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Abstract 
 
This paper employs mathematical modeling and algebraic approach to derive the optimal manufacturing 
batch size and number of shipment for a vendor-buyer integrated economic production quantity (EPQ) model 
with scrap. Unlike the conventional method by using differential calculus to determine replenishment lot size 
and optimal number of shipments for such an integrated system, this paper proposes a straightforward alge-
braic approach to replace the use of calculus on the total cost function for solving the optimal production- 
shipment policies. A simpler form for computing long-run average cost for such a vendor-buyer integrated 
EPQ problem is also provided. 
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1. Introduction 
 
The economic production quantity (EPQ) model was first 
introduced by Taft [1] to assist practitioners in produc-
tion and inventory control field to determine the economic 
replenishment batch size that minimizes total produc-
tion-inventory costs. Classic economic production quan-
tity model assumes a continuous inventory issuing policy 
for satisfying customer’s demand. However, in real 
world vendor- buyer system, multiple or periodic deliv-
eries of finished products are often adopted. Therefore, 
“how many shipments should a manufacturing lot be 
broken down to?” becomes another critical issue that 
practitioners must address in order to minimize overall 
production-inventory-delivery costs. 

Studies related to various aspects of supply chain op-
timization have been extensively carried out (see for ex- 
ample [2-9]) in past decades. Goyal [2] examined an 
integrated single supplier-single customer problem. He 
proposed a method that is typically applicable to those 
inventory problems where a product is procured by a 
single customer from a single supplier. Example was 
provided to demonstrate his proposed model. Schwarz et 

al. [3] considered the system fill-rate of a one-warehouse 
N-identical retailer distribution system as a function of 
warehouse and retailer safety stock. They used an ap-
proximation model from a prior study to maximize sys-
tem fill-rate subject to a constraint on system safety stock. 
As results, properties of fill-rate policy lines are sug-
gested. They may be used to provide managerial insight 
into system optimization and as the basis for heuristics. 
Lu [4] studied a one-vendor multi-buyer integrated in-
ventory model with the objective of minimizing vendor’s 
total annual cost subject to the maximum costs that the 
buyers may be prepared to incur. Lu’s model required to 
know buyer’s annual demand and previous order fre-
quency. As a result, an optimal solution for the one- 
vendor one-buyer case was obtained and a heuristic ap-
proach for the one-vendor multi-buyer case was also 
provided. Sarker and Khan [5] considered a production 
system that procures raw materials from suppliers in a lot 
and processes them into finished products which are then 
delivered to outside buyers at fixed points in time. A 
general cost model was formulated considering both raw 
materials and finished products. Using this model, a sim-
ple procedure was developed to determine the optimal 
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ordering policy for raw materials as well as the manu-
facturing batch size, so that the overall costs for such a 
supply chain system can be minimized. Chiu et al. [9] 
incorporated a multi-delivery policy and quality assur-
ance into an imperfect economic production quantity 
(EPQ) model with scrap and rework. They assumed that 
the random defective items produced are partially re-
pairable and are reworked in each cycle when regular 
production ends, and the finished items can only be de-
livered to customers if the whole lot is quality assured at 
the end of rework. Fixed quantity multiple installments 
of the finished batch are delivered to customers at a fixed 
interval of time. The expected integrated cost function 
per unit time was derived. A closed-form optimal batch 
size solution to the problem was obtained. 

Imperfect quality items produced in real world manu-
facturing environments is another inevitable and impor-
tant issue that practitioners in the production manage-
ment filed must deal with. In the past decades, many 
studies have been carried out to address the issue of de-
fective items in the production lines (see for example 
[10-14]). The nonconforming items sometimes can be 
repaired through rework, hence overall production costs 
can be significantly reduced [15-20]. Yu and Bricker [15] 
presented an informative application of Markov Chain 
analysis to a multistage manufacturing problem. Jamal et 
al. [16] studied the optimal manufacturing batch size 
with rework process at a single-stage production system. 
Cases of rework being completed within the same pro-
duction cycle, and rework being done after N cycles are 
examined. They developed mathematical models for 
each case and derived total system costs and optimal 
batch sizes accordingly. Chiu et al. [19] proposed a nu-
merical method for expediting scrap-or-rework decision 
making in EPQ model with failure in repair. 

Algebraic approach for determining economic order 
quantity (EOQ) model with backlogging was introduced 
by Grubbström and Erdem [21]. They proposed algebraic 
derivations to solve the optimal order quantity without 
reference to the first-order or second-order differentia-
tions. Various aspects of supply chain optimization stud-
ies have employed the same or similar methodologies 
[22,23]. This paper uses mathematical modeling to de-
rive the long-run average cost function for the proposed 
vendor-buyer integrated EPQ model with scrap; then 
employs such a straightforward algebraic derivation to 
determine the optimal production-shipment policies for 
the proposed EPQ model. 
 
2. The Proposed Model and Mathematical 

Modeling 
 
The proposed economic production quantity model as-

sumes there is an x portion of defective items produced 
randomly at a production rate d during regular produc-
tion time. All produced items are screened and inspection 
cost per item is included in the unit production cost C. 
All nonconforming items are assumed to be scrap and 
will be discarded at the end of production. Under regular 
supply (not allowing shortages), the constant production 
rate P must be larger than the sum of demand rate λ and 
production rate of scrap items d. That is: (P – d – λ) > 0. 
The production rate of scrap items d can be expressed as 
d = Px. 

A multi-delivery policy is considered in this study and 
it is also assumed that the finished items can only be de-
livered to customers if the whole lot is quality assured at 
the end of production process. Fixed-quantity n install-
ments of finished batch are delivered to customers at a 
fixed interval of time during the production downtime t2 
(see Figure 1). Additional notation is listed in Nomen-
clature in Appendix. 

TC(Q, n), the total production-inventory-delivery costs 
per cycle consists of 1) setup cost; 2) variable production 
costs; 3) variable scrap disposal costs; 4) fixed delivery 
cost; 5) variable delivery costs; 6) variable holding costs 
at the supplier side for all items produced (defective and 
perfect quality items) in t1 and all items waiting to be 
delivered in t2; and 7) holding cost for finished goods 
stocked at customer’s end. Therefore, TC(Q, n) is 
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Figure 2 shows supplier’s inventory holding during 
delivery time t2. The variable holding costs for finished 
products kept by the supplier in delivery time t2 are 

 

 

Figure 1. On-hand inventory of perfect quality items in the 
proposed EPQ model with scrap and a multiple shipment 
policy. 
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1) When n = 1, total holding cost in delivery time = 0. 
2) When n = 2, total holding costs in delivery time be- 

come (see Figure 2) 
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3) When n = 3, total holding costs in delivery time are 
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4) When n = 4, total holding costs in delivery time be- 
come 
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Therefore, the following general term for total holding 
costs during t2 can be obtained (as shown in Equation (1) 
above): 
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(5) 

Taking randomness of scrap rate into consideration 
and employing the expected values of it, and with further 
derivations, the long-run average costs per unit time for 
the proposed EPQ model, E[TCU(Q, n)] can be derived 
as follows (refer to a similar derivation procedure in [9]): 
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3. Deriving Optimal Production-Shipment 

Policies without Derivatives 
 
This study employs algebraic approach to derive the op-
timal production-shipment policies, instead of using dif-
ferential calculus on E[TCU(Q, n)] with the need of prov-
ing its optimality [21-23]. In Equation (6), both Q and n 
are decision variables, by rearranging terms in Equation 
(6) as the constants, Q–1, Q, nQ–1, and Qn–1, one has 
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Figure 2. On-hand inventory of the finished items kept by 
supplier during t2 in the proposed EPQ model. 

 
where β1, β2, β3, β4, and β5 denote the following: 
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With further rearrangements, Equation (7) becomes 
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 * *
1 2 3 4, 2 2E TCU Q nIt is noted that if the following square terms (Equa-

tions (17) and (18)) equal zero, then Equation (15) will 
be minimized: 
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4. Demonstrative Example   2
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Consider a product can be produced at an annual rate of 
60,000 units and this item has experienced a flat demand 
rate of 3,400 units per year. Assume that during produc-
tion process a random scrap rate which follows a uniform 
distribution over the interval [0, 0.3]. In additions, the 
following values of related variables are considered: 
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C = $100 per item, and 
CS = $20, disposal cost per scrap item, 
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 Q                (19) h = $20 per item per year, 
h2 = $80 per item kept at the customer’s end per unit 

time, Substituting Equations (9) and (10) in Equation (18), 
the optimal replenishment lot size Q* can be obtains: K = $20,000 per production run, 

K1 = $4350 per shipment, a fixed cost, 
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CT = $0.1 per item delivered. 

Substituting Equations (11), (12), and (20) in Equation 
(19), the optimal number of shipments is 
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From Equations (21), one obtains the optimal number 
of delivery n* = 3. By plugging n* back into Equation (7) 
and resolving the algebraic solution for Q* one finds the 
optimal production batch size Q* = 2652. Calculating 
Equation (22) one obtains the long-run average cost E × 
[TCU(Q*, n*)] = $512,047. Figure 3 shows the convexity 
of the long-run integrated cost function E[TCU(Q, n* = 
3)]. 

It is noted that n* should practically be an integer nu- 
mber, but Equation (21) gives a real number. In order to 
obtain the optimal integer value of n, one should com-
pute the E[TCU(Q, n)] for both integers that are adjacent 
to real number n* respectively (for instance, in this ex-
ample Equation (21) gives n* = 3.1733, so both n = 3 and 
n = 4 must be plugged in E[TCU(Q, n)]), and select the 
one with minimum cost as our optimal n*. 

(21) 

One notes that Equation (21) is identical to what was 
obtained by using the conventional differential calculus 
method on E[TCU(Q, n)] [24]. Further, from Equation (7) 
the optimal cost function E[TCU(Q*, n*)] is 

 

 
Figure 3. Convexity of the long-run integrated cost function E[TCU(Q,n* = 3)]. 
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5. Conclusions 
 
This paper derives the optimal manufacturing batch size 
and number of shipment for a vendor-buyer integrated 
EPQ model with scrap using mathematical modeling and 
algebraic approach. It is confirmed the research results 
from the proposed algebraic derivations are identical to 
what were derived by the use of conventional differential 
calculus. In additions, this study also reveals a simpler 
computation formula (i.e. Equation (22)) for the long-run 
average cost function for such a vendor-buyer integrated 
EPQ problem. This straightforward algebraic approach 
enables practitioners or students who with little or no 
knowledge of calculus to learn or handle with ease the 
real-life EPQ model. 
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Appendix 
 

Nomenclature: 
C = unit manufacturing cost, 
CS = the disposal cost per scrap item, 
h = unit holding cost, 
K = setup cost per production run, 
K1 = fixed delivery cost per shipment, 
CT = unit delivery cost CT, 
Q = production lot size, a decision variable, to be de-

termined for each cycle, 
T = production cycle length, 
n = number of fixed quantity installments of the fin-

ished batch to be delivered to customers, a decision vari-
able, to be determined for each cycle, 

d = production rate of scrap items, 
t1 = the production uptime for the proposed EPQ 

model, 
t2 = time required for delivering all finished products, 
H = maximum level of on-hand inventory in units when 

regular production process ends, 
tn = a fixed interval of time between each installment 

of finished products delivered during production down-
time t2, 

I(t) = on-hand inventory of perfect quality items at 
time t, 

TC(Q, n) = total production-inventory-delivery costs 
per cycle for the proposed model, 

E[TCU(Q, n)] = the long-run average costs per unit 
time for the proposed model. 
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