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Abstract 
Calponin is a basic actin-binding protein found widely in invertebrate tissues 
including catch muscle and therefore may participate in catch contraction. 
There is limited information about molluscan calponin and molecular cha-
racterization to reveal its function in the regulatory system. We previously 
identified and partially sequenced three calponin isoforms of the Japanese 
pearl oyster, Pinctada fucata (Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3). In this 
study, the full-length nucleotide sequences of the three isoforms were deter-
mined. The primary structures revealed that Pifuc-CP-1 consists of 324 ami-
no acids (aa) with a molecular mass (Mw) of 34.7 kDa and an isoelectric point 
(pI) of 9.40. Pifuc-CP-2 is 303 aa in length with a Mw of 33.3 kDa and a pI of 
9.30, and Pifuc-CP-3 is 398 aa in length with a Mw of 43.8 kDa and a pI of 
8.55. Domain architecture prediction showed that the three isoforms have a 
single calponin homology (CH) domain and multiple calponin (CN) do-
mains. Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 possess four, three and five 
CN domains, respectively. Tissue distribution analysis indicated the presence 
of additional calponin isoforms and these isoforms are distributed widely in 
muscle and non-muscle tissues. Results of cDNA cloning revealed further 
four calponin isoforms: Pifuc-CP-4 (402 aa, 42.8 kDa, pI = 9.10), Pifuc-CP-5 
(285 aa, 30.7 kDa, pI = 9.45), Pifuc-CP-6 (286 aa, 31.1 kDa, pI = 9.60) and 
Pifuc-CP-7 (302 aa, 33.3 kDa, pI = 9.10). The domain architecture of these 
four isoforms also consists of a single CH domain and multiple CN domains. 
Pifuc-CP-4 possesses six CN domains, whereas Pifuc-CP-5, Pifuc-CP-6 and 
Pifuc-CP-7 contain three CN domains. Sequence alignment of P. fucata cal-
ponin isoforms showed that Pifuc-CP-1, Pifuc-CP-2, Pifuc-CP-3 and Pi-
fuc-CP-4 have identical CH domain sequences, whereas Pifuc-CP-5, Pi-
fuc-CP-6 and Pifuc-CP-7 have identical CH domain sequences. The CN re-
peats were not well conserved. These findings suggest that P. fucata calponin 
isoforms function differently in each tissue. 
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1. Introduction 

Mollusk bivalve adductor muscles are composed of two muscle types: phasic and 
catch. Phasic muscle is used for the quick closure of shells, whereas catch muscle 
functions in the sustain closure of shells. The contraction of both muscles is re-
gulated by intracellular Ca2+ concentrations [1]. Mollusks employ a thick fila-
ment-linked regulatory system where myosin directly binds Ca2+, leading to its 
activation and subsequent interaction with actin. Following a decrease in the 
intracellular Ca2+ concentration, myosin is inactivated, and its interaction with 
actin in phasic muscle is abolished. In contrast, once Ca2+ concentrations de-
crease to resting levels, catch muscles enter the high-tension catch state, which is 
maintained for long periods. Twitchin, a giant myosin-associated protein, teth-
ers together the thin and thick filaments through its phosphorylation sites [2] [3] 
[4]. The involvement of the thin filament-linked regulatory system in catch con-
traction remains unresolved. 

In contrast to molluscan muscles, vertebrate striated muscles employ a thin 
filament-linked regulatory system. Troponin (Tn) is the regulator of skeletal 
muscle contraction. Tn is distributed on thin filaments and inhibits the interac-
tion between actin and myosin. Tn consists of three subunits: troponin C (TnC), 
troponin I (TnI) and troponin T (TnT). Since Tn is present in mollusk muscles, 
we have been investigating if there is a thin filament-linked regulatory system of 
catch contraction. 

The Japanese pearl oyster, Pinctada fucata, is one of the most important mol-
luscan species in the pearl culture industry. A genome database of P. fucata has 
recently been released and all the major muscle protein genes have been regis-
tered [5] [6] [7]. Therefore, we have used P. fucata as a model system to eluci-
date the molluscan muscle regulatory system. We recently performed molecular 
characterization of TnC and TnI from P. fucata, and suggested that Tn may par-
ticipate in the regulation of the phasic adductor muscle not in catch muscle, be-
cause they are predominantly expressed in the phasic muscle [8] [9] [10]. 

Mammalian smooth muscle exhibits tension maintenance, called latch, which 
is similar to catch contraction of molluscan smooth muscle [11] [12]. In the 
latch mechanism, calponin, a basic protein specific to smooth muscle, is in-
volved [13] [14] [15] [16]. Calponin also resides in molluscan muscles [7] [17] 
[18] [19] [20] [21]. Molluscan calponin has been reported to inhibit actomyosin 
Mg-ATPase activity [17] [18]. For these reasons, calponin is likely involved in 
catch contraction in mollusks. However, available information on molluscan 
calponin is very limited. 

We previously revealed that three calponin isoforms are expressed in P. fucata 
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(Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3) by partial sequencing [7]. In this study, 
the molecular characterization of P. fucata calponin isoforms was performed by 
conducting 5’ rapid amplification of cDNA ends (RACE) to determine the 
full-length sequences of the three isoforms. In addition, the structural and tissue 
distribution analysis was performed. Furthermore, we found four more isoforms 
(Pifuc-CP-4, Pifuc-CP-5, Pifuc-CP-6 and Pifuc-CP-7) using cDNA cloning. 

2. Materials and Methods 
2.1. Animal Samples 

We obtained live specimens of two-year-old P. fucata that were cultured in Ago 
Bay, Mie Prefecture, Japan. The adductor muscle, gill, mantle and foot were dis-
sected from each oyster body, immediately frozen in liquid nitrogen and stored 
at −80˚C until use. 

2.2. cDNA Cloning of Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 

Total RNA was extracted from the phasic part of the adductor muscle using a 
conventional method [22]. Partial nucleotide sequences of Pifuc-CP-1, Pi-
fuc-CP-2 and Pifuc-CP-3, as determined by 3’ RACE, were reported previously 
[7]. To determine the full-length sequence of each, 5’ RACE was carried out us-
ing the 5’ RACE System for Rapid Amplification of cDNA Ends, version 2.0 (In-
vitrogen, Carlsbad, CA, USA) using total RNA as a template. Primers were de-
signed using the known sequences of Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3. 
For Pifuc-CP-1; we used 5’-TCGTATGTCCGAAATGTGAC-3’ for synthesizing 
cDNA, 5’-ACGGCGCCAAAACTCATCCC-3’ for the first PCR and 5’-ATT 
GACTTGCAAACTTATTA-3’ for the second PCR. For Pifuc-CP-2, we used 
5’-ATGTGGCTCCATTAAAAAGAG-3’ for synthesizing cDNA, 5’-TCTTCCACC 
GGCCTAGATCC-3’ for the first PCR and 5’-GTAGGAGAAGTTTCTTCGGT-3’ 
for the second PCR. For Pifuc-CP-3; we used 5’-ATGTTGGACCATTATAGCTA-3’ 
for synthesizing cDNA, 5’-TTTTCTACTGGTTTCGATCC-3’ for the first PCR 
and 5’-GTAACTGAACTGGACTTGGT-3’ for the second PCR. PCR was carried 
out using SapphireAmp Fast PCR Master Mix (TaKaRa Bio, Shiga, Japan) with 
the forward primers detailed above and the primers included in the kit. PCR 
conditions were as follows: 30 cycles of denaturation at 98˚C for 5 s, annealing at 
55˚C for 5 s and elongation at 72˚C for 10 s. The amplified DNA fragment was 
sequenced after insertion into a pTAC-1 vector. The determined sequences were 
registered in the DDBJ/EMBL/GenBank (accession numbers LC490357, 
LC490358 and LC490359, respectively). The motif structures of Pifuc-CP-1, Pi-
fuc-CP-2 and Pifuc-CP-3 were predicted by Pfam (https://pfam.xfam.org/). 

2.3. Gene Expression Analysis of Pifuc-CP-1, Pifuc-CP-2  
and Pifuc-CP-3 in Tissues 

The gene expression patterns of Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 in the 
catch and phasic muscles, gill, mantle and foot were analyzed by quantitative 
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real-time PCR. The cDNAs were synthesized using total RNA from each tissue 
as templates in RiverTra Ace® qPCR RT Master Mix (Toyobo Co., Ltd., Osaka, 
Japan). Primers and probes were designed by the Universal Probe Library Assay 
Design Center (Roche Diagnostics, Mannheim, Germany) using the distinct 
nucleotide sequences between Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3. For Pi-
fuc-CP-1, the primers used were: 5’-CAAGAAGGTCATGGGGTGAT-3’ (for-
ward) and 5’-GACATTCCGGATTGACTTGC-3’ (reverse), and the TaqMan 
probe #80 5’-TCTCCAGG-3’. For Pifuc-CP-2, the primers used were: 5’-CAT 
TGGAGCGGTGAGACATA-3’ (forward) and 5’-CAAGGACTGCTTGTCGTAA 
TCA-3’ (reverse), and the TaqMan probe #122 5’-TCAGGGCA-3’. For Pi-
fuc-CP-3, the primers used were: 5’-AAGGAAAGAGCTTTATCAACTTGC-3’ 
(forward) and 5’-TCATACCCTTCTGCGATGC-3’ (reverse), and the TaqMan 
probe #164 5’-GCAACCAG-3’. P. fucata β-actin (AF378128) was used as an in-
ternal standard. For β-actin, the primers used were 5’-TCGTTCCTCGGAATG 
GAA-3’ (forward) and 5’-TCGACATCGCATTTGAGAAT-3’ (reverse), and the 
TaqMan probe #151 5’-GCTGGAAT-3’. The PCR reaction was performed using 
Eagle Taq Master Mix with ROX (Roche Diagnostics). 

2.4. Protein Expression Analysis of Calponin in Tissues of P. fucata 

Protein expression patterns of calponin in tissues of P. fucata were analyzed by 
immunoblotting using the anti-Yesso scallop calponin antiserum prepared in 
our previous study [23]. Catch and phasic muscles, gill, mantle and foot were 
homogenized in phosphate-buffered saline and subjected to 10% SDS-PAGE, 
followed by electro-blotting onto a polyvinylidene difluoride membrane. After 
blocking, the membrane was hybridized with an anti-Yesso scallop calponin antise-
rum. Horseradish peroxidase-conjugated goat anti-rabbit IgG was used as the sec-
ondary antibody. Detection was carried out with 0.2 mg/ml 3,3’-diaminobenzidine 
and 0.005% hydrogen peroxide in Tris-buffered saline. 

2.5. cDNA Cloning of P. fucata Calponin Isoforms 

Protein expression analysis revealed the possibility that other isoforms were ex-
pressed in P. fucata tissues. Thus, we carried out reverse transcriptase (RT)-PCR 
to obtain cDNA clones encoding calponin isoforms. cDNA was synthesized 
from total RNA of catch and phasic muscles with the 3’-Full RACE Core Set 
(TaKaRa Bio). Because Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 have identical 
sequences of 633 nt from the 5’-end, which encodes the N-terminal region of the 
calponin homology (CH) domain, we postulated that all calponin isoforms share 
the same exon encoding the N-terminal region of the CH domain. Therefore, first, 
PCR was carried out to amplify DNA fragments from the common sequence of the 
5’ region to the poly-A tail. We designed 5’-ACATTTAGTCTGTCTATTTG-3’ 
(CP-full-1F) and 5’-ATAAGGTTCCACTCAGCAGT-3’ (CP-full-2F) as forward 
primers, based on the sequence of the upstream start codon. PCR was performed 
with CP-full-1F and a 3 Sites Adaptor Primer (reverse) included in the cDNA 
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synthesis kit above, and then nested PCR was performed with CP-full-2F and the 
same reverse primer using the first PCR products as templates. Polymerase 
KOD-Plus-Neo (Toyobo) was used in the first and nested PCR. The products of 
the nested PCR were used to amplify calponin isoform genes. Primers were de-
signed to cover the open reading frames (ORF) of Pifuc-CP-1, Pifuc-CP-2 and 
Pifuc-CP-3. The forward primer used was 5’-ATGGCTGAGCGTATGAAACC-3’. 
As Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 have distinct sequences in the 3’ re-
gion at their C-termini, we designed three reverse primers 5’-TCATCCGCCGC 
GGATATCGG-3’ (from Pifuc-CP-1), 5’-TCATCCGGTGTACATAATCT-3’ 
(from Pifuc-CP-2) and 5’-CTACATATCATTCTCTGCTT-3’ (from Pifuc-CP-3). 
PCR was carried out using SapphireAmp Fast PCR Master Mix with the forward 
primer and each of the reverse primers. PCR conditions were as follows: 30 cycles 
of denaturation at 98˚C for 5 s, annealing at 55˚C for 5 s and elongation at 72˚C for 
10 s. The amplified DNA fragment was sequenced after insertion into a pTAC-1 
vector. The determined sequences were registered in the DDBJ/EMBL/GenBank 
with accession numbers LC490360 (Pifuc-CP-4), LC490361 (Pifuc-CP-5), 
LC490362 (Pifuc-CP-6) and LC490363 (Pifuc-CP-7). The domain architectures 
of Pifuc-CP-4, Pifuc-CP-5, Pifuc-CP-6 and Pifuc-CP-7 were predicted by Pfam 
(https://pfam.xfam.org/). Deduced amino acid sequences of all Pifuc-CP iso-
forms were compared using the ClustalW algorithm. 

2.6. Phylogenetic Analysis of Calponin 

Phylogenetic analysis was carried out using the primary structures of calponin 
from various species following sequence alignment using the ClustalW algo-
rithm [24]. The sequences used were: human, Homo sapiens (S80560); chicken, 
Gallus gallus (M63559); zebrafish, Danio rerio (BC059802); fruit fly, Drosophila 
melanogaster (AF217286); kissing bug, Triatoma infestans (EF638975); Medi-
terranean mussel, Mytilus galloprovincialis (AB052656); abalone, Haliotis diver-
sicolor (EF542809); blood fluke, Schistosoma mansoni (HE601630); Asian ta-
peworm, Taenia asiatica (EF201933); pig roundwarm, Ascaris suum (JI170148); 
and filaria, Onchocerca volvulus (U01099). 

3. Results 
3.1. Molecular Characteristics of Pifuc-CP-1, Pifuc-CP-2  

and Pifuc-CP-3 

We used 5’ RACE to determine 799 bp of new sequence including the 
5’-untranslated region (UTR) of Pifuc-CP-1, 532 bp of new sequence of Pi-
fuc-CP-2 and Pifuc-CP-3. Combined with known sequences, the full nucleotide 
sequences of Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 were determined (Figures 
1-3). The 5’-UTR, ORF and 3’-UTR of the Pifuc-CP-1 gene are 214, 975 and 
1067 bp in length, respectively (Figure 1). The 5’-UTR, ORF and 3’-UTR of the 
Pifuc-CP-2 gene are 214, 909, and 627 bp in length, respectively (Figure 2), 
whereas the same regions in the Pifuc-CP-3 gene are 214, 1197 and 668 bp in  
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Figure 1. Molecular characteristics of calponin-1 of the Japanese pearl oyster, Pinctada fucata (Pi-
fuc-CP-1). (a) Nucleotide and deduced amino acid sequences. Numbers at the right of the sequences 
represent nucleotide and amino acid residues from the 5’-end and N-terminus, respectively. The region 
of the calponin homology (CH) domain is shaded. Bold letters represent the calponin (CN) domain se-
quences. An asterisk represents the termination codon. (b) Pifuc-CP-1 motif structure predicted by 
Pfam. White and black boxes represent CH and CN domains, respectively. Numbers under the black 
boxes represent the amino acid residues that constitute each CN domain. 
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Figure 2. Molecular characteristics of calponin-2 of the Japanese pearl oyster, Pinctada fucata (Pi-
fuc-CP-2). See legend of Figure 1. 

 
length, respectively (Figure 3). Pifuc-CP-1 consists of 324 amino acids (aa) with 
a molecular mass (Mw) of 34.7 kDa and an isoelectric point (pI) of 9.40. Pi-
fuc-CP-2 is 303 aa in length with a Mw of 33.3 kDa and a pI of 9.30. Pifuc-CP-3 
is 398 aa in length with a Mw of 43.8 kDa and a pI of 8.55. Pfam prediction in-
dicates that the three proteins share an identical CH domain but have different 
numbers of CN domain repeats (Figures 1-3). There are five CN domains in 
Pifuc-CP-1, three in Pifuc-CP-2 and six in Pifuc-CP-3. 

3.2. Gene and Protein Expression Analyses of Pifuc-CP-1,  
Pifuc-CP-2 and Pifuc-CP-3 

Gene expression analysis showed that the Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3 
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genes were expressed predominantly in adductor phasic muscle, whereas relatively 
weaker expression was detected in catch muscle (Figure 4). Gene expression of the 
three genes was barely detectable in gill, mantle and foot. Immunoblotting analysis 
of the protein expression profiles in P. fucata tissues detected multiple proteins 

 

 
Figure 3. Molecular characteristics of calponin-3 of the Japanese pearl oyster, Pinctada fucata (Pi-
fuc-CP-3). See legend of Figure 1. 
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Figure 4. Gene expression patterns of calponin isoforms in Pinctada fucata tissues. Quantitative real-time PCR analysis was per-
formed to examine calponin gene expression in P. fucata adductor catch muscle, adductor phasic muscle, gill, mantle and foot. 
The data shown are representative of three independent experiments. The y-axis indicates the relative calponin expression levels 
using β-actin as an internal standard. Left panel, Pifuc-CP-1 including Pifuc-CP-4 and Pifuc-CP-5; middle panel, Pifuc-CP-2 in-
cluding Pifuc-CP-7; right panel, Pifuc-CP-3 including Pifuc-CP-6. 
 

in all tissues (Figure 5). SDS-PAGE patterns of the mantle and foot tissues indi-
cated that they contain muscle cells because their electrophoretic patterns were 
similar to those of the catch and phasic muscles, which consist of muscle pro-
teins such as myosin, paramyosin and actin. Therefore, detection of calponin in 
the mantle and foot tissues was anticipated. Additionally, calponin was detected in 
the gill, of which SDS-PAGE patterns were dissimilar to those of the other tissues, 
indicating that Pifuc-CP might be distributed in non-muscular tissues. Multiple 
bands were detected in all lanes of the immunoblotting analysis, suggesting that 
there are calponin isoforms besides Pifuc-CP-1, Pifuc-CP-2 and Pifuc-CP-3. We 
then carried out cDNA cloning to identify other Pifuc-CP isoforms. 

3.3. Molecular Characteristics of Pifuc-CP-4, Pifuc-CP-5, Pifuc-CP-6 
and Pifuc-CP-7 

cDNA cloning of P. fucata calponin isoforms gave four more isoforms, Pifuc-CP-4,  
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Figure 5. Protein expression patterns of calponin in Pinctada fucata tissues. Immunob-
lotting analysis was performed to examine calponin in P. fucata adductor catch muscle, 
adductor phasic muscle, gill, mantle and foot. (A) SDS-PAGE patterns of each tissue ho-
mogenate, showing aggregated paramyosin (aPM), myosin heavy chain (MyHC) and ac-
tin (AC). M: molecular weight markers. Positions of molecular weight standards are in-
dicated (left). (B) The polyvinylidene difluoride membrane reacted with the anti-Yesso 
scallop calponin antiserum. Black arrow-heads indicate calponin bands. 

 
Pifuc-CP-5, Pifuc-CP-6 and Pifuc-CP-7 (Figures 6-9). Pifuc-CP-4 is 402 aa in 
length with a Mw of 42.8 kDa and a pI of 9.10. Pifuc-CP-5 is 285 aa in length 
with a Mw of 30.7 kDa and a pI of 9.45. Pifuc-CP-6 is 286 aa in length with a 
Mw of 31.1 kDa and a pI of 9.60. Pifuc-CP-7 is 302 aa in length with a Mw of 
33.3 kDa and a pI of 9.10. Predicted structural motifs revealed that all isoforms 
have one CH domain and multiple repeats of the CN domain. Pifuc-CP-4 has six 
CN domains, whereas the other three isoforms have three CN domains. 

Sequence alignment of the P. fucata calponin isoforms was carried out by 
ClustalW (Figure 10). Pifuc-CP-1, -2, -3 and -4 have identical CH domain se-
quences, whereas Pifuc-CP-5, -6 and -7 have identical CH domain sequences. 
The multiple repeats of the CN domains are not well conserved. 

We tried tissue distribution analysis for the Pifuc-CP-4, Pifuc-CP-5, Pi-
fuc-CP-6 and Pifuc-CP-7 genes, but there was no region specific to respective 
genes by nucleotide sequences. As the position of the primers and TaqMan 
probe for Pifuc-CP-1 was shared by Pifuc-CP-4 and Pifuc-CP-5, the gene ex-
pression of Pifuc-CP-1 shown in Figure 4 includes that of Pifuc-CP-4 and Pi-
fuc-CP-5. In the same way, the gene expression of Pifuc-CP-2 includes that of 
Pifuc-CP-7, and the gene expression of Pifuc-CP-3 includes that of Pifuc-CP-6. 

Immunoblotting analysis revealed that calponin isoforms are expressed in  
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Figure 6. Molecular characteristics of calponin-4 of the Japanese pearl oyster, Pinctada fucata (Pi-
fuc-CP-4). See legend of Figure 1. Underlined sequences at the 5’- and 3’-end of the nucleotide sequence 
represent the sequences of the primers used for RT-PCR. 

 
each P. fucata tissue (Figure 5). Based on their calculated Mw from their prima-
ry structures, we identified bands corresponding to the respective isoforms. In 
catch and phasic adductor muscles, Pifuc-CP-4 and Pifuc-CP-2 (or 7) are mainly 
expressed, whereas Pifuc-CP-1 is weakly expressed. In gill, mantle and foot, all 
calponin isoforms appear to have similar expression levels. 

3.4. Phylogenetic Analysis of Calponin 

Phylogenetic tree analysis showed that Pifuc-CP isoforms are grouped into the 
same clade (Figure 11). Calponin from the Mediterranean mussel Mytilus  
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Figure 7. Molecular characteristics of calponin-5 of the Japanese pearl oyster, Pinctada fu-
cata (Pifuc-CP-5). See legends of Figure 1 and Figure 6. 

 

 
Figure 8. Molecular characteristics of calponin-6 of the Japanese pearl oyster, Pinctada fu-
cata (Pifuc-CP-6). See legends of Figure 1 and Figure 6. 
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Figure 9. Molecular characteristics of calponin-6 of the Japanese pearl oyster, Pinctada fu-
cata (Pifuc-CP-7). See legends of Figure 1 and Figure 6. 

 
galloprovincialis, which is found in catch muscle, were separated into the same 
clade, implying that bivalve calponin works in the same fashion in muscle con-
traction [17]. 

4. Discussion 

In this study, we found that seven calponin isoforms (Pifuc-CP-1, Pifuc-CP-2, 
Pifuc-CP-3, Pifuc-CP-4, Pifuc-CP-5, Pifuc-CP-6 and Pifuc-CP-7) are expressed 
in the Japanese pearl oyster, Pinctada fucata. All isoforms are composed of a sin-
gle CH domain and multiple repeats of the CN domain, which is in agreement 
with the domain architecture found in other species. Reported bivalve calponins 
have five calponin domains [21] [23] [25]. The CH domain is found widely 
throughout actin-binding proteins such as cytoskeletal and signal transduction 
proteins [26]. The CH domain is involved in actin binding in some ac-
tin-binding proteins. However, in calponin, the CH domain is not involved in 
actin-binding activity [27]. The CN domain repeats are essential for the ac-
tin-binding function of calponins and the strength of actin-binding correlates 
directly with the number of CN domains [28]. The number of CN domains in 
Pinctada calponin isoforms varies between three and six, and may reflect the 
different roles these isoforms play in muscle and non-muscle tissues. Molluscan  
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Figure 10. Comparison of calponin isoforms from the Japanese pearl oyster, Pinctada fucata. Identical residues to those of Pi-
fuc-CP-1 are indicated by dots. Dashes are inserted to maximize the alignment. Numbers at the right of the sequences represent 
amino acid residues from the N-terminus. The sequences of the CH domains are shaded. 
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Figure 11. Phylogenetic tree showing the relationship among the calponin amino acid sequences from Pinctada fucata and other 
species. The tree was generated using the ClustalW algorithm. The GenBank accession numbers of each sequence used in the 
analysis are listed in the Materials and Methods. 
 

calponin inhibits actomyosin Mg-ATPase activity in vitro and interacts with 
F-actin [17] [18] [29]. Therefore, Pinctada calponin may interact with F-actin in 
the same fashion and its affinity for F-actin may depend on the number of CN 
domains. 

Protein expression analysis revealed that P. fucata calponin isoforms are ex-
pressed in muscle tissues and in non-muscle tissues, gill, mantle and foot 
(Figure 5). These findings are consistent with previous studies on molluscan 
calponin [21] [23]. In these studies, RT-PCR and protein expression analyses 
revealed that Yesso scallop calponin is expressed in catch and phasic muscles, 
gill, mantle and foot. These findings indicate that molluscan calponin is widely 
distributed in various tissues. The different number of bands detected by im-
munoblotting for respective tissues examined suggests that calponin isoforms 
function differently in tissues (Figure 5). In vertebrates, three types of calponin 
isoforms, basic, neutral and acidic, have been identified and have distinct func-
tions [19] [30] [31] [32]. However, only basic calponin is present in mollusks 
[17] [21] [23] [33]. There is no available data describing the presence of neutral 
and acidic calponins in mollusks. Basic calponin isoforms may work distinctly in 
molluscan tissues, and studies on each calponin isoform, e.g., by using recombi-
nant calponins, are required to elucidate their specific functions. 

Catch contraction of molluscan smooth muscle is regulated by twitchin, a 
member of the titin/connectin family, through its phosphorylation and dephos-
phorylation [1]. In vitro studies revealed that twitchin binds simultaneously to 
myosin and actin in a phosphorylation-sensitive manner. The D2 site that is 
phosphorylated by cAMP-dependent protein kinase (PKA) is thought to be in-
volved in tension maintenance of catch contraction. The binding site of the 
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twitchin D2 fragment on actin was found to overlap with the actin region that 
electrostatically interacts with loop 2 of myosin to initiate the movement of 
myosin over actin filaments. In addition, loop 2 of myosin binds to the twitchin 
D2 site. The formation of the complex among myosin, actin and twitchin may 
contribute to maintaining tension in the catch state. Therefore, the tethering of 
thick- and thin-filaments by twitchin is likely to be an essential event in catch 
contraction [2] [3]. Mammalian smooth muscles exhibit latch contraction simi-
lar to catch contraction [11]. The molecular mechanism of the tension main-
tenance of the latch contraction remains unresolved but it has been suggested 
that calponin participates in the tethering of thick- and thin-filaments, like mol-
luscan twitchin [13]. In the resting stage of mammalian smooth muscle, calpo-
nin interacts longitudinally with two actin monomers that involve its low and 
high affinity binding sites. Upon increasing Ca2+ concentration within the sti-
mulated cells, the N-terminus of calponin (most likely residues 1–52), which 
contains a low affinity calmodulin (CaM)-binding domain, is antagonized by the 
Ca2+/CaM complex in concert with ATP. This leads to the dissociation of the 
N-terminal half of calponin from actin filaments. The released calponin frag-
ment bends and interacts with the phosphorylated myosin regulatory light chain, 
whereas the central fragment of calponin (residues 145–163) remains bound to 
F-actin. In this scenario, calponin acts to tether thick- and thin-filaments and 
slows down the detachment rate of activated cross-bridges. This reaction intro-
duces an internal load that triggers maximal contraction [13]. This model re-
minds us that thick- and thin-filaments are tethered by calponin besides twitchin 
in molluscan catch muscle. A question for the twitchin model described above is 
that the amount of twitchin (molar ratio to myosin = 1:15) [34] seems to be too 
small to tether thick- and thin-filaments to maintain the tension in the catch 
state. To answer this question, the calponin model might be used to catch con-
traction together with the twitchin model. Further studies on proteins that inte-
ract with molluscan calponin are required to elucidate the calponin function in 
catch contraction. 
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