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Abstract 
 
We consider risk minimization problems for Markov decision processes. From a standpoint of making the 
risk of random reward variable at each time as small as possible, a risk measure is introduced using condi-
tional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk 
measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or 
average case. As an application, the inventory models are considered. 
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1. Introduction 

As a measure of risk for income or loss random variables, 
the variance has been commonly considered since Mark- 
owitz work [1]. The variance has the shortcoming that it 
does not approximately account for the phenomenon of 
“fat tail” in distribution functions. In recent years, many 
risk measures have been generated and analyzed by an 
economically motivated optimization problem, for ex-
ample, value at risk , conditional value-at-risk 

 [2,3], coherent risk of measure [4-6], convex 
risk of measure [7,8] and its applications [9,10]. 

 @V R
 @CV R

On the other hand, a lot of research considering the 
risk have been progressed by many authors [11-15] in the 
framework of Markov decision processes (MDPs, for 
short). In [11,16], the risk control for the random total 
reward in MDPs is discussed. In the sequential decision 
making under uncertain circumstance, it may be better to 
minimize the total risk through the infinite horizon con-
trolling the risk at each time. For example, in multiperiod 
inventory and production problem, we often want to or-
der optimally by the ordering policy such that while it 
minimizes the total risk through all the periods it also 
makes the risk at each time as small as possible. 

In this paper, with above motivation in mind we in-
troduce a new risk measure for each policy using condi-
tional value-at-risk for random immediate reward vari-
ables, under whose risk measure criteria the optimization 
will be done, respectively, in the discounted and average 
case. As an application, the inventory model is consid-

ered. In the reminder of this section, we shall establish 
notations that will be used throughout the paper and de-
fine the problem with a new risk measure. 

A Borel set is a Borel subset of a complete separable 
metric space. For a Borel set X, X  denotes the B    
algebra of Borel subset of X. For Borel sets X and Y, 
 XP  and  X YP  be the sets of all probability 

measures on X and all conditional probability measures 
on X given Y respectively. The product of X and Y is de-
noted by XY. Let  be the set of real numbers. Let I be 
a random income (or reward) variable on some probabil-
ity space 

R

 P, , B , and  IF x  the distribution func-
tion of I, i.e.,     I x = .P IF x x  We define the 
inverse function    11 0 p IF p  by 

    1 = inf .I IF p x F x   p  

Then, the Conditional Value-at- Risk for a level 

 0,1   of I,  @CV R I , is defined (cf. [2,3]) by 

   1 11
@ = d .        (1) 

1 ICV R I F p p 

 

We note that  @CV R I  is specified depending 
only on the law of the random variable I. For any Borel 
set X, the set of all bounded and Borel measurable func-
tions on X will be denoted by  .XB  

A Markov decision process is a controlled dynamic 
system defined by a six-tuple    , , | , , , ,S A A x x A r  Q  
where Borel sets S and A are state and action spaces, 
respectively,  A x  is non-empty Borel subset of A 
which denotes the set of feasible actions when the system 
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is in state ,x S  S SAQ P   is the law of motion, 

 is an immediate reward function and 

 is an initial state distribution. 
r  B

S P
SAS


Throughout this paper, we suppose that the set 

    := ,K x a SA a A x for x S    

is in  The sample space is the product space .SAB =  
 such that the projections  on the t-th fac-

tors  describe the state and the action at the t-th 
time of the process  

 SA


,S A



,t tX 

 0 .t 
Let  denotes the set of all policies, i.e., for  

 let 
π =

 0 1π ,π ,   π
t

t A S ASP  with 

  0 0 1π , , , , = 1t t t tA x x a a x  

for all  If there is a 
Borel measurable function 

     0 0 1, , , , 0 .
t

t tx a a x S AS t  

:f S A  with    f x A x  
for all x S   such that   0 0 1, , , ,πt t t tf x x

 t
AS

0 0 

a a x

 0 ,t 

 , , , .t tX 

 
 for all   a pol-

icy  is called stationary. Such a policy 
will be denoted by f. Let  For 
any  we assume that 

= 1  1,t tx S

= ,H X

0 0, , ,x a a

,

, ) ,

 0 1π ,π

0 1= (π ,π

π =

π
t

  1 1 1 1, = π ,t t t t tPr H X H X  D D t      (2) 

and 

 
 

1 2 1

2

  , = , =

= ,

t t t tPr X H X x a

x a

  D

DQ
         (3) 

for  1 2, , ,A S x S a A x   D B D B
π

 and  Then, 
for any  and initial state distribution 

0.t 
  ,S P  

the probability measure  πP   is given on   in an 
obvious way. If not specified otherwise, πP  is denoted 
by  suppressing πP   in π .P  

We want to minimize the total reward risk making the 
risk at each time as small as possible. So, using  
for the random reward variable 1 1t t t   at 
time t, a risk measure 

@CV R
 , , Xr X 

 πr    for the random reward 
stream 1 1t t t  will be defined in 
the discounted or average case as follows. With some 
abuse of notation, we denote by 

 , , : = 1,2r X X t   ,

 1 1, ,t t tr X X H 

 1 1, ,t t tr X X 

.

1t  
the conditional distribution of  given 

1  Also,  is the expectation operator w.r.t. 
 



 1 . πE

0 < < 1

tH t

π .P
a) The discounted case    

 

  

π
=1

1 1 1

1
π :=

1

                  @ , , .

t
DS

t

t t t t

r E

CV R r X X H

 




  



  





  (4) 

b) The average case. 

  π
=1

1
π := limsup

T

AV
T t

r E
T




  

  1 1 1               @ , , .t t t tCV R r X X H         (5) 

For the family of random reward streams  

     1 1, , : = 1,2, :t t tr X X t r SAS    B ,   

 πDS r   and  πAV r   have same properties as those of 
coherent risk measures (cf. [4]), which is shown in the 
following proposition. 

Proposition 1.1. For any , π DS  and AV  
have the following 1) - 4): 

1) (Monotonicity) If  with 1r r 2  1 2, ,r r SAS  B  
   1 2 .r r    
2) (Translation invariance) For  and  r SAS B

 = ,c ,       r c r = .c  

r  B
 

3) (Homogeneity) For  and SAS > 0 , 
   = .r r      
4) (Convexity) For  and  SASB1 2,r r  0 1,   

       11 1r    1 2r r       2r .   
Proof. Notice that 

     1 1 1 1 1 1, , = @ , ,t t t t t t t tr X X H CV R r X X H          

satisfies the properties 1)-4) for  For 4) 
with 

r SAS B 
   = π ,AV    suppose that  SAS1 2,r r   B  

and 0 1.   Then, we have that 

   
   

 
  

 

1 2 1

π 1 2
=1

π 1 1
=1

2 1

π 1 1
=1

 1 π

1
= @ 1limsup

1
= @limsup

                          1

1
@limsup

                          1

AV t

T

t
T t

T

t
T t

t

T

t
T t

r r H

E CV R r r H
T

E CV R r H
T

r H

E CV R r H
T







  

 




















 

1| )   




  

 









 

 







   

 

   

     

2 1

π 1 1
=1

π 2 1
=1

1 2

@ ,

            from convexity of @ ,

1
@limsup

1
1 @limsup

= π 1 π ,

t

T

t
T t

T

t
T t

AV AV

CV R r H

CV R

E CV R r H
T

E CV R r H
T

r r













  









 

   

    

 











 

 

which implies (iv) with = AV .   Other assertions in 
Proposition 1.1 are easily proved. This completes the 
proof. □ 

For   ,r SAS B  and  ,x a K , the conditional 
distribution function  ,rD x a   is defined by 

    , := , , , ,rD y x a y x a r x a  Q        (6) 

where     , , := , , .y x a r z S r x a z y     
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Lemma 1.2. For any  it holds that π

  
  

 

   

 

π 1 1 1

π 1 1 1 1

1
π 1 1

1
1 1 1 1

1 1

  @ , ,

= @ , , ,

= ,

1
        , , ,

1

         d , ,

t t t t

t t t t t

r t t

t t r t t

t t

E CV R r X X H

E CV R r X X X

E D X

r X y D X

y X










  

   


  


    

 

  
  
 

      

 













Q



 

(7) 
where      := max ,0 .x x



Proof. From the Markov property (3), it follows that 

  
 

π 1 1 1

π 1 1 1 1

    , ,

= , , | ,

t t t t

t t t t t

P r X X y H

P r X X X

  

   

 

 



 .
 

Thus, 

        
  
 

1 1 1

1 1 1 1

   @ , ,

= @ , , ,

t t t t

t t t t t

E CV R r X X H

E CV R r X X X

 

 

  

   

 
  



  .




 

By the representation formula of @CV R  (cf. [2,3]), 
the second equality of (7) holds, which completes the 
proof. □ 

The value function of the discounted and average 
cases are defined respectively by 

   
   

:= π andinf

:= πinf

DS DS

AV AV

r r

r r





 

 




 

 
          (8) 

A policy  is called discounted and average 
risk-optimal, respectively, if 

*π 
   = πDS DSr r     and 

   = π .AV AVr r     
 
2. Risk-Optimization 
 
In this section, using  for a random reward 
variable (1), we define a new immediate reward function 
by which the theory of MDPs will be easily applicable. 
Moreover, sufficient conditions are given for the exis-
tence of discounted or average risk optimal policies. 

@CV R

 
2.1. Another Representation of Risk Measures 
 
In this subsection, another representation for DS  and 

AV  are given. 
For any  the corresponding immediate 

reward function  will be defined by 
  ,r SAS B

rB AS

     

   

1

1

1
, = , , ,

1

             , d ,

r

r

r x a D x a r x a y

D x a y x a











 
 







Q
    (9) 

for each x S  and .a A  Then, we have the follow-
ing, which shows that the original problem with  is 
equivalent to the new problem with r. 

r

Theorem 2.1. It holds that, for any , π

1)    π
=0

1
π = ,

1
t

DS t tt
r E r 


     X  

2)    1 π
=0

1
π = ,limsup

T

AV t tT t
r E r

T
 

    .X  

Proof. By Lemma 1.2, it holds that for any π  

  
   

1 1

1 1

    @ , ,

= , , 1 .

t t t t

t t

E CV R r X X H

E r X t

 



 

 

  
   


 

So observing the definitions of DS  and AV  in (4) - 
(5), 1) and 2) follow, as required. □ 
 
2.2. The Discounted Case 
 
Here, we drive the optimality equation for the discounted 
case, which characterizes a discount risk optimal policy. 
To this end, we need the following Assumption A. 

Assumption A. The following 1) - 4) holds:  
1) A is compact and  A x  is closed for each .x A   
2)    , ,r x a y SA B S  is continuous in  , , .x a y SAS  
3)    = 0a, , ,y x a r x Q  for each  ,x a K  and 

y , where 

    , , = , , = .y x a r z S r x a z y     

4)  ,x aQ  is strongly continuous in  ,x a K , 

i.e., for any  v SB ,    d ,v y y x a Q  is continuous 

in  ,x a K   
Lemma 2.2 Suppose that Assumption A holds. Then, 
 1 ,rD x a

   defined in  is continuous in (6)  ,x a K  
for  0,1 .   

Proof. Let     , , < .a z y
0

:=r z S r x  , ,y x a  

First, we prove that  1 ,rD x a
   is lower 

semi-continuous in  ,x a K  To the end, it suffices to 

show that :=D      1 ,r,x a SA D x a d
   is closed 

for any .d   We observe that  ,x a D  iff for any 

> 0  there exists  such that y

  , , ,y x a r x a Q  and .y d    Now, let a 

sequence   , : = 1,n nx a n 2,  be such that 

 ,n nx a D  and  with n ,n na x x a

 ,x a K . Then, for any > 0,  there exists a se-

quence  ny  with 

  , , | , and .n n n n n ny x a r x a y d  Q   (10) 

Since   ,r SAS B  there is no loss of generality in 
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assuming that n  as  for some y  n  .y  
Obviously it holds from Assumption A 2) that 

   , , , , .limsup n n n
n

y x a r y x a r


        (11) 

We show that 

  , , , , .liminf n n n
n

y x a r y x a r


   0      (12) 

For any   ,r r   0
, , , , <z y x a x a z y  , so that 

there exists 1 2, > 0   such that   1 <z, ,r x a    

2 .y   Therefore, from Assumption A 2) and conver-
gence assumptions there exists N for which z  

 ,n n ny x a  for , which implies (12). Thus, by 
the general convergence theorem (cf. [17]) and (11) and 
(12), we have that 

n  N

  

 

  

, ,limsup

                 , , ,limsu

                 ,

n n n
n

n
n

y x

y x a r x

y x a r x a





   
 















Q

Q

Q

,

p

, , ,

n n

n n

a r x a

a  

and 

  
  

  0

, , ,liminf

               , , ,liminf

               , , , .

n n n n n
n

n n n
n

y x a r x a

y x a r x a

y x a r x a




















Q

Q

Q

 

By Assumption A 3), it holds that 

     , ., , , = , ,lim n n n n n
n

y x a r x a y x a


 Q Q r x a  

Thus, together with (10), we get  

  , , ,y x a r x a Q  

and ,y d    which shows that D  is closed. Simi-
larly, we can prove that 

    1:= , ,rD x a SA D x a d
    

is closed for and  i.e., ,d  1 ,rD x a
    is upper semi- 

continuous in  ,x a K  This shows that  1 ,rD x a
   

is continuous in  ,x a K  as required. □ 
We can be in a position to state the main theorem in 

the discounted case. 
Theorem 2.3. Suppose that Assumption A holds. Then,  
1) The value function DS  is given by 

     =DS DSr h r x x   d ,           (13) 

where    DSh r S  B  is a unique solution to the op-
timality equation of the discounted case, 

       = { , d ,min

for .

DS DS
a A

h r x r x a h r y y x a

x S








  Q }
 (14) 

2) The exists a measurable function :f S  A  with 
   f x A x   for each x S  such that  f x  at-

tains the minimum in (14) and the stationary policy f   
is discount risk-optimal. 

Proof. By Lemma 2.2, 1 ,rD x a
    is continuous in 

 ,x a K . Thus, from the definition (9) of  ,r x a


 and 
Assumption A 4), we observe that  is continu-
ous in 

 ,r x a
 ,x a K  Thus, applying the theory of dis-

counted MDPs (cf. Theorem 4.2.3. in [18]), the assertions 
of Theorem 2.3 follows. This completes the proof. □ 
 
2.3. The Average Case 
 
In order to obtain the optimality equation for the average 
case, we assume that Assumption below holds, which 
guarantees the ergodicity of the process. 

Assumption B. There exists a number  0,1   such 
that 

   
, , ,

, ,sup ' '

' 'x x S a a A

x a x a 2 ,
 

   Q Q     (15) 

where   denotes the variation norm for signed meas-
ures. 

One of sufficient condition for Assumption B to hold, 
easily checked for applications, is as follows (cf. [19, 
20]). 

Assumption B
'
 There exists a measure   on  

with 
SB

  > 0S  such that 

   , for all Sx a  D D DQ .B    (16) 

Theorem 2.4. Suppose that Assumptions A and B hold. 
Then, there exists  v SB  such that 

          = , d ,minAV
a A

r v x r x a v y y x a


   Q .  (17) 

Moreover, there is an average risk-optimal stationary 
policy f   such that  f x A   minimizes the right- 
hand side of (17). 

Proof. We have already obtained that  is con-
tinuous in 

 ,r x a
 ,x a K  So, applying the theory of aver-

age MDPs (cf. Corollary 3.6 in [19]), Theorem 2.4 fol-
lows, as required. □ 
 
3. An Application to Inventory Model 
 
We consider the single-item model with a finite capacity 

<C  , in which the demands   =0t t
 in successive 

periods are i.i.d. with the distribution function 


  on 
 ,= 0   which has a continuous density  x  

w.r.t. the Lebesgue measure .  The state space and 
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action space are  = = 0,S A C  and the set of admissi-
ble actions in state x S  is    = 0, .A x C  x  The 
state tX  denotes the stock level at the beginning of 
period t and action t  is the quantity ordered (and im-
mediate supplied) at the beginning of period t. Putting 
the amount sold during period t, 



 t= min ,t tY X t 

 ,1, 2,

, 
the system equation is given as follows. 

  = 0t t t 
1X X = =t t tY X    .t t    

(18) 

The transition probability  ,x aQ , for any Borel 
subset B of S, becomes 

      d .y y, = B x aB x a  

 r S A S   B

   ,ca h x a  

> 0c

 1

  =y p x a y 

> 0h

Q



p

     (19) 

Also, the immediate reward  is 
given as 

, ,r x a  

where  is the unit sale price,  the unit 
production cost and  unit holding cost. Several 
lemmas are needed for risk analysis. Let 

> 0

  be a random 
variable with a given demand distribution   and 

 for   ,Y x = min .x
 0,1 Lemma 3.1. For ,  is given as  @CV R Y

 
   

@ if 1

@ =

,

@ if 1 > ,
1

p

CV Y p
p

 
 


 
 

 


1

CV R

CV R











R  

(20) 

where =p x 

 

. 
Proof. Recall that 

 1 1

0
dYCV R F p p


 

 
1

@ =
1




 1

.Y  

Since  1 =YF p F p
  if <p p , = x  if ,p p  

(20) follows obviously. □ 
In order to the equivalent MDPs, we specify the im-

mediate reward  r S 

 

A SB  by 

 
 

   
    

 

    ,

= @ = , =

= @ n ,

= @ min ,

t

r x a

CV R r X x a

CV R p x a ca h x a

p CV R x a ca h x a

L x a













   

   

 




,

mi

= ,

x a

ca



  (21) 

where     min , ,L u p C u hu u  

@ .CV R

= @V R

 

  and the 
third equality follows from the monotonicity and homo-
geneous property of  The function L defined 
above is proved to be a convex function. 

Lemma 3.2 The following 1) - 2) hold. 
1)   min , min , min , .a b c a c b d    d  

2) The function  L u  is convex. 
Proof. The proof of 1) is easy, so omitted. Noting from 

1) that       1 2 1min , 1 min , 1u u u           
  2 1 2, .u u umin ,   0,1 ,  For any  we have 

that 

   
     

      
       

1 2

1 2

1 2

1 2

   @ min , 1

= @ min 1 , 1

@ min , 1 min ,

@ min , 1 @ min ,

CV R u u

CV R u u

CV R u u

CV R u CV R u







 

  

    

   

  

 

   

  

    .

 

(22) 

The second and the third inequalities follow from the 
monotonicity and the convexity of , respectively. 
This means that 

@CV R
 L u  is convex. □ 

To applying Theorems 2.3 and 2.4 to inventory prob-
lems, the following is needed. 

Assumption C. It holds that   := d > 0.
c

y y 



We can state the main theorem. 
Theorem 3.3. Suppose that Assumption C holds. Then, 

for each of discounted or average case, there exists a 
constant level stationary policy f 


 which is optimal, 

that is, the ordered amount f x  is 

  if <
=

0 if

x x x x
f x

x x

 




 



          (23) 

for some ,x   where the critical level x  for each 
case is given from the corresponding optimality Equa-
tions (14) and (17). 

Proof. First we verify that 1) - 4) of Assumption A are 
satisfied. A 1) – A 4) are clearly true by definitions. For 
any   0, ,v CB  from (19) it holds that 

        d , = dv y y x a v y x a y y   Q ,  

which is continuous in 

      , = , 0 , 0,x a K x a a C x x C     , 

applying the dominated convergence theorem. We set 
   {0}= 1D .D  Then, assertion (16) in Assumption 

B
'
 holds. Thus, Theorems 2.3 and 2.4 are applicable. 

Since  ,r x a  is convex in , using the result of Igle-
hant [21] (cf. [22]), it follows that the right-hand sides of 
the corresponding optimality equation (14) and (16) are 
convex in 

a

 0,a C .x  So, it is easily shown that 
there exists a risk-optimal policy f   of a constant level 
type (23) for each case. The proof is complete. □ 
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