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ABSTRACT 

In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de 
Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The technique is based 
on the application of Laplace transform to some fifth-order Kdv equations. The nonlinear term can easily be handled 
with the help of Adomian polynomials. We illustrate this technique with the help of four examples and results of the 
present technique have closed agreement with approximate solutions obtained with the help of (LDM). 
 
Keywords: Laplace Decomposition Method; Nonlinear Partial Differential Equations; Fifth-Order Kdv Equation;  

The Kawahara Equation 

1. Introduction 

The theory of nonlinear dispersive wave motion has re-
cently undergone much study. We do not attempt to 
characterize the general form of nonlinear dispersive 
wave equations [1]. Rather, we solve a specific equation 
in the following nonlinear Equation (1) by using the 
Laplace decomposition method (LDM) [2]. Nonlinear 
phenomena play a crucial role in applied mathematics 
and physics. Furthermore, when an original nonlinear 
equation is directly calculated, the solution will preserve 
the actual physical characters of solutions [3]. There are 
many standard methods in literature to solve the fifth- 
order Korteweg-de Vries (FKdV) equations. Explicit 
solutions to the nonlinear equations are of fundamental 
importance. Various methods for obtaining explicit solu-
tions to nonlinear evolution equations have been pro-
posed. Among them are Hirota’s dependent variable 
transformation, the inverse scattering transform, and the 
Bcklund transformation. All these methods are described 
in [1,4] and the references therein. A feature common to 
all these methods is that they are using the transforma- 
tions to reduce the equation into more simple equation 
then solve it. Unlike classical techniques, the nonlinear 
equations are solved easily and elegantly without trans- 
forming the equation by using the LDM. The LDM is 
providing an efficient explicit and numerical solutions 
with high accuracy, minimal calculation, avoidance of 
physically unrealistic assumptions.  

We now describe how the Laplace decomposition 

method can be used to construct the solution to the ini-
tial-value problem for the FKdV equation [1,4-6],  

 2, , , , , ,t xxxxx x xx xxxu u F x t u u u u u          (1) 

which occurs, for example, in the theory of magneto- 
acoustic waves in plasmas [6] and in the theory of shal- 
low water waves with surface tension [7]. The FKdV 
equation has been investigated extensively over last dec- 
ade. It has been shown that the travelling-wave solutions 
of this equation do not vanish at infinity [8,9]. 

In this paper, we generated an appropriate Adomian’s 
polynomials for the generalized a FKdV Equation (1). 
The solution of the equations, homogeneous or inhomo-
geneous, will be handle more easily, quickly, and ele-
gantly by implementing the LDM rather than the tradi-
tional methods for the approximate and numerical solu-
tions of which are to be obtained subject to the initial 
condition    ,0u x g x .  

2. Laplace Decomposition Method 

Let us consider the standard form of a FKdV Equation (1) 
in an operator form  

     ,t xR u R u Nu x t                (2) 

with initial condition   ,0u x g x  . 

Where the notation tR
t


, 

5

5xR
x





 symbolize  


the linear differential operators and  represent  ,Nu x t
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the general nonlinear term. Taking the Laplace transform 
of Equation (2) with respect to t, we get  

     

     5

, ,0 ,

1 1
,

t xxxxx

t x
,

su x s u x L u Nu x t

u x s g x L u Nu x t
s s

    

    
     (3) 

Taking inverse Laplace transform of Equation (3) with 
respect to “t”, we get,  

     5
1 1

, t t x
u x t g x L L u Nu x t

s
       

,



,

    (4) 

In Laplace decomposition method we represent solu-
tion in infinite series form.Therefore suppose that  

   
0

, n
n

u x t u x t




               (5) 

is the required solution of Equation (1). A nonlinear term 
contained in Equation (2), we can decompose it by using 
adomian polynomial. Its formula is given below  

0 0

1 d

! d

n
n

n nn
n

A N u
n 






 

     
  



         (6) 

 
0

, n
n

Nu x t A




               (7) 

where nA  are Adomian polynomials of 0 1 2 , 
n 0. Which are calculated by using Equation (6). From 
Equations (4), (5) and (7) we get  

, , , , nu u u u


    5
1

0 0

1
,n t t nx

n n

u x t g x L L u A
s

 


  0
n

n





    
   

    (8) 

comparing both sides of Equation (6), we get a recursive 
relation  

   

  5

0

1
1

, ,

1
,n t t nnx

u x t g x

u x t L L u A n
s






      
, 0

    (9) 

In the following section we have given the some ex- 
amples with absolute errors    , nu x t x t , , where 

 is the particular exact solution and  ,u x t  ,n x t  is 
the partial sums  

   
0

, , ,
n

n k
n

x t u x t n


  0          (10) 

It is clear from Equations (9) and (10), we get  

   , lim ,n
n

u x t x t


             (11) 

Moreover, the decomposition series (1) solutions are 
generally converge very rapidly in real physical problems 
[3,10]. The convergence of the decomposition series 
have investigated by several authors. The theoretical 
treatment of convergence of the decomposition method 

has been considered in [11-13]. They obtained some re-
sults about the speed of convergence of this method pro-
viding us to solve linear and nonlinear functional equa-
tions Recently, Wazwaz [14] proposed that the construc-
tion of the zeroth component of the decomposition series 
can be define in a slightly different way. In [14], he as-
sumed that if the zeroth component is 0 , the func-
tion g is possible to divide into two parts such as 1

u g
g  and 

2g , then one can formulate the recursive algorithm 0 . 
The same idea we can use in LDM . The Equation (9) 
general term in a form of the modified recursive scheme 
as follows:  

u

 0 ,u x t g1                   (12) 

  5
1

1 2 0

1
, t t x

u x t g L L u A
s


0

       
        (13) 

  5
1

1

1
, ,n t t nnx

u x t L L u A n
s




   0    
       (14) 

This type of modification is giving more flexibility to 
the modified Laplace decomposition method (MLDM) in 
order to solve complicate nonlinear differential equations. 
In many case the modified scheme avoids the unneces-
sary computations, especially in calculation of the 
Adomian polynomials. Furthermore, sometimes we do 
not need to evaluate the so-called Adomian polynomials 
or if we need to evaluate these polynomials the computa-
tion will be reduced very considerably by using the 
modified recursive scheme. For more details of this 
MLDM, one can see Ref. [14,15]. Illustration purpose we 
will consider both homogeneous and inhomogeneous 
FKdV equations in the following section. We will show 
that how the MLDM is computationally efficient.  

3. Applications and Result 

Example 1: Consider the following FKdV Equation (1) 
is given with the initial condition  

2 220 0t x xx x xx xxx xxxxxu u u u u u u u u          (15) 

  1
,0u x

x
                  (16) 

Taking the Laplace transform of Equation (15) with 
respect to “t”, we get  

   

 

2 2

2 2

, ,0

20

,

1 1
20

t xxx xxxxx x xx x xx

t xxx xxxxx x xx x xx

su x s u x

L u u u u u u u u

u x s

L u u u u u u u u
sx s



      

       

 (17) 

Taking the inverse Laplace transform of Equation (17) 
with respect to “t”, we get  
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 
1 2 2

,

1 1
20t t xxx xxxxx x xx x xx

u x t

L L u u u u u u u u
x s

          



(18) 

Since initial value is known and decompose the un-
known function  a sum of components defined 
by the decomposition series (5) with 0u  identified as 

. An important part of the method is to express 
the Adomian’s polynomials; thus 

 ,u x t

 ,0u x
2

xx nAu u , x xx nu u B , 
and 2

xxx n  are the appropriate Adomian’s poly-
nomials which are generated by using general formula (6) 
for the above example as in the form of 

u u C

2 2
0 0 0 1 0 1 0 0 1, 2xx xx xxA u u A u u u u u           (19) 

2 2
2 0 2 0 1 0 0 1 1 0 22 2xx xx xx xxA u u u u u u u u u u        (20) 

2
3 0 3 0 1 2 0 1 1

2
0 2 1 0 1 2 0 3

2 2

2 2

xx xx xx

xx xx

A u u u u u u u u

u u u u u u u u

  

   xx

      (21) 

0 0 0 1 0 1 0 1,x xx x xx xx xB u u B u u u u          (22) 

2 2 0 1 1 0 2x xx x xx x xxB u u u u u u            (23) 

3 0 3 1 2 1 2 0 3xx x xx x x xx x xxB u u u u u u u u          (24) 

2 2
0 0 0 1 0 1 0 0 1, 2xxx xxx xxxC u u C u u u u u          (25) 

2 2
2 0 2 0 1 0 0 1 1 0 22 2xxx xxx xxx xxxC u u u u u u u u u u       (26) 

2
3 0 3 0 1 2 0 1 1

2
0 2 1 0 1 2 0 3

2 2

2 2

xxx xxx xxx

xxx xxx xxx

C u u u u u u u u

u u u u u u u u

  

  
      (27) 

and so on for other polynomials can be obtained in a 
similar manner. 

The Equation (18) we can write in the following form 
also  

 
0

1

0 0

,

1 1
20

n
n

t t n n n nxxxxx nx
n n

u x t

L L C A B u u
x s





 


 

       



 



(28) 

Comparing the both sides of Equation (28), we get the 
term-by-term components,  

 0

1
,0u u x

x
                 (29) 

 1
1 0 0 0 0 0 2

1 1
20t t xxxxx xu L L C A B u u

s x
        

  (30) 

 
2

1
2 1 1 1 1 1 3

1
20t t xxxxx x

t
u L L C A B u u

s x
        

   (31) 

 
3

1
3 2 2 2 2 2 4

1
20t t xxxxx x

t
u L L C A B u u

s x
     

 
 (32) 

and so on, in this manner the rest of components of the 

decomposition series were obtained. Substituting (29)- 
(32) into (5) gives the solution  in a series from   ,u x t

and in a closed form by   1
,u x t

x t



. 

Example 2: Consider an equation with initial condi-
tion is given by  

 0, ,0 ex
t x xxx xxxxxu uu uu u u x           (33) 

Taking the Laplace transform of Equation (33) with 
respect to t, we get  

     

     

, ,0

1 1
, ,0

t x xxx xxxxx

t x xxx xxxxx

su x s u x L uu uu u

u x s u x L uu uu u
s s

    

    
 (34) 

Taking inverse Laplace transform of Equation (34) 
with respect to t, we get  

   1 1
, ex

t t x xxx xxxxxu x t L L uu uu u
s

       
   (35) 

The nonlinear terms contained in Equation (33), we 
con decompose it by using Adomian’s polynomials. Let 

0x nn
Pu uu D




   and 

0xxx nn
Ru uu E




    

Thus, the Equation (35) becomes,  

   1 1
, ex

t t xxxxxu x t L L Pu Ru u
s

       
    (36) 

The Adomian’s polynomials n  and n  are calcu-
lated by using the formula (6) for the second example as 
in the form of  

D E

0 0 0 1 1 0 0 1

2 2 0 1 1 0 2

, ,x x

x x x

D u u D u u u u

D u u u u u u

  

  
x         (37) 

0 0 0 1 1 0 0 1

2 2 0 1 1 0 2

, ,xxx xxx xxx

xxx xxx xxx

E u u E u u u u

E u u u u u u

  

  
      (38) 

and so on for other polynomials can be calculated in 
similar manner. By using Equation (9) with Adomian 
polynomials (37) and (38) to determine the other indi-
vidual terms of the decomposition series, we find  

 0 , e ,xu x t                   (39) 

   1
1 0 0 0

1
, ex

t t xxxxxu x t L L D E u t
s

        
    (40) 

   
2

1
2 1 1 1

1
, e

2!
x

t t xxxxx

t
u x t L L D E u

s
        

   (41) 

   
3

1
3 2 2 2

1
, e

3!
x

t t xxxxx

t
u x t L L D E u

s
        

  (42) 

and so on, in this manner the rest components of the de-
composition series were obtained. Substituting the value 
of (39)-(42) into the Equation (5) gives the solution 
 ,u x t  in a series form and in a close form by  
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 , e e ex t xu x t  

 

t . Which can be verified through sub- 
stitution. 

Example 3: We consider the Kawahara equation [5]  

 4
0

0

10
,0

169

t xu uu

u x

 

  

5 1
sech

2 13

xxx xxxxxu u

x x

 

   
 

      (43) 

Taking Laplace transform on both sides of Equation 
(45) with respect to t, we get  

  

    

, ,0

1 1
, ,0

t x xxx xxxxx

t x xxx xxxxx

su x s u x L uu u u

u x s u x L uu u u 
s s

    

     
 (44) 

Taking inverse Laplace transform of Equation (44) 
with respect to t, we get  

   



4
0

1

105 1
, sech

169 2 13

1
t t x xxx xxxxx

u x t x x

L L uu u u
s



   
 

   


    (45) 

Since the nonlinear term contain in Equation (43), we 
can decompose it by using the Adomian polynomial (6). 
Suppose that 

0x nn
. Decompose the unknown 

function  a sum of components defined by the 
decomposition series (5) with u0 identified with 

uu D



 

, tu x
 ,0u x . 

The other components of the decomposition series (5) 
can be compute by using recursive relation (9) with the 
Adomian polynomials (37), we get the following com-
ponents  

   4
0

105 1
,0 sech

169 2 13
u u x x x

    
 

0     (46) 

  1
1 0 0

1
, t t x xxx xxxxxu x t L L uu u u

s
    

0



    (47) 

4 40 07560
sech Tanh

28561 13 2 13 2 13

x x x
t

     
   

x 
     (48) 

  1
2 1 1

1
, t t x xxx xxxxxu x t L L uu u u

s
    

1



    (49) 

2 6 068040
sech 3 2cosh

62748517 2 13 2 13
0x x x

t
    

 

x 



 (50) 

  1
3 2 2

1
, t t x xxx xxxxxu x t L L uu u u

s
    

2



    (51) 

3 7 0816480
sech 13sinh

10604499373 13 2 13 2 13
0x x x

t
   

 

x  


 

(52) 

02sinh
2 13

x x 
 

and so on, in this manner the rest of components of the 
decomposition series were obtain. Substituting (46), (48), 
(52) into (5) gives the solution  in a series form 
and in a close form by  

 ,u x t

  4
0

105 1 36
, sech

169 1692 13

t
u x t x x

   
  

      (54) 

This result can be verify through substitution. 
Example 4: As an example of the application of the 

self-canceling phenomena [14,16,17], let us seek the ex- 
plicit solution of the nonhomogeneous FKdV equation 
with initial condition:  

 

2

cos 2 sin sin 2
2

,0 0

t x xxxxx

t
u uu u x t x x

u x

    


    (55) 

To obtain the decomposition solution subject to initial 
condition given, we first use (52) in an operator form in 
the same manner as form (2) and then we used (9) to 
determine the individual terms of the decomposition se-
ries, we get immediately  

 0 , cosu x t t x                (56) 

 
3 3

2 2
1 , sin sin 2 sin sin 2

6 6

t t
u x t t x x t x x       (57) 

 1 , 0,nu x t n 1               (58) 

It is obvious that the noise terms appear between the 
components of u1, and these are all canceled.As seen 
Equation (57), the closed form of the solution can be find 
very easily by proper selection of g1 and g2. In the case of 
right choice of these functions, the modified technique 
accelerate the convergence of the decomposition series 
solution by computing just u0 and u1 terms of the series. 
The term u0 provides the exact solution as  , cosu x t t x  
and this can be justifies through substitution.This has 
been justified by [14,15].  

4. Experimental Results 

In order to verify numerically whether the proposed 
methodology lead to higher accuracy, we can evaluate 
the numerical solutions using the n-term approximation 
(10). Tables 1-3 show the difference of the analytical 
solution and numerical solution of the absolute errors. It 
is to be note that five terms only were used in evaluating 
the approximate solutions. We achieved a very good ap-
proximation with the actual solution of the equations by 
using five terms only of the decomposition derived above. 
It is evident that the overall errors can be made smaller 
by adding new terms of the decomposition series (5). 

Numerical approximations show a high degree of ac-
curacy and in most cases n , the n-term approximation 
is accurate for quite low values of n. 


               (53) 
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
  

Table 1. The numerical results for  in comparison with the analytical solution Φ ,n x t   1
,u x t

x t



 for the rational so- 

lutions of the Equation (15). 

\i it x  0.5 1.0 1.5 2.0 2.5 

0.01 6.53061E−09 2.13333E−07 1.65447E−06 7.12348E−06 2.22222E−05 

0.02 1.01010E−10 3.26531E−09 2.50515E−08 1.06667E−07 3.28947E−07 

0.03 8.83815E−12 2.84729E−10 2.17687E−09 9.23615E−09 2.83809E−08 

0.04 1.57030E−12 5.05050E−11 13.8547E−10 1.63265E−09 5.00801E−09 

0.05 4.11171E−13 1.32129E−11 1.00742E−10 4.26250E−10 1.30612E−09 

 
Table 2. The numerical results for  in comparison with the analytical solution Φ ,n x t     e, x tu x t   for the rational solu-

tions of the Equation (33). 

\i it x  0.5 1.0 1.5 2.0 2.5 

0.01 1.37179E−11 4.38198E−11 3.32204E−10 1.39758E−09 4.25802E−09 

0.02 2.26175−12E 7.22467E−11 5.47711E−10 2.30422E−09 7.02029E−09 

0.03 3.72857E−12 1.19114E−10 9.03023E−10 3.79902E−09 1.15745E−08 

0.04 6.14708E−12 1.96387E−10 1.48883E−09 6.26353E−09 1.90831E−08 

0.05 1.01323E−11 3.23787E−10 2.45467E−09 1.03268E−08 3.14627E−08 

 
Table 3. The numerical results for  in comparison with the analytical solution  Φ ,n x t 

   


4105 1 36
, sech

169 1692 13

t
u x t x   

 
  

0x  0 2.0x  when , for the travelling-wave solution of the Equation (43). 

\i it x  0.5 1.0 1.5 2.0 2.5 

0.01 1.11022E−16 0.00000E+00 8.88178E−16 2.66454E−15 8.43769E−15 

0.02 3.33067E−16 0.00000E+00 7.77156E−16 2.55351E−15 6.66134E−15 

0.03 2.22045E−16 0.00000E+00 2.22045E−16 7.77156E−16 3.88578E−15 

0.04 0.00000E+00 1.11022E−16 1.11022E−16 2.22045E−16 2.22045E−16 

0.05 0.00000E+00 5.55112E−16 4.44089E−16 1.44329E−15 3.77476E−15 

 
The solutions are very rapidly convergent by utilizing 

the LDM.The numerical results we obtained justify the 
advantage of this methodology, even in the few terms 
approximation is accurate. Furthermore, as the decompo-
sition method does not require discretization of the vari-
ables, i.e. time and space, it is not affected by computa-
tion round off errors and one is not faced with necessity 
of large computer memory and time. 

the course of solving nonlinear evaluation equations can 
be carried out in computer. Four coupled nonlinear 
FKdV equations with initial conditions are discussed as 
Laplace demonstrations method. It may be consulated 
that the Laplace decomposition method is very powerful 
and efficient technique in finding exact solutions for 
wide classes of problems. It is also worth nothing to 
point out that the advantage of the Laplace decomposi-
tion method is the fast convergence of the solutions. A 
fast convergence of the solution may be achieved by ob-
serving the self-canceling noise terms and a proper selec-
tion of g1 and g2, the demonstration of this case is shown 
in Example 4. 

5. Conclusions 

In conclusion, the Laplace decomposition method was 
used for finding the exact solution and approximate solu-
tion of the FKdV (1). The method can be also easy to be 
extended to other nonlinear evaluation equations, with 
the aid of Mathematica (or Matlab, Maple, Reduce, etc.),  

Finally, we point out that, for given equations with ini-
tial values  ,0u x , the corresponding analytical and 
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numerical solutions are obtained according to the recur-
rence relations (9) using Mathematica [18].  
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