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Abstract 
The reduced basis methods (RBM) have been demonstrated as a promising numerical technique 
for statics problems and are extended to structural dynamic problems in this paper. Direct step- 
by-step integration and mode superposition are the most widely used methods in the field of the 
finite element analysis of structural dynamic response and solid mechanics. Herein these two me-
thods are both transformed into reduced forms according to the proposed reduced basis methods. 
To generate a reduced surrogate model with small size, a greedy algorithm is suggested to con-
struct sample set and reduced basis space adaptively in a prescribed training parameter space. 
For mode superposition method, the reduced basis space comprises the truncated eigenvectors 
from generalized eigenvalue problem associated with selected sample parameters. The reduced 
generalized eigenvalue problem is obtained by the projection of original generalized eigenvalue 
problem onto the reduced basis space. In the situation of direct integration, the solutions of the 
original increment formulation corresponding to the sample set are extracted to construct the 
reduced basis space. The reduced increment formulation is formed by the same method as mode 
superposition method. Numerical example is given in Section 5 to validate the efficiency of the 
presented reduced basis methods for structural dynamic problems. 
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1. Introduction 
Nowadays structural dynamic problems are usually solved by the finite element technique. Solution of dis-
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placement responses of all the nodes requires great effort. The scale and complexity of dynamics problems of 
practical engineering structure are ever increasing such that it requests more memory and computing time than 
before. Despite of the continuing advances in computer speeds and hardware capabilities, the dimension for nu-
merical simulation is too large to provide real-time response in the design, optimization, control and characteri-
zation of engineering components or systems. Thus there are many motivations to develop methods that can not 
only reduce significantly the problem size and computational cost but also retain the accuracy of the solution 
and the physics of the structures. 

Model order reduction techniques [1]-[11] have been proposed to reduce the size of a large-sized model be-
fore a detailed analysis performed. They are widely used in global-local analysis, reanalysis and structural dy-
namic optimization, eigenvalue problem, structural vibration and buckling, sensitivity studies and control para-
meter design, model update, and damage detection. A detailed review on model reduction techniques can be 
found in Noor [12]. These reduction methods usually include two steps. The first step is the classic finite ele-
ment discretization; the second is the computation of some basis vectors in order to perform a Rayleigh-Ritz 
analysis. Clearly, the success of the method depends chiefly on the proper selection of the basis vectors. 

However, order reduction has long been focused on control problems [4] [13] [14]; most of the reduction me-
thods in that field are designed for small or moderate-size systems and cannot be directly applied in the large- 
scale case. Nevertheless, the reduced model cannot retain all features of the full model due to the truncated er-
rors. Even for features within an interested frequency range, they may not be exactly kept in the reduced model 
resulting from most of the model reduction techniques. In recent years, the requirement of reduction techniques 
for large-scale systems has triggered a revival of research activities in model order reduction [13] [15] [16]. 
Many powerful reduction techniques have been devised, in particular for linear time-invariant systems. Despite 
this progress, there are still many open problems.  

Different from the traditional reduction methods, the reduced basis method (RBM) [17]-[20] is a very prom-
ising method which requires a projection onto the parameter-induced reduced basis space, as makes it very suit-
able for the analysis of large-scale system. The RBM has first been introduced for single-parameter problems in 
nonlinear structural analysis in the late 1970s and subsequently developed for multi-parameter problems. How-
ever, RBM rarely has been extended to perform model reduction in the structural dynamic problems yet. 

In this paper we adopt the reduced basis method to perform the dynamic analysis of structures based on mode 
superposition method and direct integration method, respectively. A greedy algorithm is suggested to perform 
the adaptively selection of reduced basis vectors. Numerical example of a simplified one-dimensional seismic 
model is presented to demonstrate the feasible application of reduced basis method in structural dynamic prob-
lems. The error of the reduced system is evaluated numerically.  

2. Theoretical Background 
In structural dynamic analysis, the equations of motion are generally written as a set of linear second-order dif-
ferential equations. The matrix form of these equations may be expressed by:  

( )t+ + =Kd Cd Md F                                    (1) 

where d , d  and d  are the acceleration, velocity, and displacement response vectors of the nodes, respec-
tively, in the total Cartesian coordinate system. The upper dot means derivative with respect to time; F  is the  

equivalent force vector acting on the nodes; the total mass matrix ( )

1

n
e

e=
= ∑M M , n  is the number of elements. 

The total damping matrix ( )

1

n
e

e=
= ∑C C , and the total stiffness matrix ( )

1

n
e

e=
= ∑K K . For a finite element:  

( )
( )

T de
e

Ω
= Ω∫K B DB  and ( )

( )
T de

e ρ
Ω

= Ω∫M N N , where N  is the shape function, B  is the strain matrix,  
and D  is the elasticity matrix. In the following analysis, the structure is subjected to initial conditions given by 

0 0
,t t= =

= =d d0 0                                    (2) 

3. The Reduced Basis Method Applied to Dynamic Problems 
In the following analysis, the stiffness and mass matrices are assumed as parameter-decomposition forms 
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( )
1

P
A
i i

i
µ

=

= Θ∑K A                                         (3) 

( )
1

Q
B
i i

i
µ

=

= Θ∑M B                                         (4) 

In Equation (3) and Equation (4), ,P Q  are the numbers of stiffness matrix and mass matrix that can be de-
composed, respectively. They are determined by the problem itself. 

The damping matrix is considered to be proportional. 

1 2β β= +C M K                                         (5) 

3.1. Reduced Basis Method Based on Model Superposition Technique 
3.1.1. Brief Introduction of Mode Superposition Technique 
The mode superposition method can be used to perform a time history analysis to obtain the response of struc-
ture due to a transient loading as a function of time. It requires the solution of Equation (6) for the frequencies 
and mode shapes.  

=K MΦ Φλ                                           (6) 
where mode shapes Φ  can be shown to be orthogonal to the mass and stiffness matrices, as permit the equa-
tions of motion to be uncoupled. 

i j ij iδ λ=KΦ Φ                                          (7) 

i j ijδ=MΦ Φ                                           (8) 

The accelerations, velocities, and displacements in Equation (1) are transformed to a different coordinate sys-
tem: 

, ,= = =d X d X d X  Φ Φ Φ                                    (9) 
Substituting Equation (9) into Equation (1) and premultiplying by TΦ  yields 

( )s s s s t+ + =K X C X M X F                                    (10) 

where 
T

s =K KΦ Φ —modal stiffness matrix; 
T

s =C CΦ Φ —modal damping matrix; 
T

s =M MΦ Φ —modal mass matrix; 
T

s =F FΦ —modal load vector. 
Equation (1) can be decoupled by substituting Equations (7) and (8) into Equation (10). 

( ) ( )2 , 1,2, ,i i i i i i ix x x r t i Nω ξ ω+ + = = 
                             (11) 

where ( )ir t  is the loading of the ith order mode, iξ  is the damping ratio for the ith mode and iω  is the fre-
quency of the ith order mode as following. 

,
2

i i
i i

ii i

c k
mm k

ξ ω= =  

Equation (11) can be solved by a procedure for solving single-degree-of-freedom dynamic problems. 
It should be mentioned that the higher mode shapes of the system are unimportant for a practical engineering 

structure or component. Neglecting the higher frequencies and mode shapes of the system generally does not in-
troduce significant errors. Thus modal truncation is often considered to reduce the computational effort when the 
number of DOF is large. 

3.1.2. Reduced Basis Method to Generalized Eigenvalue Problem 
Before the application of reduced basis method, a sample set of parameter domain is selected in a training space, 
which comprised of parameters spanning the parameter domain roughly. 
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{ }1, ,N
NS µ µ=                                        (12) 

The truncated eigenvectors corresponding to the parameters in the sample set are extracted to construct the 
reduced basis space 

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1 2 2 1, , , , , , , , ,N
m m N m NW span µ µ µ µ µ µ =            Φ Φ Φ Φ Φ Φ           (13) 

where m is the number of mode is retained in terms of the required accuracy. 
It should be noted that the basis vectors are the solutions of the system equations at different parameters. They 

are perhaps nearly oriented in the same direction. Consequently, the resulted reduced system is very ill-posed 
especially for large N , i.e. the condition number of the reduced stiffness matrix grows exponentially with N . 
To guarantee the basis vectors’ linearly independence and make the reduced system well-posed, QR decomposi-
tion is used to generate a new basis which is orthogonal and able to retain all approximation properties of the 
original basis 

{ }1 2, , ,N
NW span= η η η                                  (14) 

The corresponding transform matrix is ( )1 2, , , N=Z η η η . 
Then, the eigenvectors corresponding to a new parameter can be expressed as a linear combination of the ba-

sis vectors 

( )
1

ˆ 1, 2, ,
N

j ij i
i

j mα
=

≈ =∑ Φ η                               (15) 

The above equation also can be rewritten in a matrix form 

( )ˆ 1, 2, ,j j j m≈ =Z Φ α                                (16) 

To get the reduced system, the parameter-independent matrices are projected onto the reduced basis in terms 
of a Galerkin form. 

( )T 1,2, ,N
i i i P= =A Z A Z                                 (17) 

( )T 1,2, ,N
j j j Q= =B Z B Z                                (18) 

From this parameter-decomposition expression, the reduced system can be easily obtained and explored in the 
whole parameter domain. 

( )
1

P
N A N

i i
i

µ
=

= Θ∑K A                                    (19) 

( )
1

Q
N B N

j j
j

µ
=

= Θ∑M B                                    (20) 

Obviously, the reduced eigenvalue problem can be solved more efficiently for each new parameter in test pa-
rameter-space. 

ˆN Nλ=K Mα α                                       (21) 

The truncated eigenvectors can be regenerated approximately by 
ˆ = ZΦ α                                          (22) 

The approximation of eigenvalues can be demonstrated in terms of Rayleigh’s quotient. 

( ) ( )T T TT T

T T T TT

ˆ ˆ ˆ
ˆ ˆ ( )

N
i ii ii i i i

i iN
i i i i i ii

λ λ≈ ≈ = = =
Z KZZ KZK K

Z MZ Z MZα MM

α αα α α α
α α α α α

Φ Φ
Φ Φ

                 (23) 

3.1.3. The Adaptively Selection of Basis Vectors for Reduced Generalized Eigenvalue Problem 
The basis vectors selection is critical for the efficiency and accuracy of the reduced basis method. Too many or 
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too few vectors selected should be avoided. The former results in computational inefficiency, while the latter in 
unacceptable error. To obtain an appropriate basis space, a greedy algorithm is suggested to select the vectors 
adaptively. 

At first, the error in approximated eigenvalues is presented. 

( )
ˆ

max 100% 1, ,
i i

i

E i m
λ λ

λ

−
= × =                             (24) 

The maximum error in the training space is definite as  

( )max Training
maxe E

µ⊂
=                                     (25) 

The performing procedure of greedy algorithm is summarized as follows. 
Step 1. One parameter in the training space is selected as the start point; the associated truncated eigenvectors 

are extracted as the vectors of the reduced basis space. 
Step 2. QR decomposition is applied to perform orthogonalization of basis vectors. 
Step 3. The reduced generalized eigenvalue problem is solved in the training space to yield the approximated 

modes îλ , ˆ
iΦ . 

Step 4. The maximum error maxe  is determined. 
Step 5. The truncated eigenvectors corresponding to the maximum error will be selected as the next basis 

vectors and added to the reduced basis space. Then steps 2 to 4 are repeated. The greedy algorithm will termi-
nate when the maximum error is less than a prescribed tolerance ε . 

3.2. Reduced Basis Method Based on Direct Integration Technique 
3.2.1. Brief Introduction of Direct Integration Technique 
Direct integration provides a step-by-step numerical procedure to solve the equations of motion in Equation (1) 
directly without prior transformation of the equations to a different form. It can compute an approximate solu-
tion at discrete time intervals 0, , 2 ,3 , , , , ,t t t t t t T∆ ∆ ∆ + ∆  , where T is duration of the input motion or load-
ing and t∆  is the time step. The widely used explicit methods are only conditionally stable such that some re-
strictions over the size of the selected time step. On the other hand implicit methods may be unconditionally sta-
ble, but the computational work and storage requirement per time step can be much greater than explicit me-
thods because a solution of a coupled algebraic system is always involved. Generally, explicit methods are most 
preferred for wave propagation problems, while implicit methods are widely employed and advocated for struc-
tural dynamic problems. 

Newmark method is considered as the example. It is a widely employed linear one-step implicit method with 
two basic assumptions 

( ) ( ) ( ) ( ) ( )1 11m m m mt t t t tδ δ+ + = + − + ∆ d d d d                            (26) 

( ) ( ) ( ) ( ) ( ) ( )2
1 1

1
2m m m m mt t t t t t tα α+ +

  = + ∆ + − + ∆    
d d d d d                     (27) 

and is unconditionally stable under the following parameter limitation. 

( )20.5, 0.25 0.5δ α δ≥ ≥ +  

Given approximated values ( )mtd , ( )mtd , ( )mtd , for the displacement, velocity, and acceleration at time 
mt , the algorithmic values at time 1mt +  are the solution of the linear algebraic equations. 

( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 12 2

1 1 1 1 1
2

1 1
2

m m m m m

m m m

t t t t t
t tt t

t t t t
t

δ
α α αα α

δ δ δ
α α α

+ +

    + + = + + + −    ∆ ∆  ∆ ∆      
    + + − + − ∆    ∆     

 

 

K M C d F M d d d

C d d d

     (28) 



Y. H. Huang, Y. Huang 
 

 
322 

From the initial condition given by Equation (2), the initial acceleration given by  

( )0 00 0

1
t tt t

−= − −d M F C d K d                                (29) 

3.2.2. Reduced Basis Method Based on Direct Integration Technique 
Just as the same in mode superposition, a sample set will be introduced from a training space comprised of a 
span of parameters and all time steps. The reduced basis space is defined as the span of N  finite element dis-
placement response and doesn’t change with time for a new arbitrary parameter. 

( ) ( ){ }1 1, , , ,N
N NW span t tµ µ= d d                              (30) 

For the same reason mentioned in foregoing section, QR decomposition is applied to generate an orthogonal 
reduced basis space. 

{ }1, ,N
NW span= ζ ζ                                   (31) 

The transform matrix for projection can be written as: 

( )1, , N=D ζ ζ                                       (32) 

The displacement response corresponding to new parameter and new time step can be approximated as the li-
near combination of the vectors in the reduced basis space. 

( ) ( ) ( )
1

1, ,
N

N
m i m i t

i
t t m Nρ

=

= =∑d ζ                              (33) 

It also can be expressed as a matrix form. 

( ) ( ) ( )1, ,N
m m tt t m N= =d D ρ                                (34) 

The approximated velocity and acceleration can be obtained by first order and second order derivatives of the 
approximated displacement response with respect to time, respectively. 

( ) ( ) ( )1, ,N
m m tt t m N= =d D


ρ                                (35) 

( ) ( ) ( )1, ,N
m m tt t m N= =d D


ρ                                (36) 

The reduced Newmark formulation can be obtained by Galerkin projection of original space onto the reduced 
basis space. 

( )

( )
( )

( ) ( ) ( )

( ) ( )

12

1 2

1 ( )

1 1 1 1
2

( ) 1 1
2

N N N
m

N N
m m m m

N
m m m

t
tt

t t t t
tt

t t t t
t

δ
αα

α αα

δ δ δ
α α α

+

+

 
+ + 

∆∆  
  = + + + −  ∆  ∆  

    + + − + − ∆    ∆     

K M C

F M

C

 

 

ρ

ρ ρ ρ

ρ ρ ρ

                   (37) 

The reduced stiffness, mass and damping matrices are respectively given by 

( )
1

P
N A N

i i
i

µ
=

= Θ∑K A                                       (38) 

( )
1

Q
N B N

j j
j

µ
=

= Θ∑M B                                       (39) 

( ) ( )1 2
1 1

QP
N A N B N

i i j j
i j

β µ β µ
= =

= Θ + Θ∑ ∑C A B                              (40) 



Y. H. Huang, Y. Huang 
 

 
323 

where the reduced parameter-independent matrices are  

( )T 1,2, ,N
i i i P= =A D A D                                   (41) 

( )T 1,2, ,N
j j j Q= =B D B D                                   (42) 

The reduced load vector is 

( ) ( ) ( )T 1, ,N m m
tt t m N= =F D F                                 (43) 

The initial condition corresponding to the reduced system is  

( ) ( )0 00, 0N Nt t= =d d                                     (44) 

3.2.3. The Adaptively Selection of Basis Vectors for Reduced Newmark Formulation 
Similarly, the greedy algorithm is adopted to select the vectors adaptively and subsequently obtain an appropri-
ate reduced basis space. 

At first, the projection error is defined in the training space as  

( ) ( ) ( )( ), , ,i j i j i jt t tµ µ µΠ = −Πe d d                                (45) 

where ( )( ) ( ), ,i j i jt tµ µΠ =d Dβ is the projection displacement, ( ) ( )T, ,i j i jt tµ µ= D dβ . 
The maximum norm of the projection error is defined as 

( )max max ,i jtµΠ Π=e e                                    (46) 

The perform procedure of greedy algorithm is summarized as follows. 
Step 1. To span the training space, the displacement of the last time step is selected as the first basis vector, 

corresponding to one source in the training space. 
Step 2. QR decomposition is applied to perform orthogonalization of basis vectors. 
Step 3. The reduced Newmark’s formula is solved in the training space to yield the reduced basis displace-

ments Nd . 
Step 4. The maximum norm of the projection error Πe  is determined. 
Step 5. The displacement corresponding to the maximum norm of the projection error will be selected as the 

next basis vector and steps 2 to 4 are repeated. The greedy algorithm will terminate when the maximum norm of 
projection error is less than a prescribed tolerance ε . 

4. Numerical Example 
4.1. Numerical Model 
A simplified one-dimensional seismic model [21] is presented to numerically validate the application of reduced 
basis method to structural dynamic problem. The pressure variable P  during an earthquake is governed by 
dynamic equilibrium equation: 

( ) ( ) ( ) ( ), ; , ; ; ,x t x t g t xµ µ µ µ+ =KP MP h                            (47) 

The earthquake source S  and occurring time T  are considered as system parameters, and denoted by 
{ },S Tµ = , which vary within the domain [ ] [ ] 20.25,0.75 0.25,0.75= × ⊂  . ( ),x µh  and ( );g t µ , which  

denote the spatial distribution and the temporal characteristics of earthquake source respectively, are showed in 
Figure 1 and Figure 2, respectively. The spatial domain is divided into linear elements and normalized to unit 
length, ( ) [ ]0,1SΩ = . The pressure P  changes with the occurring time T  and doesn’t change in spatial dis-
tribution such that it is fixed as 0.5. The pressure is zero in the earth’s crust and the pressure gradient is zero on 
the earth’s surface. The initial condition is given by 

( ) ( ), 0, , 0, 0x t S x t S= = = =P P                                 (48) 

To obtain parameter-decomposition forms of stiffness and mass matrices, namely, to express the stiffness and  
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Figure 1. The time history of earthquake source.                         

 

 
Figure 2. The spatial distribution of earthquake source.                    

 
mass matrices as the combination form of product of system parameter function and the matrix independent of  
system parameters. The original x-domain is decomposed into the left zone ( )1 SΩ , forcing zone ( )2 SΩ , right 
zone ( )3 SΩ  and output zone ( )4 SΩ . A standard y-domain is introduced as reference and decomposed into 

1 2 3 4Ω = Ω Ω Ω Ω    

A piecewise affine mapping from the standard y-domain to the original x-domain is given in Figure 3: 
2.5x Sy=  from 1Ω  to 1Ω ; 0.4x y S= + −  from 2Ω  to 2Ω ; ( )7 10 3 3 1.2x S y S= − + −  from 3Ω  to 

3Ω ; and the identity mapping from 4Ω  to 4Ω . The resultant parameter-decomposition matrices are  

1 1 2 2 3 3 4 4= Θ +Θ +Θ +ΘM M M M M                             (49) 
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1 2 3 4
1 2 3 4

1 1 1 1
= + + +
Θ Θ Θ Θ

K K K K K                            (50) 

where M  and K  are 200 200×  matrices, iM  and iK  are both independent of the system parameters, the 
parameter-dependent coefficients are:  

( )1 2 3 4
102.5 , 1, 0.7 , 1
3

S SΘ = Θ = Θ = − Θ =  

4.2. The Numerical Results 
As the reduced structural dynamic analysis performed by using mode superposition, the 12th truncation of mode 
is considered. It can be found from Figure 4 that the maximum error of approximated eigenvalue decreases ra-
pidly with the increasing of the basis vectors. For Newmark integration case, the numerical parameters are se-
lected as 200, 0.01tN t= ∆ =  and the same convergence phenomenon as mode superposition can be found in 
Figure 5. However, it is obvious that the former converges sooner than the later.  

The resulted reduced eigenvalue problem is 60 in dimensional, while the reduced Newmark formulation is 85 
in dimensional for a prescribed error tolerance 5

max 10ε −= . Figure 6 and Figure 7 show that both reduced 
mode superposition and reduced Newmark integration approximate the original algorithms very well for engi-
neering analysis. The CPU time for the reduced system and the original system are given in Table 1. The origi-
nal Newmark costs expensively CPU time, while the reduced Newmark gives the lowest cost for test parameter  

 

 
Figure 3. The affine mapping from y-domain to x-domain.                        

 

 
Figure 4. Maximum norm of projection error changing with the increasing of number 
of basis vectors.                                                            
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Figure 5. Maximum norm of projection error changing with the increasing of number of basis vectors.                     

 

 
Figure 6. Maximum norm of projection error changing with the increasing of number of basis vectors.                     

 
Table 1. CPU time comparison of mode superposition and implicit Newmark method.                                  

Method Newmark Reduced Newmark Mode superposition Reduced mode superposition 

CPU Time (s) 6.0156 1.3281 3.6406 2.0625 
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Figure 7. The pressure in the output domain corresponding to S = 0.5.               

 
space. Despite the original mode superposition more effectively executed than the original Newmark method, 
the reduced form of the former costs more CPU time than the reduced form of the later. It can be concluded that 
the dynamic analysis have been performed much more effectively by either reduced mode superposition or re-
duced Newmark method.  

It should be point out that the dimensional of the reduced system is determined by the reduced basis space and 
independent of the original system. For larger dynamic system, the efficiency of the reduced basis methods can 
be further enhanced.  

5. Conclusion 
Two kinds of reduced basis methods for dynamic problems are proposed in this paper. In the numerical example, 
the direct integration for the dynamic analysis is not numerically efficient as compared with the mode superposi-
tion method using eigenvectors due to the linear property of the seismic problem. However, it proves that the 
reduced basis method is available for structural dynamic analysis based on either mode superposition or direct 
integration. Though the undamped case studied, the reduced basis method can be applied to damped structures 
without any more effort. Furthermore, although the reduced Newmark method is only considered here, the re-
duced basis method can be very easily extended to other direct integration techniques. 
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