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ABSTRACT 

In this paper, based on the Kirchhoff transformation, the coupling of natural boundary element method and finite ele- 
ment method are discussed for solving exterior anisotropic quasilinear problems with elliptic artificial boundary. By the 
principle of the natural boundary reduction, we obtain natural integral equation on elliptic artificial boundaries, the cou- 
pled variational problem and its numerical method. Moreover, the convergence and error estimate of the approximate 
solutions are obtained. Finally, some numerical examples are presented to illuminate the feasibility of the method. 
 
Keywords: Quasilinear Elliptic Equation; Elliptic Artificial Boundary; Natural Integral Equation 

1. Introduction 

Based on the Green’s function and Green’s formula, 
natural boundary element method (NBEM) reduces the 
boundary value problem of partial differential equation 
into a hypersingular integral equation on the boundary, 
and then solves the latter numerically [1,2]. It has ad- 
vantages over the usual boundary reduction methods: 
such as the diminution of the number of space dimen- 
sions by 1, the conservation of energy functional, the pre- 
servation of self-adjointness and coerciveness. But it also 
has evident limitations, it’s difficult to obtain Green’s 
functions for solving problem in general domains. There- 
fore, the coupling of NBEM which is also called artificial 
boundary condition [3,4] or DtN method [5,6] and finite 
element method (FEM) [2] is useful and necessary for 
general cases. 

The standard procedure of the coupling method can be 
described as follows. We introduce an artificial boundary 
to divide the original domain into two subregions, a 
bounded inner region and an unbounded one with a special 
boundary, such as circle, ellipse, and spherical surface, 
on which the boundary element method and finite ele- 
ment method are used respectively. This technique has 
been used to solve many linear problems [1,2,4-6] and it 
has also been successfully generalized to solve nonlinear 
boundary value problems [7-9] or quasilinear problems 
[3,10,11]. The problems were discussed in [3,10,11] take 

circle as artificial boundary, but for the problems with 
elongated domains, an elliptic boundary that leads to a 
smaller computational domain is obviously better than 
the circle one. The purpose of the paper is to study the 
coupling of NBEM and FEM to solve the anisotropic 
quasilinear problems with an elliptic artificial boundary. 

Let   be a elongated, bounded and simple connected 
domain in 2  with sufficiently smooth boundary 

0=  . 2=c  . We consider the numerical solu- 
tion of the exterior anisotropic quasilinear problem 
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(1.1) 

With > > 0   or = = 1  ,  = ,x yx ,  ,a    
and f  are given functions which will be ranked as 
below. Following [3,12], suppose that the given function 
 ,a    satisfies 

 00 < , , C a u C x 1            (1.2) 

, and for  almost  all ,cu  x

0 1,C C
  where two positive 

constants  , and 

   , ,   La u a v C u v  x x ,       (1.3) 
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, , and for almost  all ,cu v  x
> 0LC

  with a constant 
. We also assume that a s  , 2a s  2  are con- 
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tinuous. In the following, we suppose that the function 
 2 cf L 

0 > 0
 has compact support, i.e., there exists a con- 

stant  , such that 

 2
00

supp = .f     x x        (1.4) 

We also assume that  

   0, ,  when a u a u

Now, we introduce an elliptic artificial boundary 

  1 1 0= ,  = > ,0 2π .          

1
  divide c  into two regions, a bounded domain 

i  and an unbounded domain e  with elliptic arti- 
ficial boundary. Then the problem (1.1) can be rewritten 
in the coupled form: 



0.x x          (1.5) 
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     0 0 1
and  are continuous on .x y

u u
u a u n a u n

x y   
 

 
x                      (1.8) 

 
where = , x yn nn  is the unit exterior normal vector on 

1


x
. Particularly, when  which is indepen- 

dent of  and , [13-15] have obtained the natural in- 
tegral equation. We introduce the so-called Kirichhoff 
transformation [16] 

 , =a u cx
u

   ( )

00
= d ,  for 

u

ew a   
x

x x ,

.

     (1.9) 

then we have 

 0=w a u u                    (1.10) 

and 

   0 0

,

= ,

w w
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         (1.11) 

From equation (1.7) we have that  satisfies the fol- 
lowing problem 

w

   

2 2

2 2
= 0, in  ,

= 1 ,  when 

e

w w

x y

w O

 




 .

  
     

x x

    (1.12) 

The rest of the paper is organized as follows. In Sec- 
tion 2, we obtain the natural integral equation for elliptic 
unbounded domain cases. In Section 3, we give the equi- 
valent variational problems and the finite element appro- 
ximations. The reduced problem’s well-posedness, the 
convergence results and error estimate are also discussed. 
At last, in Section 4, we present some numerical exam- 

ples to illuminate the efficiency and feasibility of our 
method. 

2. Natural Boundary Reduction 

In this section, by virtue of the Poisson integral formula 
and natural integral equation for the linear problem, we 
shall obtain the corresponding results for the quasilinear 
problem in c . For this purpose, we need to discuss 
some properties between elliptic coordinates  ,   and 
Cartesian coordinates  ,x y  first. The relationship bet- 
ween the two coordinates can be expressed as below  

0

0

=  cosh  cos ,

=  sinh  sin ,

x f

y f

 
 





             (2.1) 

where 2 2
0 =f a b , 0 1=  cosha f  , 0 1=  sinhb f  . 

Following from [15], we have  
Theorem 2.1 The transformation between elliptic 

coordinates and Cartesian coordinates (2.1) possesses the 
following property. 

1) The Jacobi determinant of Equation (2.1) is  

 
2 22 2 2

0 0

2 2 2
0

=     cosh sin sinh

= ,cosh cos

2J f f

f

cos  

 






     (2.2) 

= 0J  if and only if    0, = ,0x y f ; 
2) 

2 2 2 2

2 2 2 2=
u u u u

J
x y 

    
     

,              (2.3) 
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for ;  2 2u C
3) For the exterior domain e  

1
=

u

J
,

u

 



 


              (2.4) 

where   refers to the unit exterior normal vector on 

1
  (regarded as the inner boundary of ). e

Proof The conclusions 1 and 2 can be obtained by 
direct computation. And 3 follows from the property 



 0 0

1
=  sinh  cos ,  cosh  sin .f f

J
     

2.1. Natural Integral Equation for α = β = 1 

Assume that  is the solution of the problem (1.12), 

and the value 

 w x

= 1
w

 
 is given, namely 

 0= 1
= .w w

 
  

Then based on the natural boundary reduction, there 
are the Poisson integral formulas 
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And the natural integral equation  
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4πsin
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or  
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=10
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 (2.8) 

the definition of 0J can be found in the following. The 
Poisson integral formulas (2.5) and (2.6) and the natural 
integral Equations (2.7) and (2.8) can also be expressed 
in the Fourier series forms  

   1| |
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From (1.10), we obtain 

 0=
w

a u
n n

.
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                    (2.11) 

Combining (1.9), (2.10) and (2.11), we get the exact 
artificial boundary condition of  on u

1
 ,  
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where   2π ( , )1
00 0

1
= d e d

2π

u in
na a

   
    y y , =i 1 ,  

 2 2 2
0 0 1= cosh cosJ f   . Then by (1.6)-(1.8) and (2.12), 

the original problem with = = 1   confines in i  
can be defined as follows 
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Therefore, the solution of problem (2.13) is the so- 
lution of the problem (1.1) with = = 1   confining in 
the bounded domain i . 

2.2. Natural Integral Equation for β > α > 0  

Now we assume that 
1

  can be expressed in the form: 

  2 2 2

1
= ,  =

= , 





          (2.10) 

x y px qy R  , with 0q p   . We  

also assume that  w x  is the solution of the problem  
(1.12), and the value 

= 1
w  is given, namely 

 

 0= 1
= .w w

 
  

Let =x  , =y  , then the boundary 
1

  is 
changed by the elliptic boundary  

  2 2= , =p q R       2 , 

the unit exterior normal vector on  is  

  2 2=  cos ,  sin  cos  sin .p q p q        v  
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By the above transformation, the problem (1.12) changes 
into 

   

2 2

2 2
= 0,  in  ,

= 1 ,  when 

e

w w

w O

 
   
       
  x x



.
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This is the right problem we talked in Section 2.1. Si- 
milar with Equation (2.1), we let 

0 0=  cosh  cos , =  sinh  sin ,f f       
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Then just the same as the problem discussed in Section 
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where   = , = ,x yn n x R y Rn  is the unit exterior nor- 
mal vector on 

1
 . From (1.11), we obtain 
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Combining (1.9), (2.15) and (2.16), we obtain the exact 
artificial boundary condition of  on u
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Then by (1.6)-(1.8) and (2.17), the original problem 
with > > 0   confines in  can be defined as 
follows 
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Therefore, the solution of problem (2.18) is the solu- 
tion of the problem (1.1) with > > 0   confining in 
the bounded domain i . 

3. Variational Problem and Finite Element 
Approximation 

3.1. The Equivalent Variational Problems 

Now we consider the problems (2.13) and (2.18). We 
shall use  denoting the standard Sobolev spaces, ,m pW
  and   referring to the corresponding norms and 

semi-norms. Especially, we define    ,2=m mH W  , 

, ,
=

m m 2, 
   and 

, ,2
=

m m , 
  . Let us introduce the 

space 
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  = 0 ,         (3.1) 

and the corresponding norms  
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  x x

2
d .  

The boundary value problems (2.13) and (2.18) are 
equivalent to the following variational problem 
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For any real number , we let  > 0s
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H f L f  

    

    2

01, 1, 1,
; , , ; , ,

i i i
D w u v C u v D u u u C u

  
 

 
 

       (3.6) , , .u v w V   

In practice, we need to truncate the series in (2.12) and 
(2.17) for some nonnegative integer , that is  Nwith   22 2

,
1 | |=0

= 1
s

ms
m

f m





 F ,  

   

  

0 0

= 1

1 1= , ,

x y

N

u u
n a u n a u

x y

K u

 

 

 

  
           (3.7) 

and  2π

10

1
= , d

2π
in

mF f e    , =m mF F .  
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. So we only use the summation of the 

first  terms in (2.13) and (2.18). We will consider the 
following approximate problem 
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Lemma 3.2 There exists a constant  which has 

different meaning in different place, such that 
> 0CBoth (3.10) and (3.11) are equivalent to the following 

variational problem 
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Divide the arc 
1

  into M  parts and take a finite ele- 
ment subdivision in i  such that their nodes on 

1
  

are coincident. That is, we make a regular and quasi- 
uniform triangulation  on , such that  hT i

=
h

i
K T

,K


                (3.14) 

with K  is a (curved) triangle;  the maximum side of hSimilar with Lemma 3.1, we have 
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the triangles. Let 

 
=
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Then the approximate problem of (3.12) can be written 
as 
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Some existence and uniqueness results for this type of 
problem are given in [12,17,18] under some conditions 
on the coefficients , so by the constraint conditions  a

(1.2) and (1.3) we have  
Lemma 3.3 Problems (3.2), (3.12) and (3.16) have uni- 

que solvability. 

3.2.1. Convergence Theorems 
In this section, we obtain the convergence result of the 
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From 1 > V . Therefore, there exists a subsequence  such  Nnu0  , we obtain that  Nu  is bounded in  
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that Nnu u  V . Then similar with the proof of Lem- 
ma 3.4 of [3], we obtain 

1,
= 0.lim

N

N i
u u


  

By the above lemmas, we get the following conver- 
gence result. 

Theorem 3.1 Let  2
iu H  , and the assumptions 
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3.2.2. Error Analysis 
In the following, we shall get error estimates for the ap- 
proximate solution obtained from a FEM-NBEM discrete 
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Similar with the proof of [10], we have the lemma as 
follows 
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where  is a sufficient large constant and . 0K  > 0C
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 ; , = 0,  = 0.A u v z z V v          (3.23) 

Let  be the canonical injection. Since V  
is compactly embedded in , we have that the 

: I V V 

r : 
 2

iL 
J V V   defined by     = ,J v I v 0  is 

also comp 21) and (3.23) the 
property of 

act. By (3. and  satisfies T
J , we obtain that : T V   is an iso- 

morphism. 
By the c

V

3) anonditions (3.2), (3.22) d Theorem 
10

, (3.2
.1.2 of [20], one can get that there exists  0 0,1h  , 

such that the following inequality is satisfied 

 
1 1,

1,

; ,A u v z
,  

i
v v


   sup

x Vh

a

h

i

V
z


 

     (3.24) 

for some const nt  independe
o 

1 nt of  0h . 
 res

 <h h
 withWe define the Galerkin projection pect t

 ; ,uA   , : h hP V V   

  =  , ,  ; , ; .h hA u P v z A u  v z z   V

Then the op ato satisfies  er r hP

1, ,

, 2 , 0 < 1.

i i
h h

h hp p
v V

C

Ch p

 

   
   (3.25) 

We define the set 

1, ,infv P v v v  

<
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B v  1, ,
  .h h h

i
V v P v Ch

 
   

Lemma 3.6 is a solution of (3.14) if and   N
h hu V  

only if the following equation  

   ; , = ; , ,  N N N N N ,N h hA u u u v R u u v v V   

 

 

holds, where 

       

   

     

2
21

20

1

0

2
22π 2π 1 0

20 0 0
=1

2π 2π 1 0

0 0 0

; , , 1 d d d

2 , 1 d d

cos ( )
1 d d d d

2 (

N N N N N
h h h

i

N N N
h h h

i

N N
N Nh
h h

n

a
R u u v w w v t t

s

a
w d v t t d

s

a w v n
w t t

ns

a
w

s

   
  





        
          
             






 

 

  

  

x x

x x

  

   
=1

cos
) 1 d d d d

N N
N Nh
h h

n

nd v
t t

n

 
 

  
          



 

 

ith w  =N N N N
h hw u t u u  , =N N N

h hd u u . 

Pro   N h ht A w w v 
1

of. Let  , then b

and 

; ,N y N

   1 1 dt t t     
0

= 0 0       

     ; , = ; , = ,  N N N N .N h h N h h hA u u v A u u v F v v V   

We can get the desired result.  

Let   1h hM v V v   1, , 1, ,

N

i i
u

   
 . Then fol- 

lowi 0,11], we have 
sts a positive constant C inde- 

ng [1
Lemma 3.7 There exi

pendent of h, such that 

  2

1,1, 1,
; ,N NR u v z C u  ,

  ,  .

N

ii i

h h

v u v z

v M z V

 

   
 

   
 

We also have the following result. 

need to show that 
Lemma 3.8 .h hB M  

ny  we only Proof For a ,hv B
hM . v

1, ,

N N

 1, , 1, ,
,

i i i
v u v u

    
    

1, , 1, , 1, ,
,N N N N

h h
i i

u v u P u P u v
     

      

1, , 1, ,

1, ,
.

N N N N
h h

i i

N N
h h

i

u P u u u

u P u

   

 

  

  
 

Since is regular and quasi-uniform, referring to 
[1

hT  
9], we obtain the following inverse inequality 

1

21 
1, , 1,

log ,  .h
i i

w C w w V
h  

   
 

 

Combining the above inequalities with the definition 
of hB  and (3.26), we obtain 

1, ,
1.Nu v

 i
   

By the definition of hM , we get the desired result. 
o- 

lu
Theorem 3.2 Assum  ,2k

iV W     be the se u
tion of (1), with > 0 , 2k  , and e a w lso assume 

that 

 

 0
and u sat

tly small , the fin l

1/2

0

ku H





  isfies (3.23). With suf-  

ficien ite e ement Equation (3.16) has h
the approximate solution N

h hu V  such that 

  

 
0 1

N
 




0

1

1 1/2,1,
,

1

N

h k k
i

e
u u C h u

N 



  

 
   

 

i


 

where C is a constant independent of h and N. 

 
Proof Firstly, for any Nu V , we have 

         

 

 
   

 

 

 

 

0 1

0 1 0 1

2π 2π 1 1

0 0
= 1

1 1
1 1 12 2

2 22 22 2
1

| |= 1 | |= 1

1 1

1 11/2, 1/2,
0 0

1
; , ; , = cos d d

π

1 1
1

1 1

N N N N
N

n N

N
k

n nk
n N n N

N N
N N

k kk

D u u v D u u v n
n

Ce
n w n v

N

Ce Ce
w v

N N

 

   

 

 
   

 





   


 

   

   

 
  

 

   
       

    

 
 

  

 

  , ,v  w

2

1/2, 1,
0

.
k i

u v
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Then by (3.12), we have 

     
     

; , ; , ; ,

; , ; ,

N N N N N N

N N N N
N

A u u v D u u v D u u v

.F v D u u v D u u v

 

  



   

Let       = ;N Nt A u t u u u t u u v    


, , we have  

 
   

1

0
; ,

= ; , ; , .

N N

N N

dA u t u u u u v t

A u u v A u u v

   




 

From (3.2), (3.22), (3.23) and [20], we obtain 

  

   

  0 1

1,

1 .

i

NCe u 



 

1,

1

0
1,

1
,

2 1

1
; , d

; , ; ,

N

i

N N

v V
i

N N N N
N

k

u u

A u t u u u u v
v

D u u v D u u v
C

v





 

 



 
    
 
 





   (3.26) 

We denote a nonlinear mapping

supC t

 : h hV V  , which 
satisfies that for any given hv V ,  v  is the unique 
solution of  

.      , , = , , , , ,  hA u v z A u u z R u v z z V    

Therefore, we have 

 (3.27) 

        , , = , ,n n , , .A u v v z R u v z R u v z     

Combining the above equation with (3.25), we obtain 
the operator is continuous, i.e., 

 lim v v  = .
n

n
v v




 

Next, we assume that , then by Lemma 
have ition of , (3.27) can be 
re

.

hv B
e defin

3.8, we 
 that hv M By th

written as 
 . hP

    , , = , , ,  N N N
h hA u v P u z R u v z z V      

Then, from (3.24), Lemma 3.6 and Lemma 3.7, we 
have  

 
  




1,
1,

2

h
i z Vh i

1, 1,

2 2

1, 1,

, ,
sup

.

i

i

N
hN

N N

i

N N N

N N N
h h

i

1, 1,h h
i i

A u v P u z

v u v

C u P u P u v

u P u P u v

Ch



 

 

 

   
 

   

  



 

This implies that 

v P u C
z

C u


  

 

  

 



: h hB B  . And since   is also 
continuous, followi wer’s fixed eorem, 
one can obtain that t h that 

ng from Brou
here exists 

 th
, sucN

h hu V
  =N N

h hu u . From we  Lemma 3.6, deduce that N
hu

 and th
 is 

 of (3.16) or e the solution
fact N

h hu B
. What’s m e, by (3.25)

, we obtain  

1, 1, 1,

, 0 < < 1.

N N N N N N
h h h

i i
u u u P u P u u

Ch 

h
i  

    


 (3.28) 

Combining (3.26) with (3.28), one can obtain 

  

 
0 1

0

1, 1, 1,

1

11 ,
2

.
1

N N N
h h

i i

N

k k

u u u u u u

e
C h u

N

 




N

i  

 

  

    

 
  

  

 

This completes the proof. 

4. Numerical Examples 

In this section, we shall give some examples to confirm 
ou . In the for theoretical results llowing, we choose the 
finite element space as given in (3.16). For simplicity, we 
let 

 
 0 2, = 2π , , =

i

N
h L

m M e h N u u


 

Ex 4.1 We assu

= 1 .r  

ample me the exterior domain c  
with elliptical boundary  

  
  0 11 0= ,  > ,0 2π .       

0 00 = ,  = 0.8,0 2π ,     
 

Now we consider the problem  

  

    
0

0 1 1n 1

, = ,  in  ,

= 0,  on ,

= , , on ,

ia u u f

u

a u K u
u  






   




 

x

     (4.1) 
 



when   2

1
, =

1
a x u

u
, = 0f  and 0 = 1.25f . 

The exact solution of Example 4.1 is 

  0= tan 2sinh sin cosh 2 cos 2u f    . 

The numerical results are given in Figures 1 and 2 nd 
Ta

 a
ble 1. 
Example 4.2 Similar with Example 4.1, 0  a  nd
 ,a x u  are replaced by  

  0 0 0= ,   = 0.5,0 2π      

and   2, = 1 1a u ux  respectively. 
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Figure 1. Example 4.1 with N = 16, µ1 = 1.7. 
 

 

Figure 2. Example 4.1 with different N. 
 

Table 1. The errors with N = 16 for Example 4.1. 

1  ( , )m M  0 ( , )e h N  ratio 

(4,16) 2.9888E-02 - 

(8,32) 7.1183E-03 4.1987 1.5 

(16,64) 1.9991E-03 3.5607 

(4,16) 3.1917E-02 - 

(8,32) 7.8255E-03 4.0786 1.7 

(16,64) 2.1387E-03 3.6591 

(4,16) 3.5553E-02 - 

(8,32) 9.0701E-03 3.9198 2.0 

(16,64) 2.4284E-03 3.7351 

 
The exact solution of Example 4.2 is  

  0= sin 2cosh cos cosh 2 cos 2u f    . 

 

Figure 3. Example 4.2 µ1 = 1.0 with N = 6, . 
 

 

Figure 4. Example 4.2 with different N. 
 

Table 2. The errors with N = 6 for Example 4.2. 

1  ( , )m M  0 ( , )e h N  ratio 

(2,8) 3.0471E-02 - 

(4,16) 1.0654E-02 2.8601 0.8 

(8,32) 3.1506E-03 3.3816 

(2,8) 4.5002E-02 - 

(4,16) 1.2723E-02 3.5370 1.0 

(8,32) 3.1711E-03 4.0122 

(2,8) 8.7937E-02 - 

(4,16) 2.2960E-02 3.8299 1.5 

(8,32) 5.5786E-03 4.1157 

 
Example 4.3 We assume the exterior domain c  

with elliptical boundary 

  
  1

0 0 0

1 1

= ,  = 0.8,0 2π ,

= ,   = 1.5,0 2π .

   

   

 

 
 




The numerical results are given in Figure 3, Figure 4 

and Table 2. 
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Now we consider the problem  

   

    1 1= ,K u 
1

0

,

,  n  ,

, ,

ix x y y

u u
u u

x y0xn a 0yn a

, , = ,  in  
u u

a u a u f

= 0u o

on 



  

   
   

             


 


    
 

 

(4.2) 

when

x x

   21 u, = 1ux , a 0 =f 1.25  and 

   
 

2 2 2 2s
3

cos2 1 sin 3cosh sinh
= .

sh 2
f

h sin in

co cos 2

  

 

 


 

The exact solut  Exam

   

ion of ple 4.3 is  

  0= tan 2sinh sin cosh 2 cos 2u f    . 

The numerical results are given in Figures 5 and 6 and 
Table 3. 

Example 4.4 Similar with Example 4.3, 0  and 
 ,a ux  

 
are replaced by  

 

Figure 5. Example 4.3 with N = 10, ε = 0.005. 
 

 

  0 0 0= ,  = 0.5, 0 2π      

and   2, = 1 1a u ux  respectively. And we take  

   
 

2 2 2 2

3

2 1 cosh cos 3cosh cos sinh sin
= .

cosh 2 cos 2
f

      

 

 


 

The exact solution of Example 4.3 is  

  0= sin 2cosh cos cosh 2 cos 2u f    . 

The numerical results are given in Figures 7 and 8 and 
Table 4. 

From the numerical results, one obtains that the nu- 
merical errors can be affected by the order of artificial 
bounda he lo- 
cation of t ced by 
increasing the order of the artificial boundary condition 
and refining the mesh. What’s more, the convergence rate 
of anisotropic problems can also be affected by the choice 
of

ry condition, the mesh of the domain and t
he artificial bound y, and it can be reduar

 as it is shown in Tables 3 and 4. The numerical re- 
sults are in agreement with the error analysis we obtain 
and show the efficiency of the coupling method. 
 

Table 3. The errors with N = 10 for Example 4.3. 

  ( , )m M  0 ( , )e h N  ratio 

(4,16) 3.4114E-02 - 

(8,32) 8.9808E-03 3.7985 0.5 

(16,64) 2.3296E-03 3.8550 

(4,16) 9.1725E-02 - 

.0539 0.025 

(16,64) 5.8604E-03 3.8609 

(4,16) 1.0129E-01 - 

(8,32) 0.005 

(16,64) 1.0173E-02 2.7543 

(8,32) 2.2626E-02 4

2.8020E-02 3.6149 

 

 

Figure 7. Example 4.4 with N = 5, ε = 0.05. Figure 6. Example 4.3 with different N. 
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Figure 8. Example 4.4 with different N. 
 

Table 4. The errors with N = 10 for Example 4.4. 

  ( , )m M  0 ( , )e h N  ratio 

(4,16) 4.5556E-02 - 

(8,32) 1.1454E-02 3.9772 0.5 

(16,64) 2.9414E-03 3.8942 

(4,16) 1.6183E-01 - 

(8,32) 6.7805E-02 2.3867 0.05 

(16,64) 1.8030E-02 3.7606 

 (4,16) 2.8137E-01 - 

(8,32) 1.4554E-01 1.9332 
0.02

493 
5 

(16,64) 4.4792E-02 3.2
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