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Abstract 
The modified simple equation method is employed to find the exact traveling wave solutions in-
volving parameters for nonlinear evolution equations namely, a diffusive predator-prey system, 
the Bogoyavlenskii equation, the generalized Fisher equation and the Burgers-Huxley equation. 
When these parameters are taken special values, the solitary wave solutions are derived from the 
exact traveling wave solutions. It is shown that the modified simple equation method provides an 
effective and a more powerful mathematical tool for solving nonlinear evolution equations in ma-
thematical physics. Comparison between our results and the well-known results will be presented. 

 
Keywords 
A Diffusive Predator-Prey System, The Bogoyavlenskii Equation, The Generalized Fisher Equation, 
The Burgers-Huxley Equation, The Modified Simple Equation Method, Traveling Wave Solutions, 
Solitary Wave Solutions 

 
 

1. Introduction 
The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1]. 
Exact solutions for these equations play an important role in many phenomena in physics such as fluid mecha- 
nics, hydrodynamics, optics, plasma physics and so on. Recently many new approaches for finding these solu- 
tions have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5]-[7], sine-cosine 
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method [8]-[10], homogeneous balance method [11], the Exp ( )( )ϕ ξ−
 

expansion method [12] and [13], Jacobi 

elliptic function method [14]-[16], F-expansion method [17]-[19], exp-function method [20] and [21], trigono- 

metric function series method [22], 
G
G
′ 

 
 

-expansion method [23]-[26], the modified simple equation method 

[27]-[32] and so on. The objective of this article is to apply the modified simple equation method for finding the 
exact traveling wave solution of some nonlinear partial differential equations, namely the diffusive predator- 
prey system [33], the Bogoyavlenskii equation [34], the generalized fisher equation [35] and the Burgers-Huxley 
equation [36], which play an important role in mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we give the description of the modified simple 
equation method. In Section 3, we use this method to find the exact solutions of the nonlinear evolution equa- 
tions pointed out above. In Section 4, conclusions are given.  

2. Description of the Modified Simple Equation Method 
Consider the following nonlinear evolution equation  

( ), , , , , , , 0,t x y tt xx yyF u u u u u u u =                            (1) 

where F is a polynomial in ( ),u x t  and its partial derivatives in which the highest order derivatives and non- 
linear terms are involved. In the following, we give the main steps of this method [27]-[32]: 

Step 1. We use the wave transformation  

( ) ( ), , , ,u x y t u x y ctξ ξ= = + −                            (2) 

where c  is a nonzero constant, to reduce Equation (1) to the following ODE:  

( ), , , , 0,P u u u u′ ′′ ′′′ =                                  (3) 

where P is a polynomial in ( )u ξ  and its total derivatives, while 
d

.
d

'
ξ

=   

Step 2. Suppose that the solution of Equation (3) has the formal solution:  

( ) ( )
( )0

,

k
N

k
k

u A
ψ ξ

ξ
ψ ξ=

′ 
=  

  
∑                                  (4) 

where kA  are arbitrary constants to be determined, such that 0NA ≠ , while the function ( )ψ ξ  is an un- 
known function to be determined later, such that 0ψ ′ ≠ .  

Step 3. Determined the positive integer N in Equation (4) by considering the homogenous balance between 
the highest order derivatives and the nonlinear terms in Equation (3). 

Step 4. Substitute Equation (4) into Equation (3), we calculate all the necessary derivative , ,u u′ ′′
  of the 

function ( )u ξ  and we account the function ( )ψ ξ . As a result of this substitution, we get a polynomial of 
( )0,1, 2,j jψ − =  . In this polynomial, we gather all terms of the same power of ( )0,1,2,j jψ − =  , and we 

equate with zero all coefficient of this polynomial. This operation yields a system of equations which can be 
solved to find kA  and ( )ψ ξ . Consequently, we can get the exact solution of Equation (1). 

3. Application 
Here, we will apply the modified simple equation method described in Section 2 to find the exact traveling wave 
solutions and then the solitary wave solutions for the following nonlinear systems of evolution equations. 

3.1. Example 1: A Diffusive Predator-Prey System 
We consider a system of two coupled nonlinear partial differential equations describing the spatio-temporal 
dynamics of a predator-prey system [33],  

( ) 2 3

3

1 ,

.

t xx

t xx

u u u u u uv

v v uv mv v

β β

κ δ

 = − + + − −


= + − −
                           (5) 
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where κ , δ , m  and β  are positive parameters. The solutions of predator-prey system have been studied in 
various aspects [33] [37] [38]. The dynamics of the diffusive predator-prey system have assumed the following  

relations between the parameters, namely m β=  and 
1

1κ β
δ

+ = + . Under there assumptions, Equation (5) 

can be rewritten in the form:  

2 3

3

1
,

.

t xx

t xx

u u u u u uv

v v uv v v

β κ
δ

κ β δ

  
= − + + − −  

 
 = + − −

                         (6) 

We use the wave transformation ( ) ( ), ,u x t u x ctξ ξ= = −  to reduce Equation (6) to the following nonli- 
near system of ordinary differential equations:  

2 3

3

1
0,

0,

u cu u u u uv

v cv uv v v

β κ
δ

κ β δ

  ′′ ′+ − + + − − =  
 

 ′′ ′+ + − − =

                        (7) 

where c  is a nonzero constant. 
In order to solve Equation (7), let us consider the following transformation  

1
,v u

δ
=                                          (8) 

Substituting the transformation (8) into Equation (7), we get  
2 3 0.u cu u u uβ κ′′ ′+ − + − =                                (9) 

Balancing u′′  with 3u  in Equation (9) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the formal 
solution  

( ) 0 1 ,u A A ψξ
ψ
′ 

= +  
 

                                   (10) 

where 0A  and 1A  are constants to determined such that 1 0A ≠ . It is easy to see that  

2

1 ,u A ψ ψ
ψ ψ

 ′′ ′ ′ = −  
   

                                   (11) 

3

1 2

3
2 .u A ψ ψ ψ ψ

ψ ψψ

 ′′′ ′ ′′ ′ ′′ = − +  
   

                              (12) 

Substituting (10)-(12) into Equation (9) and equating the coefficients of 3ψ − , 2ψ − , 1ψ − , 0ψ  to zero, we 
respectively obtain  

( )3 3 2
1 1: 2 0,A Aψ ψ− ′ − =                                    (13) 

( )2
1 1 0 1: 3 3 0,A c A A Aψ ψ ψ κ ψ− ′ ′′ ′ − − − + =                           (14) 

( )1 2
1 0 0: 2 3 0,A c A Aψ ψ ψ β κ ψ−  ′′′ ′′ ′+ − − + =                           (15) 

0 2
0 0 0: 0.A A Aψ β κ − + − =                                  (16) 

From Equations (13) and (16), we deduce that  

2

1 0 0

4
2, 0 or

2
A A A

κ κ β− ± −
= ± = =

−
 

where 2 4κ β> . 
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Let us discuss the following cases. 
Case 1. If 0 0.A =   
In this case, we deduce from Equations (14) and (15) that  

1

3
,

c A
ψ ψ

κ
−′ ′′=
−

                                 (17) 

and  
0.cψ ψ βψ′′′ ′′ ′+ − =                                (18) 

where 1c Aκ≠ . 
Equations (17) and (18) yield  

0Eψ
ψ
′′′
=

′′
                                   (19) 

where 0
1

3
0E c

c kA
β 

= − + ≠ − 
. 

Integrating (19) and using (17) we deduce that  

( )1
0

1

3
exp ,

c E
c A

ψ ξ
κ

−′ =
−

                             (20) 

and consequently, we get  

( ) ( )1
0 2

0 1

3
exp ,

c E c
E c A

ψ ξ
κ

−
= +

−
                          (21) 

where 1c  and 2c  are arbitrary constants of integration. 
Substituting (20) and (21) into (10) we have the exact solution:  

( ) ( )
( )

0
0

0 2

exp
2 ,

exp

E
u E

E c
ξ

ξ
ξ

 
= ±  

+  
                         (22) 

and from (8) we get  

( ) ( )
( )

0
0

0 2

exp2
.

exp

E
v E

E c
ξ

ξ
δ ξ

 
= ±  

+  
                         (23) 

where 
( )0 1

1 3

E c A
c

κ−
=

−
. 

If 2 1c = , we have the solitary wave solutions.  

( ) 0 01 tanh ,
22

E E
u ξ ξ

  = ± +  
  

                           (24) 

and 

( ) 0 01 tanh ,
22

E E
v ξ ξ

δ
  = ± +  

  
                          (25) 

while, if 2 1c = − , we get  

( ) 0 01 coth ,
22

E E
u ξ ξ

  = ± +  
  

                           (26) 

and 

( ) 0 01 coth .
22

E E
v ξ ξ

δ
  = ± +  

  
                           (27) 
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Case 2. If 0 0.A ≠   
In this case, we deduce from Equations (14) and (15) that  

1 0 1

3

3c A A A
ψ ψ

κ
 −′ ′′=  − + 

                              (28) 

and  

( )2
0 02 3 0.c A Aψ ψ β κ ψ′′′ ′′ ′+ − − + =                             (29) 

Substituting (28) into (29), we get  

1,Eψ
ψ
′′′
=

′′
                                        (30) 

where 
( )2

0 0

1
1 0 1

3 2 3
0

3

A A
E c

c A A A

β κ

κ

 − +
 = − + ≠

− +  
. 

Integrating (30) and using (28), we deduce that  

( )3
1

1 0 1

3
exp ,

3

c
E

c A A A
ψ ξ

κ
−′ =

− +
                              (31) 

and consequently, we get  

( ) ( )3
1 4

1 1 0 1

3
exp ,

3

c
E c

E c A A A
ψ ξ

κ
−

= +
− +

                          (32) 

where 3c  and 4c  are arbitrary constants of integration. 
Substituting (31) and (32) into (10), we have the exact solution:  

( ) ( )
( )

2
1

1
1 4

exp4
2 ,

2 exp

E
u E

E c
ξκ κ β

ξ
ξ

 − ± −
= ±  

− +  
                      (33) 

and from (8) we get  

( ) ( )
( )

2
1

1
1 4

exp4 2
,

exp2

E
v E

E c
ξκ κ β

ξ
δ ξδ

 − ± −
= ±  

+−   
                      (34) 

where 
( )1 1 0 1

3

3

3

E c kA A A
c

− +
=

−
. 

If 4 1c = , we get the solitary solutions.  

( )
2

1 14
1 tanh ,

2 22

E Eu
κ κ β

ξ ξ
− ± −   = ± +  −   

                       (35) 

and  

( )
2

1 14 2
1 tanh ,

2 22

E Ev
κ κ β

ξ ξ
δδ

− ± −   = ± +  −   
                     (36) 

while, if 4 1c = − , we get  

( )
2

1 14
1 coth ,

2 22

E Eu
κ κ β

ξ ξ
− ± −   = ± +  −   

                       (37) 

and  

( )
2

1 14 2
1 coth .

2 22

E Ev
κ κ β

ξ ξ
δδ

− ± −   = ± +  −   
                      (38) 
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3.2. Example 2: The Bogoyavlenskii Equation 
We consider the Bogoyavlenskii equation [34] in the form  

24 4 4 0,

.

t xxy y x

y x

u u u u u v

uu v

 + − − =


=
                              (39) 

Equation (39) was derived by Kudryashov and Pickering [39] as a member of a(2 + 1) Schwarzian breaking 
soliton hierarchy. The above equation also appeared in [40] as one of the equations associated to nonisospectral 
scattering problems. Estevez et al. [41] showed that Equation (39) possesses the Painleve property. Equation (39) 
is the modified version of a breaking soliton equation, 4 8 4 0xt x xy y xx xxxyu u u u u u+ + + = , which describes the (2 
+ 1)-dimensional interaction of a Riemann wave propagation along the y-axis with a long wave the x-axis. To a 
certain extent, a similar interaction is observed in waves on the surface of the sea. It is well-known that the 
solution and its dynamics of the equation can make researchers. 

In this subsection, we determine the exact solutions and the solitary wave solutions of Equation (39). To this 
end, we use the wave transformation (2) to reduce Equation (39) to the following nonlinear system of ordinary 
differential equations.  

2

2

4 4 4 0,

.
2

cu u u u u v
u v

 ′ ′′′ ′ ′− + − − =



=


                             (40) 

Substituting the second equation of (40) into the first one, and integrating the resultant equation  

32 4 0,u u cu′′ − − =                                  (41) 

with zero constant of integration. 
Balancing u′′  with 3u  in Equation (41) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the same 

formal solution (10). 
Substituting (10)-(12) into Equation (41) and equating the coefficients of 3ψ − , 2ψ − , 1ψ − , 0ψ  to zero, we 

obtain  

3 3 2
1 1: 2 1 0,A Aψ ψ−  ′ − =                                  (42) 

[ ]2
1 0 1: 3 2 0,A A Aψ ψ ψ ψ− ′ ′′ ′− + =                              (43) 

( )1 2
1 0: 6 4 0,A A cψ ψ ψ−  ′′′ ′− + =                               (44) 

0 2
0 0: 2 2 0.A A cψ  − + =                                   (45) 

From Equations (42) and (45), we deduce that  

1 0 01, 0 or 2 , where 0.A A A c c= ± = = ± − <  

Case 1. If 0 0.A ≠   
In this case, we deduce from Equations (43) and (44) that  

0 1

1
,

2A A
ψ ψ−′ ′′=                                       (46) 

and  

( )2
06 4 0,A cψ ψ′′′ ′− + =                                    (47) 

Equations (46) and (47) yield  

2 ,Eψ
ψ
′′′
=

′′
                                         (48) 

RETRACTED
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where 
2
0

2
0 1

6 4
0

2

A c
E

A A
− −

= ≠ . 

Integrating (48) and using (46), we deduce that  

( )5
2

0 1

exp ,
2

c
E

A A
ψ ξ

−′ =                                    (49) 

( )5
2 6

2 0 1

exp ,
2

c
E c

E A A
ψ ξ

−
= +                                 (50) 

where 5c  and 6c  are arbitrary constants of integration. 
Substituting (49) and (50) into (10), we have the exact solution:  

( ) ( )
( )
2

0
6 2

exp
2 ,

exp

E
u c E

c E
ξ

ξ
ξ

 
= ± − ±  

+  
                            (51) 

and  

( ) ( )
( )

2

2
2

6 2

exp1
2 .

2 exp

E
v c E

c E
ξ

ξ
ξ

  
= ± − ±  

+    
                         (52) 

where 5 0 0 12c E A A= − . 
If 2 1c = , we have the solitary wave solutions.  

( ) 2 22 1 tanh ,
2 2

E Eu cξ ξ
  = ± − ± +  

  
                         (53) 

and  

( )
2

2 21
2 1 tanh ,

2 2 2

E Ev cξ ξ
   = ± − ± +   

   
                       (54) 

while, if 2 1c = − , we get  

( ) 2 22 1 coth ,
2 2

E Eu cξ ξ
  = ± − ± +  

  
                          (55) 

and  

( )
2

2 21
2 1 coth .

2 2 2

E Ev cξ ξ
   = ± − ± +   

   
                       (56) 

Case 2. If 0 0.A ≠   
In this case, we deduce from Equations (40) and (41) that 0ψ ′ = . This case is rejected. 

3.3. Example 3. The Genaralized Fisher Equation with Nonlinearity 
We consider a nonlinear partial differential equation describing the generalized Fisher equation [35]  

2 3 ,t x xxu cu Du u u uα β γ+ = + − −                                (57) 

where D is the diffusion coefficient, u  is the concentration or density, c  represent the convective velocity, 
and α , β , γ  are the constants in different contexts. Substituting the wave transformation  
( ) ( ), ,u x t u x ktξ ξ= = −  into Equation (57), we get  

( )2 3 0, where ,Du u u u k c u k cα β γ′′ ′+ − − + − = ≠                        (58) 

where k  is arbitrary constant. 
Balancing u′′  with 3u  in Equation (58) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the same formal 

solution (10). 
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Substituting (10)-(12) into Equation (58) and equating the coefficients of 3ψ − , 2ψ − , 1ψ − , 0ψ  to zero, we 
respectively obtain  

3 3 2
1 1: 2 0,A D Aψ ψ γ−  ′ − =                                  (59) 

( )2
1 1 0 1: 3 3 0,A D A A A k cψ ψ ψ β γ ψ− ′ ′′ ′ − − + + − =                      (60) 

( ) ( )1 2
1 0 0: 2 3 0,A D A A k cψ ψ α β γ ψ ψ−  ′′′ ′ ′′+ − − + − =                     (61) 

0 2
0 0 0: 0.A A Aψ α β γ − − =                                 (62) 

From Equations (59) and (62), we deduce that  

2

1 0 0

42
and 0 or .

2

DA A A
β β γα

γ γ
± +

= ± = =
−

 

where D , γ  are nonzero real constants. 
Let us now discuss the following cases. 
Case 1. If 0 0.A =  
In this case, we deduce from Equations (60) and (61) that  

1

3
,

D
A k c

ψ ψ
β

−′ ′′=
+ −

                                     (63) 

and  

[ ] 0,D k cψ αψ ψ′′′ ′ ′′+ + − =                                   (64) 

Equations (63) and (64) yield  

3 ,
E
D

ψ
ψ
′′′ −
=

′′
                                          (65) 

where 3
1

3
0.

DE k c
A k c

α
β
 −

= + − ≠ + − 
 

Integrating (65) and using (63), we deduce that  

7 3

1

3
exp ,

Dc E
A k c D

ψ ξ
β
− − ′ =  + −  

                                (66) 

and consequently, we get  

( )
2

7 3
8

3 1

3
exp ,

D c E
c

E A k c D
ψ ξ

β
− = + + −  

                             (67) 

where 7c  and 8c  are arbitrary constants of integration. 
Substituting (66) and (67) into (10), we have the exact solution:  

( )
3

3
3

8

exp
2

,

exp

E
Du E

ED c
D

ξ
ξ

γ ξ

 −  
  
  =

−  +     

                               (68) 

where 
( )0 1 1

7 23

E A c c
c

D
β + −

=  and 
2

0
Dγ

> . 

If 8 1c = ±  and 3 0
E
D

> , we have the solitary wave solution.  
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( ) 3 31 tanh ,
22

E E
u

DD
ξ ξ

γ
  = −  

  
                              (69) 

( ) 3 31 coth ,
22

E E
u

DD
ξ ξ

γ
  = −  

  
                              (70) 

while, if 8 1c = ±  and 3 0
E
D

< , we get  

( ) 3 31 tanh ,
22

E E
u

DD
ξ ξ

γ
  = +  

  
                              (71) 

( ) 3 31 coth .
22

E E
u

DD
ξ ξ

γ
  = +  

  
                             (72) 

Case 2. If 0 0A ≠ . 
In this case, we deduce from Equations (60) and (61) that  

1 0 1

3
,

3

D
A A A k c

ψ ψ
β γ

−′ ′′=
+ + −

                               (73) 

and  

( ) ( )2
0 02 3 0.D k c A Aψ ψ α β γ ψ′′′ ′′ ′+ − + − − =                          (74) 

Equations (73) and (74) yield  

4 ,
E
D

ψ
ψ
′′′ −
=

′′
                                         (75) 

where 
( )2

0 0

4
1 0 1

3 2 3
0

3

D A A
E k c

A A A k c

α α β γ

β γ

 − − −
 = + − ≠

+ + + −  
. 

Integrating (75) and using (72), we deduce that  

9 4

1 0 1

3
exp ,

3

Dc E
A A A k c D

ψ ξ
β γ

− − ′ =  + + −  
                            (76) 

and consequently, we get  

( )
2

9 4
10

4 1 0 1

3
exp ,

3

D c E c
E A A A k c D

ψ ξ
β γ

− = + + + −  
                       (77) 

where 9c  and 10c  are arbitrary constants of integration. 
Substituting (76) and (77) into (10), we have the exact solution:  

( )
4

2

4
4

10

exp
4 2

,
2

exp

E
Du E

ED c
D

ξ
β β αγ

ξ
γ γ ξ

 −  
  ± +   =

−−   +     

                     (78) 

where 
( )4 1 0 1

9 2

3

3

E A A A k c
c

D
β γ+ + −

=  and 
2

0
Dγ

> . 

If 10 1c = ±  and 4 0
E
D

> , we have the solitary wave solution.  

( )
2

4 44
1 tanh ,

2 22

E Eu
DD

β β αγ
ξ ξ

γ γ
± +   = −  −   

                        (79) 
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( )
2

4 44
1 coth ,

2 22

E Eu
DD

β β αγ
ξ ξ

γ γ
± +   = −  −   

                        (80) 

while, if 10 1c = ±  and 4 0
E
D

< , we have  

( )
2

4 44
1 tanh ,

2 22

E Eu
DD

β β αγ
ξ ξ

γ γ
± +   = +  −   

                        (81) 

( )
2

4 44
1 coth .

2 22

E Eu
DD

β β αγ
ξ ξ

γ γ
± +   = +  −   

                        (82) 

3.4. Example 4. The Burgers-Huxley Equation 
We consider a nonlinear partial differentail equation describing the burgers-Huxley equation [36]  

( )( )1 ,t x xxu uu vu u u uα β γ+ − = − −                                (83) 

where u  is the concentration or density, c  represents the convective velocity, and α , β , γ  are real 
constants in different contexts. In which v  plays the role of diffusion-like coefficient. Note that Equation (83) 
reduces to Hodgkin-Huxley equation for 0α =  and to Burgers equation for 0β = . Subsituting the wave 
transformation ( ) ( ), ,u x t u x ktξ ξ= = −  into Equation (83) we get  

( )( )1 0,u u u ku uu vuβ γ α′ ′ ′′− − + − + =                            (84) 

where k  is arbitrary constant. 
Balancing between u′′  and 3u  in Equation (84) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the 

same formal solution (10). 
Substituting Equations (10)-(12) into Equation (84) and equating the coefficients of 3ψ − , 2ψ − , 1ψ − , 0ψ  

to zero, we respectively obtain.  
3 3 2

1 1 1: 2 0,A A A vψ ψ β α−  ′ − + + =                               (85) 

( ) ( )2
1 0 1 1 1 0 1: 3 3 0,A A A A A k A A vψ ψ β β β γ α ψ α ψ− ′ ′ ′′ − + + − + − + =               (86) 

( ) ( )1 2
1 0 0 0 0: 2 3 2 ,A A A A k A vψ β β β γ βγ ψ α ψ ψ−  ′ ′′ ′′′− + − + − +                  (87) 

0 2
0 0 0: 0.A A Aψ β γ γ − + =                                   (88) 

From Equations (85) and (89), we deduce that  

2

1 0 0

8 4
, 0 or 1 1

2 2

v
A A A

α α β γ
β γ

 − ± +
= = = ± + 

−  
 

where α , β , γ  are nonzero real constants. 
Let us now discuss the following cases. 
Case 1. If 0 0A = . 
In this case, we deduce from Equations (86) and (87) that  

1

1 1

3
,

A v
A A k
α

ψ ψ
β β γ

+′ ′′′=
+ −

                                 (89) 

and 
0,v kψ ψ βγψ′′′ ′′ ′+ − =                                   (90) 

Equations (89) and (90) yield  

5 ,
E
v

ψ
ψ
′′′ −
=

′′
                                       (91) 
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where 
( )( )1

5
1 1

3
0

A v
E k

A A k
α βγ
β β γ

+ − 
= + ≠ + − 

. 

Integrating (91) and using (89), we have  

5
1 11 exp ,

E
F c

v
ψ ξ

− ′ =  
 

                                  (92) 

where, 1
1

1 1

3A vF
A A k
α

β β γ
+

=
+ −

, 

51 11
12

5

exp ,
EF vc c

E v
ψ ξ

−−  = + 
 

                                (93) 

where 11c  and 12c  are arbitrary constants of integration. 
Substituting (92) and (93) into (10), we have the exact solution:  

( )
( ) 52

5

5
12

exp8
,

2
exp

E
E v vu

Ev c
v

ξα α β
ξ

β ξ

 −  
 − − ± +  
  =

−−   +     

                    (94) 

where 2
11

1

Ec
F v
−

= . 

If 12 1c = ±  and 5 0
E
v
> , we have the solitary wave solution  

( )
( )2

5
5

8
1 tanh ,

4 2

E v E
u

v v

α α β
ξ ξ

β

− − ± +   = −  −   
                    (95) 

( )
( )2

5
5

8
1 coth ,

4 2

E v E
u

v v

α α β
ξ ξ

β

− − ± +   = −  −   
                     (96) 

while, if 12 1c = ±  and 5 0
E
v
< , we get  

( )
( )2

5
5

8
1 tanh ,

4 2

E v E
u

v v

α α β
ξ ξ

β

− − ± +   = +  −   
                     (97) 

( )
( )2

5
5

8
1 coth .

4 2

E v E
u

v v

α α β
ξ ξ

β

− − ± +   = +  −   
                     (98) 

Case 2. If 0 0A ≠ . 
In this case, we deduce from Equations (86) and (87) that 

2 ,Fψ ψ′ ′′=                                         (99) 

where 1
2

0 1 1 1 0

3

3

A vF
A A A A k A

α
β β β γ α

+
=
− + + − +

. 

and  

( ) ( )2
0 0 0 02 3 2 0.v k A A A Aψ α ψ β β β γ βγ ψ′′′ ′′ ′+ − + − + − =                  (100) 

Equations (99) and (100) yield  
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6 ,
E
v

ψ
ψ
′′′ −
=

′′
                                        (101) 

where ( ) ( )2
6 0 4 0 0 02 3 2 0E k A F A A Aα β β β γ βγ = − + − + − ≠  . 

Integrating (101) and using (99), we deduce that  

6
2 13 exp ,

E
F c

v
ψ ξ

− ′ =  
 

                                   (102) 

and consequently, we get  

2 13 6
14

6

exp ,
vF c E

c
E v

ψ ξ
− − = + 

 
                               (103) 

where 13c  and 14c  are arbitrary constants of integration. 

Substituting (102) and (103) into (10), we have the exact solution:  

( )
( ) 62

6

6
14

exp44
1 1 ,

2 2
exp

E
E vu

Ev c
v

ξα α βγγξ
γ β ξ

 −  
 − ± +      = ± + −  −−     +     

              (104) 

where 6
13

2

.
E

c
vF
−

=  If 14 1c = ±  and 6 0
E
v
> , we have the solitary wave solution.  

( )
( )2

6
6

44
1 1 1 tanh ,

2 4 2

E E
u

v v

α α βγγξ ξ
γ β

− ± +    = ± + − −    −    
                 (105) 

( )
( )2

6
6

44
1 1 1 coth ,

2 4 2

E E
u

v v

α α βγγξ ξ
γ β

− ± +    = ± + − −    −    
                (106) 

while, if 14 1c = ±  and 6 0
E
v
< , we get  

( )
( )2

6
6

44
1 1 1 tanh ,

2 4 2

E E
u

v v

α α βγγξ ξ
γ β

− ± +    = ± + − +    −    
                (107) 

( )
( )2

6
6

44
1 1 1 coth .

2 4 2

E E
u

v v

α α βγγξ ξ
γ β

− ± +    = ± + − +    −    
                (108) 

4. Conclusion 
The modified simple equation method has been successfully used to find the exact traveling wave solutions of 
some nonlinear evolution equations. As an application, the traveling wave solutions for Bogoyavlenskii equation 
and a diffusive predator-prey system which have been constructed using the modified simple equation method. 
Let us compare between our results obtained in the present article with the well-known results obtained by other 
authors using different methods as follows: Our results of a diffusive predator-prey system and Bogoyavlenskii 
equation are new and different from those obtained in [42]-[44] and also our results of the generalized Fisher 
equation and Burgers-Huxley equation are new and different from those obtained in [45]. It can be concluded 
that this method is reliable and propose a variety of exact solutions NPDEs. The performance of this method is 
effective and can be applied to many other nonlinear evolution equations. Figures 1-3 represent the solitary 
traveling wave solution for a di usive predator-prey system and Bogoyavlenskii equation and the generalized 
Fisher equation and Burgers-Huxley equation. 
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(a)                                              (b) 

  
(c)                                              (d) 

Figure 1. Solution of Equations (24)-(27). (a) Equation (24); (b) Equation (25); (c) Equation (26); (d) Equation (27).  
 

   
(a)                                               (b) 
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(c)                                          (d) 

Figure 2. Solution of Equations (69)-(72). (a) Equation (69); (b) Equation (70); (c) Equation (71); (d) Equation (72).     
 

   
(a)                                           (b) 

  
(c)                                            (d) 

Figure 3. Solution of Equations (95)-(98). (a) Equation (95); (b) Equation (96); (c) Equation (97); 
(d) Equation (98).                                                                    
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Finally, the physical meaning of our new results in this article can be summarized as follows: the solutions 
(24), (25), (35), (36) (53), (54), (68), (69), (79), (81), (95), (97), (105), (107) represent the kink shaped solitary 
wave while the solutions (26), (27), (37), (38), (55), (56), (70), (71), (3.76), (80), (82), (96), (106), (108) 
represent the singular kink solitary wave. 
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