11 0.28 0.85 1.13 7.17 
6 

A4 43 38 58 0 0.02 10–5 1.77 0.01 6.33 

A1 0 42 81 2 0.15 0.30 0.85 0.21 4.01 

A2 43 0 80 2 0.13 0.08 0.78 0.31 4.11 

A3 18 17 0 1 0.18 0.47 0.33 0.36 3.36 
7 

A4 80 79 99 0 0.11 0.05 1.63 0.07 4.53 
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Figure 1. Comparison of non-dominated fronts obtained by the four algorithms in each environment. (a) DCTP1; (b) DCTP2; 
(c) DCTP3; (d) DCTP4; (e) DCTP5; (f) DCTP6; (g) DCTP7. 
 
approaches can effectively eliminate those similar non- 
dominated solutions, and thereby their resultant solutions 
are with the satisfactory distribution. Summarily, through 
the statistical values on ACR, CS and CD, we can clearly 

see that DCMMIOA acquires the best solution quality for 
each test problem while DNSGAII-A is secondary.  

Totally, for each test problem above, we can draw the 
strong conclusion that DCMMIOA performs well over 
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the compared approaches; DMEA has the higher effi- 
ciency than either DNSGAII-A or DNSGAII-B, but the 
worse effect than DNSGAII-A. 

6.2. Experimental Results on Engineering 
Problems 

We take the dynamic speed reducer model (DSR) for 
example. Such model can be found in [19]. Similar to the 
above experiment, the above algorithms get their statis- 
tical results given in Table 2, and the non-dominated 
fronts are drawn in Figure 2. Note that since DMEA 
fails to solve such model, we do not give its statistical 
results. 

Table 2 and Figure 2 display the results obtained by 
DNSGAII-A, DNSGAII-B and DCMMIOA for problem 
DSR. We know easily that DCMMIOA has the promi- 
nent superiority over two other algorithms, because the 
non-dominated sets obtained by it cover 96% of those 
found by either DNSGAII-A or DNSGAII-B, i.e., ACR 
(A4, A1) = 96%, ACR(A4, A2) = 96%. Further, from other 
statistical values, we observe that in each environment, 
DCMMIOA can find some non-dominated solutions with 
the wide coverage and satisfactory distribution. On the 
other hand, we see that the solutions found by DNSGAII- 
A and DNSGAII-B have the similar distribution and 
coverage. Further, it is obvious that DCMMIOA has the 
high efficiency when solving the above problem, but the 
compared approaches cause the slow searching behaviors. 
Totally, DCMMIOA performs best for this problem, and 
DNSGAII-B is slightly better than DNSGAII-A. 

We next solve the other engineering problem, Dyna- 
mic Pressure Vessel Model (DPVM). The static pressure 
vessel model is proposed originally by Deb and Sriniva-
san [20]. It aims to minimize the cost of fabrication and 
to maximize the storage capacity of the vessel, and in-
cludes four variables, i.e., thickness of cylindrical part of  

the vessel ( 1x ), the hemispherical heads ( 2x ), radius of 
vessel ( 3x ) and length of vessel ( 4x ). We convert it into 
a dynamic model through modifying the parameter set-
tings. DPVM is formulated as follow: 

 

 

1 2

2 2 2
1 1 1 4 3 2 2 3 3 1 4

2 2 2 3
4 1 3 2 3 4 5 3

1 3 1 2 3 2

1 2 3 4

min ( , ) ( , ), ( , )

. ., ( , ) ( ) ( ) ( )

( ) , ( , ) ,π ( )π

: 0.0193 0, g : 0.00954 0,

0.0625 , 5, 10 200, 10 240

nR
t f t f t

s t f t a t x x x a t x x a t x x

a t x x f t x x a t x

g x x x x

x x x x




  

   

   

     

x
f x x x

x

x

( )a t 1 5i 

 

where the coefficients i , , are acquired by 
introducing time-varying parameters, 

1 2

3 4 5

( ) , 1 5, 0.6224, 1.7781,
10

1.58305, 9.92, 1.333.
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t
a t a i a a
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Similar to the process of solving the above problems, 
the algorithms obtain their statistical results for DPVM 
given in Table 3, and their non-dominated fronts are pre- 
sented in Figure 3 below. 

Through Table 3 and Figure 3, we notice that al-
though DMEA behaves worst, it can obtain some feasible 
solutions in each environment. Besides, we can obtain 
the same conclusion as that given in DSR; namely, by 
comparison to either DNSGAII-A or DNSGAII-B, DC- 
MMIOA has the best optimized quality and the higher 
performance efficiency; DNSGAII-A and DNSGAII-B 
present similar effects and almost equal efficiencies. On 
the other hand, we also see that the non-dominated sets 
found by DNSGAII-A, DNSGAII-B and DCMMIOA are 
with similar distributions and coverage scopes, but there 
are some subtle differences between them. DCMMIOA 
can globally achieve stable search performance, due to 
the small variances on CD and CS. Therefore, for the  

 
Table 2. Comparison of statistical values obtained for DSR. 

ACR(A, B) (%) CD CS 
 

A1 A2 A3 Mean Std. Dev Mean Std. Dev 
AT(s) 

A1 0 14 0.4 13.99 1.029 1408.4 2.116 12.67 

A2 15 0 0.6 14.00 0.486 1408.5 1.279 12.63 

A4 96 96 0 12.88 1.13 1438.5 1.505 8.51 

 
Table 3. Comparison of statistical values obtained by the four algorithms for problem DPVM. 

ACR(A, B) (%) CD CS 
 

A1 A2 A3 A4 Mean Var Mean Var 
AT(s) 

A1 0 20 53 19 563447 8.88 × 108 6.78 × 107 6.88 × 109 11.98 

A2 20 0 51 19 558483 5.51 × 108 6.72 × 107 1.56 × 1010 11.86 

A3 4 4 0 6 743289 7.17 × 1010 5.50 × 107 3.26 × 1014 7.21 

A4 43 43 55 0 578021 6.3 × 109 6.69 × 107 7.65 × 109 8.24 
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Figure 2. Comparison of non-dominated fronts obtained in 
each environment for DSR. 
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Figure 3. Comparison of non-dominated fronts obtained in 
each environment for DPVM. 
 
above problem, DCMMIOA performs best, and DNSGAII- 
A and DNSGAII-B are secondary. 

7. Conclusion 

DCMMO is an extremely challenging research topic in 
the field of optimization, due to multimodality. We in 
this paper investigate such topic because of the increas- 
ing requirement of real-world multimodal optimization 
problems. Correspondingly, one bio-immune optimiza- 
tion approach, inspired by the immune surveillance and 
interactive metaphors between B cells, is developed to 
adapt dynamically to the environmental change and to 
find the global Pareto optimal solutions in each environ- 
ment. Such approach can adaptively monitor the complex 
environment and find multiple valuable regions. The 
experimental results show that it outperforms the com- 
pared algorithms and is potential for DCMMO problems; 
in other word, it can efficiently track the dynamic envi- 
ronment and keep the sufficient diversity, while being 
capable of approaching the global Pareto front in each 

environment. 
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