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Abstract 

The system of nonlinear equations modeling the process of nonstationary stimulated Raman scat-
tering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon 
frequencies is investigated by using the numerical methods. The general case for amplitudes of 
waves that resulted in doubling of the number of equations is considered. It is shown that the ap-
plication of the methods of finite differences to the computer simulation of transition regimes is 
completely consistent with the analytical results found for the asymptotical solutions in form of 
solitons. The obtained results also indicate that the laser pulses of Gaussian shape appearing at 
the boundary of nonlinear medium tend to become solitons of Lorentzian shape. It was also found 
that the formation of solitons occurs when the vibrations of optical phonons and that of electro-
magnetic wave were either in or out of phase. It is shown that all electromagnetic waves entering 
the medium with different speeds become solitons having the same speed. In the second part of 
the paper we considered the computer simulation of soliton stability with respect to small (weak) 
perturbations of all interacting waves. In the present paper we considered the case of evolution of 
those disturbances in the vicinity of peaks of solitons. The numerical analysis showed that in wide 
range of parameters the solitons were stable. 
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1. Introduction 
A fast progress in producing ultrashort pulses stimulates the constantly growing interest in obtaining the additional 
information on both the optical characteristics of matter (the longitudinal and transverse relaxation times, the 
constants of the transition, etc.) and the possibility of creation of super short pulses propagating in a medium 
without energy losses [1] [2]. One of the effects that results in solitons is SRS under the conditions of the inte-
raction of ultrashort pulses of exciting and Stokes radiation in a medium [3]-[5]. The effect of SRS is modeled by 
the system of abbreviated Maxwell’s equations for the amplitudes of the electromagnetic fields and the equations 
of motion for the averaged polarization [6]. In many cases due to the complexity only the asymptotic behavior of 
those systems can be found [7]. However, to make clear, whether the SRS pulses go over to the soliton regime, it 
is necessary to solve the complete set of nonstationary equations which describes the temporal evolution of all 
interacting waves from the boundary of the medium. It is also important to consider the stability of the SRS so-
litons [8]. Using different numerical methods in computer simulation of space-time evolution of the interacting 
waves is the effective approach in analysis of the equations analytical solutions of which could not be found 
[9]-[11]. In this paper we use the assumption that solitons can exist if, at least, three conditions are satisfied: 1) the 
asymptotical solution in form of solitons is found; 2) the results of transition regime are consistent with the ones 
found in the previous part; 3) the obtained results are stable with respect to small (weak) perturbations. In our 
previous paper we established the possibility of existence of the solitons in nonstationary SRS with excitation of 
polar optical phonons [12]. In the present work it has been shown that the results of the computer simulation of the 
system of nonlinear equations (see [12]) are consistent with the asymptotic solutions. The computer simulation 
was provided in Sections 3 and 4. The stability of soliton propagation was studied in Section 5.  

2. Basic Equations 
Let us assume that the pump laser wave with frequency lω  and Stokes wave sω  excite both the polariton radi-
ation p l sω ω ω= −  and the polar optical phonon fω , in the vicinity of which falls pω  ( the vibration fω  is 
supposed to be dipole-active and solitary). The two optical impulses with ,l sω  propagate in noncentrosymmetric 
crystal at the angles ,l sθ  with respect to z-axis (perpendicular to the crystal plane). The vibration fω , due to its 
combinational activity, is excited by the cubic nonlinear polarization and electric field on pω . The electric 
strengths are:  

( ) ( ) ( ), , , , ,ˆ, , exp . .,l s l s l s l s l st e A z t i t c cω = − + E r k r                                     (1) 

( ) ( ) ( )ˆ, , exp . .,p p p pt e A z t i t c cω = − + E r Wr                             (2) 

where: ,l s= −W k k  ,l sk  are the wave vectors in linear theory; , ,l̂ s pe  are the unit vectors ( we assume that 
only waves of certain fixed polarization are effectively involved into interaction); ( ), , ,l s pA z t  are the ampli-
tudes of interacting waves. The phonon vibration is:  

( ) ( ) ( )ˆ, , exp . .,f f f ft e u z t i t c cω = − + Q r Wr                                (3) 

where ˆ fe  is collinear with '̂ pe . We neglect the pumping of energy into the anti-Stokes and higher Stokes 
components, since we consider the case in which the intense fields of the exciting (laser) and first Stokes waves 
are present at the input of the medium. The basic system of nonlinear equations was found in [7] (the first three 
equations are abbreviated Maxwell’s whereas the fourth one is the equation that simulates the behavior of the 
nonlinear medium):  

( )

( ) ( )
2* * 2

2 2* * * * *
0 0

21 ,
f

f fl l l
s p s f l s lz z f

l l

A A q
i A A A u A A A

z tv k g

η ω απ
χ γ

 ∂ ∂
 + = − + + +
 ∂ ∂  

                (4) 

( )

( ) ( )
2* * 2

2 2* * *
0 0

21 ,
f

f fs s s
l p l f l s sz z f

s s

A A q
i A A A u A A A

z tv k g

η ω απ
χ γ

 ∂ ∂
 + = − + + +
 ∂ ∂  

                (5) 

( )

* * 2 2 2 22
* * *

02 2

21 1 ,
2 2

p p p p f f p p
p f l sz z zf z

p p p

A A q s qwi A i u i A A
z tv w q wg w c

ε ω ω π
χ

ε

∞

∞

 ∂ ∂
+ = − − −  ∂ ∂  

                 (6) 



G. Feshchenko, V. Feshchenko 
 

 
338 

( ) ( ) ( )*
* * * *2

,
2 2

f ff
f f f

f f p l s
f f f

u ggu i u i A A A
t s

γ πη α
ω

ω ω
∂

+ = ∆ − −
∂


                           (7) 

where: 0χ  and 0γ  are the corresponding tensor contractions of nonresonance quadratic and cubic nonlinear  

polarizabilities with unit vectors of polarization of interacting waves; ( )( )1/2

f f fs hη ω= ; fs  is the oscillator  

strength of the oscillation fω ; ( )fg  is the ratio of effective charge to effective mass for given vibration; pε
∞

 
is the nonresonance part of dielectric permeability on frequency pω ; , , , ,l s p l s pq cω= ; ( ) ( )f fi j

s l ije eα α= ; ( )f
ijα   

is the tensor of combinational scattering per one elementary cell ; ( )expf fu u i tω= ⋅ − ∆ ; f pω ω ω∆ = − ; fγ  
is constant of phonon attenuation; , ,

z
l s pυ -z-components of velocities of waves on , ,l s pω .  

The asymptotic solution of the system (4)-(7) in form of solitons was found in [12]. Soliton amplitudes 
( ), , ,l s p fB ξ  and phases ( ), . .l s p f ξΦ  were related with ( ), , , ,l s p fA z t  as follows  

( ) ( )( ) ( ) ( )
1/2

, , , , , , , , , , , ,, 2π cos expl s p l s p l s p l s p l s p l s pA z t cn B iω θ ξ ξ = Φ  ,                    (8) 

( ) ( )( ) ( ) ( )
1/2

, 2π cos expf f p p f fu z t cn B iω θ ξ ξ = Φ  ,                        (9) 

where the real amplitudes , , ,l s p fB  and phases , , ,l s p fΦ  are considered to be functions  of only ,t z vξ = −  v is 
the soliton velocity; , ,l s pn  are the indexes of refraction in linear theory. The soliton solution was found to be of 
Lorentzian shape: 

( ) ( ) ( )2 2 4 2 24 1 ,Q ξ α κ α ξ κ= +                                  (10) 

( ) ( )4 2 2cos 1 1 ,ξ α ξ κΦ = − +                                    (11) 

where:  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 ,l l s s p p f fQ B B B Bξ ξ λ ξ λ ξ λ ξ λ≡ = = =   

( ) ( ) ( ) ( ) ,l sξ ξ ξ ξΦ ≡ Φ −Φ −Φ ,pk Wσ ≡  ( ) ( ) ( )p fξ ξ ξΦ = Φ = Φ   

or  

( ) ( ) ( ) π,p fξ ξ ξΦ = Φ = Φ ±  ( )( )2 2 2 2 ,l l p Jλ κ σχ κ η σχ≡ − +  0 ,mχ χ≡   

2 2 2 ,f Jλ η≡  ( )( )2 2 2 2 ,s s p Jλ κ σχ κ η σχ≡ +  ( )2 2 2 2
, , , , , ,;  ,z z

p p l s p l s p l s pλ κ σ χ κ υ υ υ υ= = ⋅ −   

2 ,l sα λ λ≡ ( ) ( )2 2
1 2 3 1 ,s l l s l sκ κ γ κ γ λ κ γ κ γ λ≡ − + −   

( )( )1/23 38 cos cos cos ,z z z
l s p l s p l s pm c n n nπ ω ω ω ϑ θ θ≡  ( ) ( )2 f f

f fJ m gη ω α≡ ,  

( ) ( )2 2cos ,f
p p f f pg cn sη θ ω ω≡  ( )2 2

1 04 cos cos ,l s l s l sc n nγ π γ ω ω θ θ≡   

( )2 2 2 2 2
2 04 cos ,l l lc nγ π γ ω θ≡  ( )2 2 2 2 2

3 04 cos .s s sc nγ π γ ω θ≡  

3. Finite-Difference Equivalent of Basic System of Equations 
In this paper, we apply the method of finite differences to show that space-time evolution of impulses is consis-
tent with asymptotic behaviour in form of solitons. For the time derivative the forward difference was applied 
[11]: 

( ) ( )1 , 1 ,
,

n n
m m u m n u m nu uu

t τ τ

+ + −−∂
≈ ≡

∂
                          (12) 

For the space derivative the backward difference was applied: 

( ) ( )1 , 1,
,

n n
m m u m n u m nu uu

z h h
− − −−∂

≈ ≡
∂

                           (13) 
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The system (4)-(7) can be rewritten as follows 

( ) ( ) ( ) ( ) ( )
, 1, , 1 ,1 1 , ,

AL m n AL m n AL m n AL m n
FL m n

h VL τ
− − + −

+ ⋅ =                (14) 

( ) ( ) ( ) ( ) ( )
, 1, , 1 ,1 2 , ,

PHL m n PHL m n PHL m n PHL m n
FL m n

h VL τ
− − + −

+ ⋅ =             (15) 

( ) ( ) ( ) ( ) ( )
, 1, , 1 ,1 1 , ,

AS m n AS m n AS m n AS m n
FS m n

h VS τ
− − + −

+ ⋅ =                (16) 

( ) ( ) ( ) ( ) ( )
, 1, , 1 ,1 2 , ,

PHS m n PHS m n PHS m n PHS m n
FS m n

h VS τ
− − + −

+ ⋅ =             (17) 

 
( ) ( ) ( ) ( ) ( )

, 1, , 1 ,1 1 , ,
AP m n AP m n AP m n AP m n

FP m n
h VP τ

− − + −
+ ⋅ =               (18) 

( ) ( ) ( ) ( ) ( )
, 1, , 1 ,1 2 , ,

PHP m n PHP m n PHP m n PHP m n
FP m n

h VP τ
− − + −

+ ⋅ =             (19) 

( ) ( ) ( )
, 1 ,

1 , ,
AF m n AF m n

FF m n
τ

+ −
=                           (20) 

( ) ( ) ( )
, 1 ,

2 , ,
PHF m n PHF m n

FF m n
τ

+ −
=                         (21) 

where: 

( ), ,lAL B z t≡   ( ), ,sAS B z t≡   ( ), ,pAP B z t≡   ( ) ,fAF B t≡    

( ), ,lPHL z tϕ≡   ( ), ,sPHS z tϕ≡   ( ), ,fPHF z tϕ≡    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 , 1 , , sin , 2 , , sin , ,FL m n KL AS m n AP m n m n KL AS m n AF m n m nϕ ϕ≡ − −   

( ), ,pPHP z tϕ≡    

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 2
2

2 , 1 , , , cos ,

  2 , , , cos , 3 , 4 , ,

FL m n KL AS m n AP m n AL m n m n

KL AS m n AF m n AL m n m n KL AL m n KL AS m n

ϕ

ϕ

≡ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + ⋅ + ⋅
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 , 1 , , sin , 2 , , sin , ,FS m n KS AL m n AP m n m n KS AL m n AF m n m nϕ ϕ≡ + ⋅ ⋅ ⋅  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 2
2

2 , 1 , , , cos ,

  2 , , , cos , 3 , 4 , ,

FS m n KS AL m n AP m n AS m n m n

KS AL m n AF m n AS m n m n KS AL m n KS AS m n

ϕ

ϕ

≡ ⋅

+ ⋅ ⋅ ⋅ + ⋅ + ⋅
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 11 , 2 , sin , 3 , , sin , ,FP m n KP AF m n m n KP AL m n AS m n m nϕ ϕ≡ − ⋅ ⋅ + ⋅ ⋅ ⋅  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3

1

2 , 1 2 , , cos ,

                     3 , , , cos , ,

FP m n KP KP AF m n AP m n m n

KP AL m n AS m n AP m n m n

ϕ

ϕ

≡ − + ⋅

+ ⋅
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 21 , 2 , sin , 3 , , sin , ,FF m n KF AP m n m n KF AL m n AS m n m nϕ ϕ≡ ⋅ + ⋅  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3

2

2 , 1 2 , , cos ,

3 , , , cos , ,

FF m n KF KF AP m n AF m n m n

KF AL m n AS m n AF m n m n

ϕ

ϕ

≡ − + ⋅

+ ⋅ ⋅ ⋅
 

( ) ( ) ( ) ( )1 , , , , ,m n PHS m n PHP m n PHL m nϕ ≡ + −  

( ) ( ) ( ) ( )2 , , , , ,m n PHS m n PHF m n PHL m nϕ ≡ + −  ( ) ( ) ( )3 , , , ,m n PHF m n PHP m nϕ ≡ −  
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1 1 ,KL kl m≡ ⋅   2 2 ,KL kl m≡ ⋅   3 3 ,KL kl n≡ ⋅   4 3 ,KL kl p≡ ⋅   1 1 ,KS ks m≡ ⋅    

2 2 ,KS ks m≡ ⋅   3 3 ,KS ks p≡ ⋅   4 3 ,KS ks q≡ ⋅   ( )11 ,pKP r≡   ( )22 ,pKP r≡   ( )3 1 ,KP kp mσ≡    

,pk Wσ =  1 1,KF kf≡  2 2,KF kf≡  3 3 ,KF kf m≡ ⋅   01 ,kf ωτ≡ ∆   

01 1 1 ,kl ks kp Aχ∞= = =  ( ) ( )2
02 2 ,f f

f fkl ks z gη ω α= ≡  ( ) ( )0 0 02 2 ,f
fkf g A zτ ω≡  2

03 3 ,kl ks Aγ ∞= ≡  

 ( )( )1 23 3 3
08 cos cos cos ,z z z

l s p l s p l s pm z c n n nπ ω ω ω θ θ θ≡ ( )( )2

02 cos ,z
l l ln z cnπω θ≡

 

 ( )2 2 2
04 cos cos ,z z

l s l s l sp z c n nπ ω ω θ θ≡  ( ) ( ) ( )2 2
0 0 03 cos ,f f z

f p p f p fkf g A cn s zη α τ θ ω ω≡   

,p pq cω≡  ( ) ( ) ( )( )2 2 2 2
0 2 1 ,z

p p p p pr q z w w qε ε∞ ∞≡ −  ( )( )2

02 cos ,z
s s sq z cnπω θ≡   

( ) ( )( )1 2 2 2 2
0 02 ,f z

p f f pr s z g w c Aω ω≡  ( ) ( ) ( ){ }, , , , , , , , ,, . exp , ,l s p f l s p f l s p fB z t B z t i z tϕ≡      , ,z z z
l s pVL VS VPν ν ν≡ ≡ ≡    

The chosen mesh was  

( )

( ) ( )

( )
( )

. . , 1

. ;
1, . ,

m n
n t
m z

m n m n

+
↑

↑
→

−





 

4. Transition Regime of the Stimulated Raman Scattering Solitons 
The pulses on laser and Stokes frequencies were chosen to be of Gaussian shape (their amplitudes were propor-
tional to ( )2exp tα−   (the coefficient α  was 0.159155; this was done in order to minimize the transition re- 
gime and to get the area of each pulse close to π ). The two-dimensional arrays A for the amplitudes of waves 
were A [10] [1000] which resulted in 10,000 points for each wave. The conservation of energy (in our case the 
area under the pulse shape) was monitored by calculating the time integrals for each cross-sectional area in a 
medium. Since we suggested that the normalized areas of incoming waves (area divided by the amplitude) were 
equal to π , all those integrals showed the evolution of pulses of Gaussian shape to those of Lorentzian shape 
with normalized area of π  ( 15 8 8 15

0 010 s, 10 esu, 10 esu, 10 esuAτ χ γ− ∞ − ∞ −≈ ≈ ≈ ≈  [13]). The results are shown 
in Figure 1. 

 

 

Figure 1. The space-time evolution of the normalized intensities ( ) ( )( )2 2
, , , , ,max, , ,l s p l s pul us up B z t B z≡    

of laser, Stokes, and polariton pulses.                                                  



G. Feshchenko, V. Feshchenko 
 

 
341 

5. Stability of the Stimulated Raman Scattering Solitons 
Let the new amplitudes (amplitudes with disturbances) in unitless form be  

( ) ( ) ( ) ( ), , , , , , , ,, exp ,l s p l s p l s p l s pB z t B i tξ ξ ′ = ⋅Φ +Ψ 
                           (22) 

( ) ( ) ( ) ( ), exp ,f f f fB z t B i tξ ξ ′ = ⋅Φ +Ψ 
                            (23) 

where: ( ), , , ,l s p fB z t′   are the unitless amplitudes of waves in presence of disturbance ( ( ), , , , , , 0l s p f l s p fB B A′ = ); 

, , , , , , 0l s p f l s p f AΨ = Ψ  are the small disturbances; 0A -is the peak amplitude of the incoming laser pulse;  

0ξ ξ τ= ; 0t t τ= ; 0z z z= ; 0 0z c τ= ⋅ ; c is the speed of light in vacuum; 0τ  is the characteristic time ( 0τ  =  
1 fs). When we substitute (22) and (23) into the system (4)-(7) we get the system of equations that can be sig-
nificantly simplified if we consider the evolution of disturbances , , ,l s p fΨ  in the vicinity of the maximum value of 
soliton amplitude that is in the case when 0ξ = . In that case the simplified system of equations (the disturbances 

, , ,l s p fΨ  are considered to be small compared to the amplitudes of solitons) becomes that of four linear equations 
of second order: 

( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
2

2

1 Re 1 Re 2 Re 3 Re 4 Re ,l l s p fz
l

t A t A t A t A t
tν
∂

Ψ = Ψ + Ψ + Ψ + Ψ
∂

        


    (24) 

where: 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ }( )
( ){ } { }{ } ( ){ } ( ){ }

2 21 Re 1 0 Re 2 0 e 1 0 Re 1 0 Re 2 0

Re 2 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z z
l l s

z
s

z
p

A LL LL R SL LS LS

SL LS LS

LP PL LF FL

ν ν ν

ν

ν

≡ ⋅ − ⋅ + ⋅ −

+ ⋅ ⋅ −

− ⋅ ⋅ − ⋅

  





 

( ){ } ( ){ }( ) ( ){ } ( ){ }( )
( ){ } ( ){ }( ) ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }

2 Re 1 0 Re 2 0 Re 1 0 Re 2 0

Re 1 0 Re 2 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z
l

z
s

z
p

A LL LL LS LS

LS LS SS SS

LP PS LF FS

ν

ν

ν

≡ ⋅ − ⋅ +

+ ⋅ − ⋅ +

− ⋅ ⋅ − ⋅







 

( ){ } ( ){ } ( ){ }( ) ( ){ } ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }

3 Re 1 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

A LP LL LL SP LS LS

LP PP LF FP

ν ν

ν

≡ ⋅ − + −

+ ⋅ − ⋅

 


 

( ){ } ( ){ } ( ){ }( ) ( ){ } ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }

4 Re 1 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

A LF LL LL SF LS LS

LP PF LF FF

ν ν

ν

≡ ⋅ ⋅ − + ⋅ −

− +

 


 

( ) ( ) ( )21 0 3 0 ,lLL kl n B≡ ⋅ ⋅   ( ) ( ) ( ) ( )( )2 22 0 3 2 0 0 ,l sLL kl nB pB≡ +    ( ) ( ) ( ) ( )1 0 3 0 0 ,l sLS kl p B B≡ ⋅ ⋅ ⋅    

( ) ( ) ( ) ( ) ( ) ( ) ( )2(0) 1 0 2 0 3 0 0 ,p f l sLS kl mB kl mB kl pB B≡ + +       ( ) ( ) ( ) ( )1 0 3 0 0 ,l sSL kl pB B≡     

( ) ( ) ( )1 0 1 0 ,sLP kl m B≡ ⋅ ⋅   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 1 0 2 0 3 0 0 ,p f l sSL ks mB ks mB ks pB B≡ + +        

( ) ( ) ( )1 0 2 0 ,sLF kl mB≡   ( ) ( ) ( )1 0 3 0 ,sPL kp B≡   ( ) ( ) ( )1 0 3 0 ,sFL kf B≡   ( ) ( )21(0) 3 0 ,sSS ks qB≡   
( ) ( ) ( ) ( ) ( )2 22 0 3 0 3 2 0 ,l sSS ks pB ks q B≡ +    ( ) ( ) ( )1 0 3 0 ,lPS kp B≡   ( ) ( ) ( )1 0 3 0 ,lFS kf B≡ 

 
( ) ( ) ( )1 0 1 0 ,lSP ks mB≡   ( ) ( )1 0 1 ,PP kp≡  ( ) ( )1 0 2 ,FP kf≡   

( ) ( ) ( )1 0 2 0 ,lSF ks mB≡   ( ) ( )1 0 2 ,PF kp≡  ( )1 1 ,FF kf≡  

( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
2

2

1 Re 1 Re 2 Re 3 Re 4 Re ,s l s p fz
s

t B t B t B t B t
tν
∂

Ψ = Ψ + Ψ + Ψ + Ψ
∂

        


     (25) 

where: 
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( ){ } ( )( )( ) ( ){ } ( )( )( ) { }( )( )
( ){ } ( ){ } ( ){ }( ) ( ){ } ( ){ } ( ){ } ( ){ }

1 Re 1 0 Re 2 0 Re 1 0 Re 2 0 Re 1 0

Re 2 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

B SL SL LL LL SS

SS SL SL SP PL SF FL

ν ν

ν

≡ − ⋅ + +

− ⋅ + + +

 


 

( ){ } ( ){ }( ) ( ){ } ( ){ }( ) ( ){ } { }{ }( )2 22 Re 1 0 Re 2 0 Re 1 0 Re 2 0 Re 1 0 Re 2 0 ,z z
l sB SL SL LS LS SS SSν ν≡ − + + −   

( ){ } ( ){ } ( ){ }( ) ( ){ } { }( ) ( ){ }( )
( ){ } ( ){ } { }{ } ( ){ }

3 Re 1 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

B LP SL SL SP SS SS

SP PP SF FP

ν ν

ν

≡ − + −

− +

 


 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }

4 Re 1 0 Re 1 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z z
l l s

z
p

B LF SL LF SL SF SS SS
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where: 

( ){ } ( ){ } ( ){ }( ) ( ){ } ( ){ }
( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }

1 Re 1 0 Re 1 0 Re 2 0 Re 1 0 Re 1 0

Re 1 0 Re 2 0 Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z z
s p

C PL LL LL PS SL

PS SL PP PL PF FL

ν ν

ν ν

≡ − + +

+ ⋅ + −

 

 
 

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }

2 Re 1 0 Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 2 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l l

z
s

z
p

C PL LS PL LS

PS SS SS

PP PS PF FS

ν ν

ν

ν

≡ − −

+ +

+ −

 





 

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ } ( ){ }

3 Re 1 0 Re 1 0 Re 1 0 Re 1 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

C PL LP v PS SP

PP PP PF FP

ν

ν

≡ − +

− −

 


 

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ } ( ){ }

4 Re 1 0 Re 1 0 Re 1 0 Re 1 0

Re 1 0 Re 1 0 Re 1 0 Re 1 0 ,

z z
l s

z
p

C v PL LF v PS SF

v PP PF PF FF

≡ − ⋅ ⋅ + ⋅ ⋅

+ +

 


 

( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
2

2 Re 1 Re 2 Re 3 Re 4 Re ,f l s p ft D t D t D t D t
t
∂

Ψ = Ψ + Ψ + Ψ + Ψ
∂

        


      (27) 
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The system of equations (24)-(27) was solved numerically. The results are presented in Figure 2. 
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Figure 2. The time evolution of normalized disturbances ( ( ),lvl tψ≡   red solid line; 

( ),svs tψ≡   green dashed line, ( ),pvp tψ≡   blue dotted line) at 1 2 18,A A= = −  

3 4 4,A A= = −  1 2 14,B B= = −  3 4 4,B B= = −  1 0,C =  2 0,C =  3 2,C = −  4 2,C =  
1 2 0,D D= =  3 2,D =  4 2.D = −                                                      

6. Conclusion 
The system of eight nonlinear equations describing the SRS with excitation of polar optical phonons was nu-
merically solved. The results of the computer simulation are completely consistent with the asymptotical solu-
tions in form of solitons. It is numerically shown that with SRS on dipole-active phonons the process of propa-
gation of pulses of Gaussian shape on laser and Stokes frequencies results in formation of solitons of Lorentzian 
shape at all frequencies of interacting waves. Those solitons are stable in wide range of parameters that charac-
terize both the electromagnetic waves and medium. 
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