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Abstract 
Recently many research works have been conducted and published regarding 
fractional order differential equations. There are several approaches available 
for numerical approximations of the solution of fractional order diffusion eq-
uations. Spectral collocation method based on Lagrange’s basis polynomials to 
approximate numerical solutions of one-dimensional (1D) space fractional 
diffusion equations are introduced in this research paper. The proposed form 
of approximate solution satisfies non-zero Dirichlet’s boundary conditions on 
both boundaries. Collocation scheme produce a system of first order Ordinary 
Differential Equations (ODE) from the fractional diffusion equation. We ap-
plied this method with four different sets of collocation points to compare 
their performance. 
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1. Introduction 

In recent times, a huge number of research articles have been published by re-
searchers around the world regarding development of various methods for frac-
tional differential equations. The sudden growth of attention around fractional 
differential equation is because of its use to describe complex physical pheno-
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mena like super diffusive process in diverse fields has also been explored. Such 
applications are cited in [1]. One-dimensional fractional partial differential equ-
ations can be put into two immediate categories: space fractional and time frac-
tional differential equations. The order of the spatial derivative has a fractional 
value instead of integer value in space fractional partial differential equations. 
Among fractional partial differential equations diffusion and wave equations are 
most popular. 1D space fractional diffusion equation, contrary to classical diffu-
sion equation spatial derivative will have fractional order rather than integral 
order; will be considered here in our research. Fractional derivative which is as-
sociated here is Caputo fractional derivative.  

Several popular approaches have been introduced by researchers for numeri-
cal approximations of both space and time fractional diffusion and wave equa-
tions. Among them spectral collocation method is the most popular and effec-
tive. In spectral collocation method there are wide ranges of polynomials and set 
of collocation points which are available to choose from. Khader [2] used Che-
byshev spectral collocation method to reduce space fractional diffusion equation 
into a system of ODE for time variable and then solved the system by finite dif-
ference method. He chose Chebyshev polynomials for space variable along with 
roots of shifted Chebyshev polynomials as collocation points. Azizi and Logh-
mani [3] also used Chebyshev spectral collocation method but they reduced the 
fractional diffusion equation into a set of algebraic equations using Chebyshev 
polynomials and Gauss-Lobatto nodes in both space and time domain. Xie et al. 
[4] also used Chebyshev polynomials to express the solution both in space and 
time but used Tau method to transform the fractional convection diffusion equ-
ation into a system of linear algebraic equations. Bhrawy [5] used shifted Legen-
dre polynomials with Gauss-Lobatto nodes in space for a 2D space fractional 
diffusion equation and hence reduced it to a system of ODE which is then solved 
by fourth-order implicit Runge-Kutta method. Lin and Xu [6] introduced a me-
thod where they applied Legendre spectral scheme in space and finite difference 
in time to approximate the solution of time fractional diffusion equation. Bahsi 
and Yalcinbas [7] reduced the fractional order diffusion equation into a system 
of linear algebraic equations by expanding trial solution in terms of Fibonacci 
polynomials in both space and time and then using collocation technique with 
evenly spaced collocation points. Pirim and Ayaz [8] introduced Hermite collo-
cation method with evenly spaced nodes for numerical approximations of frac-
tional order system of differential equations. Huang and Zheng [9] presented a 
spectral method to calculate fractional derivative described in Riemann-Liouville 
sense using Jacobi orthogonal polynomials. They also discussed spectral colloca-
tion method based on Lagrange’s basis polynomials and Gauss-Lobatto nodes. 
With these methods they solve space fractional diffusion equation that have Di-
richlet’s boundary conditions; zero in one boundary and non-zero in another. 
Spectral expansion with Lagrange interpolation polynomial is used for both 
space and time by Huang [10] for numerical approximations of time fractional 
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differential equations. He used Jacobi-Gauss nodes in time domain and 
Gauss-Lobatto nodes in space as collocation points. 

In this research paper, we will present a spectral collocation method where 
approximate solution will be expressed in terms of Lagrange’s basis polynomials 
in space and then a system of first order ODE for time variable is generated by 
collocation scheme from space fractional diffusion equation. In our proposed 
technique, approximate solution satisfies non-zero Dirichlet’s boundary condi-
tions on both boundaries. We considered four different sets of collocation points 
to demonstrate their performance into proposed spectral collocation scheme. 
The four sets of collocation points are generated from Gauss-Lobatto nodes, 
roots of Chebyshev polynomials of first kind, roots of Legendre polynomials and 
equally spaced nodes over the space domain.  

Remaining of this research paper is presented as follows: Preliminaries of Ca-
puto fractional derivative and brief introduction of different polynomials are 
given in Section 2. Then detailed Spectral collocation scheme based on La-
grange’s basis polynomials along with error calculation are provided in Section 
3. After that in Section 4, numerical solutions of two examples of space fraction-
al diffusion equation are generated using four different sets of collocation points 
and absolute local error curves are given. Finally, Section 5 deals with the con-
clusion. 

2. Preliminaries 

Caputo Fractional Derivative: Caputo fractional derivative operator of order α 
is denoted by Dα  and defined by: 

( ) ( )

( ) ( )
( ) 1
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1 d , 0
Γ

mx

m

f t
D f x t

m x t
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α α
α − += >

− −
∫              (1) 
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where { }0 0,1, 2,3,=   and { }1,2,3,=  . 
Like classical integer order derivative, Caputo fractional order derivative is 

also a linear operator. Also it is evident from Equation (2) that for α ∈ , Ca-
puto fractional order derivative coincides with the classical integer order deriva-
tive. 

Lagrange Basis Polynomials: For ( )1p +  points 1 2 1, , , ,p px x x x +  La-
grange basis polynomials ( ); 1, 2, , 1nL x n p= +  is defined as follows: 
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with the property ( )n m mnL x δ= , where mnδ  is the kronecker delta function. 
Here ( ),w n r  is the coefficient of rx  in ( )nL x  and ( )pp x′  is the deriva-
tive of ( )pp x . 

Legendre Polynomials: Legendre polynomials ( )nP w  are solutions of the 
Legendre differential equations and are orthogonal over the domain [ ]1,1− . Ex-
plicit formula for ( )nP w  is 

( )
0

1 1
2

kn

n
k

n n wP w
k k=

− −   − =    
   

∑                    (5) 

Chebyshev Polynomials: Chebyshev polynomials ( )nT y  are solutions of the 
Chebyshev differential equations and are orthogonal over the domain [ ]1,1− . 
Explicit formula for ( )nT y  is 

( ) ( )
2

2

0
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2

n

kn
n

k

n
T y y y

k

 
  

−

=

 
= − 

 
∑                     (6) 

Roots of Legendre and Chebyshev polynomials are within the interval ( )1,1− , 
later in Section 4, we shifted these roots to the required interval according to the 
problem. 

3. Spectral Collocation with Lagrange’s Basis Polynomial 

Here we present spectral collocation method which is based on Lagrange’s basis 
polynomials for numerical approximations of the solution of following 1D space 
fractional diffusion equation: 

( ) ( ) ( ) ( ), ,
, , ; , 0

u x t u x t
d x t s x t a x b t T

t x

α

α

∂ ∂
= + < < ≤ ≤

∂ ∂
        (7) 

( ) ( )0,0 ,u x u x a x b= < <                     (8) 

( ) ( ) ( ) ( )1 1, and , pu a t v t u b t v t+= =                 (9) 

Here parameter α  represents the fractional order of spatial derivative where 
1 2α< ≤  and associated fractional derivative described in Caputo sense. Equa-
tion (8) is the initial condition; Equation (9) is the boundary condition, ( ),d x t  
is the diffusion coefficient and ( ),s x t  is known as source function. With 

2α = , Equation (7) is the classical diffusion equation. 
To approximate numerical solution of fractional diffusion equation given in 

Equation (7), we first divide the space domain [ ],a b  into p  parts that results 
into following ( )1p +  points along with boundary points: 

1 2 1p pa x x x x b+= < < < < =  

Later in this section we use these points as collocation points and these points 
can be chosen from anywhere within the domain in no specific pattern. 

Now using Equations (3), (4) and above points we can form Lagrange’s basis 
polynomials ( )nL x  for ( )1,2, , 1n p= + . 

We approximate the solution ( ),u x t  of the fractional diffusion equation as 
( ),pu x t  by finite sum of Lagrange’s basis polynomials ( )nL x : 
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The unknowns ( ) , 2,3, ,nv t n p=   in the trial solution needed to be deter-
mined. It is clear that this trial solution ( ),pu x t  automatically satisfies condi-
tions on both boundaries: ( ) ( )1,u a t v t=  and ( ) ( )1, pu b t v t+= . With the form 
of trial solution given in Equations (10), (11) and from the definition of frac-
tional derivative given in Equation (2) along with its linear property we can 
write the required derivatives of trial solution as 
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Now using above two derivatives of trial solution from Equations (12) & (13) 
into Equation (7) we have 
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Then using trial solution from Equation (10) into Equation (8) we have 
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In the trial solution there are ( )1p −  unknowns ( ); 2,3, ,nv t n p=   and 
among ( )1p +  points ( ); 1, 2,3, , , 1ix i p p= +  trial solution automatically sa-
tisfies the boundary conditions at 1a x=  and 1pb x += . So, in collocation me-
thod to determine the unknowns we will force Equations (14) & (15) to satisfy at 
each ; 2,3, ,ix i p=  . That means from Equation (14) we write 
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where ( )r
iD xα  denotes the value of ( )rD xα  at ix . 

Thus we have the following matrix equation 

( )
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Since A I= , Equation (17) immediately becomes  

( ) ( ) ( ) ( ) ( )t B t t t t′ = + +v v s se                   (18) 

Thus with the help of collocation method we reduce Equation (7) which was a 
fractional diffusion equation into Equation (18), a system of ODE.  
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Now by forcing Equation (15) to satisfy at each ; 2,3, ,ix i p=   we can write 
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Solution of Equation (18) will give us the unknowns ( ); 2,3, ,nv t n p=   in 
trial solution of Equation (7). Approximate solution of system of ordinary diffe-
rential equation in Equation (18) with its initial condition in Equation (19) can 
be obtained by very well-known Euler’s method. Instead of continuous approx-
imation to the solution ( )tv , approximations will be generated at mesh points  

0jt > . With step size 0; t
t

Tt n
n

∆ = > ∈ , we define the mesh points as 

; 0,1, 2,3, 4, ,j tt j t j n= ∆ =   

Then Euler’s method becomes 
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( ) ( ) ( ) ( ) ( ) ( )1 ; 0,1, 2,3, , 1j j j j j tt I hB t t h t h t j n+
 = + + + = − v v s se 

   (20) 

Equation (20) is the difference equation for the Euler’s method. 
Finally substituting approximations of ( )tv  at various mesh points jt  into 

the trial solution at Equation (10) will produce the approximations of ( ),u x t  at 
mesh points jt  as ( ),p ju x t . 

Error Calculation: Here we discuss only error calculation for the above me-
thod. Our main objective is to calculate local errors and global errors. At t T=  
we define the absolute local error function as  

( ) ( ) ( ), ,px u x T u x Tε = −  

Then we define the global error at t T=  as 

( )global_error d
b

a

x xε= ∫  
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In this study, we focus only on the numerical results and the resultant errors. 
Details of error analysis caused by different types of collocation points and Euler 
methods for system of ODE are left for further research. 

4. Numerical Comparisons and Discussions 

Now, we apply spectral collocation method discussed in the previous section 
with 5p =  to solve fractional diffusion equation with four different sets of 
collocation points and will compare the results obtained. The four sets of collo-
cation points are generated from Gauss-Lobatto nodes, roots of Chebyshev po-
lynomials of first kind, roots of Legendre polynomials and equally spaced nodes 
over the space domain. The four sets of points are generated by the following 
way: 

From Gauss-Labatto nodes, to generate the points on the interval [ ],a b  we 
consider: 

( )1 π
cos ; 1,2, , 1

2 2k
kb a b ax k p

p
−− −

= + = +  

Let ky  be the roots of the Chebyshev polynomials of first kind ( )1pT y−  with 

1k ky y +<  for 1,2, , 2k p= − . Since roots of ( )1pT y−  are in the interval 
( )1,1−  we consider the following nodes along with 1x a=  and 1px b+ =  

1 ; 1, 2, , 1
2 2k k

b a b ax y k p+
− −

= + = −  

Similarly, let kw  be the roots of the Legendre polynomial ( )1pP w−  with 

1k kw w +<  for 1,2, , 2k p= − . Like Chebyshev polynomials, roots of ( )1pP w−  
are in the interval ( )1,1−  we consider the following nodes along with 1x a=  
and 1px b+ =  

1 ; 1, 2, , 1
2 2k k

b a b ax w k p+
− −

= + = −  

For equally spaced nodes over the space domain we consider the following 
points  

( )1 ; 1, 2, , 1k
b ax a k k p

p
−

= + − = +  

Now we will consider the performance of these four sets of collocation points 
into proposed spectral collocation scheme with two examples of space fractional 
diffusion equations. Since in both examples 0a =  and 1b = , with 5p =  the 
above four sets of points are calculated as follows: 

{ }
{ }

{ }
{ }

gauss_lobatto 0,0.0954915,0.345492,0.654508,0.904508,1

chebyshev 0,0.0380602,0.308658,0.691342,0.96194,1

legendre 0,0.0694318,0.330009,0.669991,0.930568,1

equally_spaced 0,0.2,0.4,0.6,0.8,1

=

=

=

=

 

The exact solution of both examples can be verified by using Equation (2). 
Example 1: We consider the following fractional diffusion equation used by 
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Bahsi and Yalcinbas [7]: 

( ) ( ) ( ) ( )
1.5

1.5

, ,
, , ; 0 1,0 2

u x t u x t
d x t s x t x t

t x
∂ ∂

= + < < ≤ ≤
∂ ∂

 

( ) ( )2,0 1 sin1, 0 1u x x x= + < <  

( ) ( ) ( ) ( )0, sin 1 and 1, 2sin 1u t t u t t= + = +  

where, 

( ) ( ) 0.5, 1.5d x t x= Γ  

( ) ( ) ( ) ( )2, 1 cos 1 2 sin 1s x t x t x t= + + − +  

The exact solution of Example 1 is ( ) ( ) ( )2, 1 sin 1u x t x t= + + . 
Using proposed spectral collocation scheme, absolute local errors for the four 

different sets of collocation points along with exact solution at 2T =  using 
0.0025t∆ =  are given in Table 1. 

The absolute local error curves for the four sets of points are given in Figure 
1. 

Four sets of collocation points give following global errors for Example 1: 

Gauss-Lobatto

Chebyshev

Legendre

Equally_spaced

global_error 0.0000360065
global_error 0.0000149475

global_error 0.0000312289

global_error 0.0000407057

=

=

=

=

 

Example 2: We consider the following fractional diffusion equation used by 
Huang and Zheng [9]:  

( ) ( ) ( ) ( )
1.2

1.2

, ,
, , ; 0 1, 0 2

u x t u x t
d x t s x t x t

t x
∂ ∂

= + < < ≤ ≤
∂ ∂

 

 
Table 1. Absolute local error at 2T = . 

x Exact Gauss-L Error 
Chebyshev 

Error 
Legendre Error 

Equal spaced 
Error 

0.0 0.141120008 0.0 0.0 2.77556 × 10−17 0.0 

0.1 0.142531208 0.00003903 0.0000214211 0.0000353938 0.0000420305 

0.2 0.146764808 0.000051884 0.0000106627 0.0000428265 0.0000611469 

0.3 0.153820809 0.0000533171 1.94751 × 10−6 0.0000409351 0.0000667161 

0.4 0.163699209 0.000051074 3.37945 × 10−6 0.0000388239 0.0000644814 

0.5 0.176400010 0.0000478301 6.96858 × 10−6 0.0000387219 0.0000575461 

0.6 0.191923211 0.0000431328 0.0000221391 0.0000386408 0.0000473558 

0.7 0.210268812 0.000035343 0.0000324847 0.0000350329 0.0000346821 

0.8 0.231436813 0.0000235766 0.0000305371 0.0000254494 0.0000206047 

0.9 0.255427215 9.64568 × 10−6 0.0000158763 0.0000111977 7.49539 × 10−6 

1.0 0.282240016 7.32747 × 10−15 1.08247 × 10−14 1.80411 × 10−14 2.68674 × 10−14 
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Figure 1. Absolute local error curve at 2T = . 

 

( ) 2,0 , 0 1u x x x= < <  

( ) ( )0, 0 and 1, e tu t u t −= =  

where, 

( ) ( ) 2.21.8
,

2
x

d x t
Γ

=  

( ) ( )2, 1 e ts x t x x −= +  

The exact solution of Example 2 is ( ) 2, e tu x t x −= . 
Using proposed spectral collocation scheme absolute local errors for the four 

different sets of collocation points along with exact solution at 2T =  using 
0.0025t∆ =  are given in Table 2. 

The absolute local error curves for the four sets of points are given in Figure 
2. 

Four sets of collocation points gives following global errors for Example 2: 

Gauss-Lobatto

Chebyshev

Legendre

Equally_spaced

global_error 0.000129786
global_error 0.000139473

global_error 0.000137378

global_error 0.000202811

=

=

=

=

 

From absolute local error curves and global errors of both examples we can 
say that spectral collocation method based on Lagrange’s basis polynomials give 
very satisfactory approximations to the solution of space fractional diffusion eq-
uation. Though we used lower order and very simple Euler’s method to solve 
resultant system of ODE but yet get very satisfactory approximations. The accu-
racy can be improved by using higher order method than Euler’s method to 
solve system of ODE. About performance of different collocation points it is 
evident that there is no way to declare which one is better since there are varia-
tions among absolute local errors over the space domain for different sets of  
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Table 2. Absolute local error at 2T = . 

x Exact Gauss-L Error Chebyshev Error Legendre Error Equal spaced Error 

0.0 0.0 × 10−10 0.0 0.0 0.0 0.0 

0.1 0.001353353 0.0000127763 0.0000207904 0.0000175842 0.0000314175 

0.2 0.005413411 0.0000833717 0.0000806065 0.0000825883 0.0000414865 

0.3 0.012180175 0.00016681 0.000153736 0.000161364 0.000150536 

0.4 0.021653645 0.000231168 0.00021757 0.000226985 0.000219064 

0.5 0.033833821 0.000257286 0.000254469 0.000260502 0.00018407 

0.6 0.048720702 0.000238471 0.000253622 0.000252198 0.0000183791 

0.7 0.066314289 0.000180204 0.000212913 0.000202849 0.000247197 

0.8 0.086614581 0.0000998511 0.000140784 0.000124975 0.000501702 

0.9 0.109621579 0.0000263662 0.0000580973 0.0000440976 0.000531877 

1.0 0.135335283 2.66454 × 10−15 5.9952 × 10−15 5.71765 × 10−15 8.49321 × 10−15 

 

 
Figure 2. Absolute local error curve at 2T = . 

 
points. Even if we consider global error, performance of different sets of colloca-
tion points vary from one problem to another. We observe another intriguing 
feature, that is, in case of Example 1 errors due to Chebyshev nodes and in case 
of Example 2 errors due to equally spaced nodes fluctuates over the domain 
where other nodes does not show such fluctuations.  

5. Conclusion 

There are several spectral collocation methods available for different types of 
partial fractional differential equations. We discussed spectral collocation me-
thod based on Lagrange’s basis polynomials for 1D space fractional diffusion 
equation where our proposed form of trial solution can handle non-zero Dirich-
let’s boundary conditions on both boundaries effectively. Properties of La-
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grange’s basis polynomials reduce the volume of the calculations needed and re-
sult simpler equations. We implemented the method into two examples with 
four different sets of collocation points and found excellent match with exact 
solution in each case. We compared absolute local errors and global errors for 
each set of points. No clear conclusion can be drawn about which set of points 
give better approximations for space fractional diffusion equation in spectral 
collocation method which we discussed here. 
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