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Abstract 
The quantization thermal excitation isotherms based on the maximum triad 
spin number (G) of each energy level for metal cluster were derived as a func-
tion of temperature by expanding the binomial theorems according to energy 
levels. From them the quantized geometric mean heat capacity equations are 
expressed in sequence. Among them the five quantized geometric heat capac-
ity equations, fit the best to the experimental heat capacity data of metal 
atoms at constant pressure. In the derivations we assume that the triad spin 
composed of an electron, its proton and its neutron in a metal cluster become 
a basic unit of thermal excitation. Boltzmann constant (kB) is found to be an 
average specific heat of an energy level in a metal cluster. And then the con-
stant (kK) is found to be an average specific heat of a photon in a metal cluster. 
The core triad spin made of free neutrons may exist as the second one addi-
tional energy level. The energy levels are grouped according to the forms of 
four spins throughout two axes. Planck constant is theoretically obtained with 
the ratio of the internal energy of metal (U) to total isotherm number (N) 
through Equipartition theorem. 
 

Keywords 
Statistical Thermodynamics, Quantized Heat Capacity of Metal, Five Energy 
Levels, Binomial Theorem, Boltzmann Constants, Planck Constant 

 

1. Introduction 

The advanced quantized adsorption isotherms derived in the paper [1] fit well to 
the experimental data which BET isotherm does not fit. Using this total isotherm 
we can manage to quantize the excited particles number in setting up the total 
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quantized excitation isotherm. We would like to look up the effects of quantiza-
tion. Several years ago we derived heat capacity equation without quantization 
[2]. Then five geometric mean heat capacity equations are optimized best. After 
then quantization form of heat capacity was derived a little in image study [3]. 
And we have realized that the total quantized excitation isotherm is needed to 
analyze Planck constant.  

The triad spin made of an electron, its proton and its neutron make the har-
monic resonances [4] like Figure 1. In another way the excitation means that the 
metal photon energy of metals is transferred to the measurement gas and the 
de-excitation means that the metal photon energy of quantized triad spin grossly 
reverses measurement gas.  

2. Statistical Modeling  
2.1. Binomial Theorem Model 
The general m quantized equation of the binomial expanding for one is  
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Suppose that since metals can be applied to the generally known electronic 
configurations, they have the consistent spin models as shown in Figure 2 [2]. 
Since only the numbers of electrons according to energy levels in a cluster are 
counted in statistics, the spatial arrangement triad spins in a cluster or the spatial 
arrangement of particles in a triad spin is immaterial. The orbital protons com-
bine with the negative parts of the orbital neutrons and the orbital electrons in 
the outside of the metal atom. When a triad spin excites, the particles (an elec-
tron, its proton and its neutron) in the triad spin excite dependently and simul-
taneously, making photons as showed in Figure 1. This figure predicts the dis-
closure of the coming Figure 3. 

Each energy level has one binomial theorem [5]. Since the excitation energies 
among levels are different, the summation intervals are also different. The max-
imum number of the un-excited triad spin for each level is ( )G Z n  for a metal 
atom. Here Z is the atomic number of the metal and n the number of energy 
 

 
Figure 1. Three resonance (photons) in interferences of the triad. 
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Figure 2. The thermal unexcitation and excitation models of electron, protons and neu-
trons in a pseudo metal cluster. 
 

 
Figure 3. The electromagnetic wave as photons containing neutrons and 5 energy lines 
per particles (protons or electrons). 
 
levels. The summation becomes unity according to the mathematics of binomial 
theorem.  

The number of a triad spin excited with the lowest energy is 1N . The lowest 

energy level has the excitation probability of 1
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K s

Dp W
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 and the 

de-excitation probability of 1
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. In the above 1W  and 

1D  are the decay constant and the excitation energy of a triad spin with the low-
est excitation energy level. The binomial theorem [5] of the lowest energy level 
becomes  
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where  
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If we have the probability function 1hp  for the excited a triad spins of the 
second to nth energy levels and the probability function 11 hp−  for the 
de-excited a triad spins binomial theorems become for 1 1n nG N N N−    
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Let us multiply Equation (1) and Equation (2) side by side. Then we get 
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In the above equation the largest term dominates the probability function. Hence 
using that the total differential equation should be zero so that  
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where 
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11 2 n nN NN NN
m m m m

−= + + + +                 (3.1) 

In Equation (2) 1hW  and 1hD  are the decay constant and the excitation 
energy of a triad spins from the second to nth energy levels. But since all equa-
tions in the first to nth binomial theorems are dependent on one another, they 
are multiplied to meet the excitation of triad spins in metal cluster. 1lD  is 
smaller than 1hD .  

Since each excited triad spin is furnished with the same amount of energy (at 
the same temperature) irrespective of the energy levels, the total excitation (in-
ternal) energy U for all excited triad spins becomes 
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In Equation (4) eu  is the average excitation energy of triad spins. It is consi-
dered that the largest term in Equation (3) dominates the probability function.  

Hence by using Srirling’s approximation, we obtain for 
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2,3,4,n = 
 

Equation (3) and Equation (4) being introduced into the combined thermo-
dynamics 1st and 2nd law equation, d d d dET S U P V Nµ= + −  which becomes 

d d dET S U Nµ= −  at the constant volume of the system, the chemical potential 
of an excited cluster becomes 
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The chemical potential of an unexcited cluster may be generally defined as 
0

lnUE

K k K k k

T
k T k T T
µ µ
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Here, the ideal gas relationship for the de-excited cluster with excited cluster is 
accomplished since Equation (8) can be obtained from Equation (9) in the lite-
rature [6] by plugging PV nRT=  [7] [8]. The excitation of a triad spin is equal 
to one excitation of a gas molecule. Since the excitation is measured at the equi-
librium between the excited cluster and the de-excited cluster, that is, E UEµ µ= , 
by equating Equation (7) to Equation (8) and defining the saturation excitation 
temperature factor, 1sc , we obtain 
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In Equation (9.2) 1n sN −  and nsN  are the numbers of triad spins excited of 
( )1n th−  and nth levels at the saturation excitation temperature ( sT T= ). After 
Equations (5) and (6) being added side by side and by introducing Equation (9) 
into their resulting equations, we obtain  
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where 

sz c x=                         (10.1) 

Equation (10) is the same type equation as the surface adsorption isotherm of 
the gas molecules adsorbed on the general adsorbent [1], but they are different 
each other a little. Here it represents the number of the thermally excited triad 
spins of the lowest energy level of G. In Equation (10) since each level of a metal 
atom contains Z n  triad spins, G becomes AZN n  triad spins for one mole of 
metal atoms (NA = Avogadro number). When three particles in a triad spin make 
three photons, the heaviest neutron among them may make the motion inde-
pendently. Hence by substituting AZN n  instead of G into Equation (10), and 
multiplying Kk  (a specific heat of photons in an average triad spin of a metal 
atom) and 3 for three photons of triad spins we get 
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By substituting Bk  instead of ( ) KZ n k  into Equation (11) we can get the heat 
capacity, 1C  of the lowest energy level of a metal cluster at constant volume as 
follows  
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In Equation (12), ( )A BR N k=  is the universal gas constant. In the above equ-
ations the subscript 1 represents the lowest energy level. The latter agrees with 
ours a little. By introducing Equation (10) into Equation (5) and Equation (6) 
and rearranging after multiplying side by side, the number, nN  of the excited 
triad spins of the nth energy level is obtained as follows 
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For the heat capacities of the other energy levels at constant volume we use 
Equations (5), (6), (10) and (13). Hence the heat capacities of the next higher 
energy levels for 2 3 4 5, , ,N N N N  and 6N  of the excited triad spins in a metal 
cluster at constant volume become 
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At n →∞ , the number of heat capacity equations becomes infinitive. The 
heat capacities can not be added with one another.  

31 2

1 1 1

, ,
NN N

g g g
 and etc. are multiplicative thermodynamic probability (isotherm) 

functions of energy levels 2, 3 and etc. And so we take the geometric mean heat 
capacity equations of the above two or three equations and etc. as follow 

2 1 2mv m mC C C=                      (15.1) 

3
3 1 2 3mv m m mC C C C=                    (15.2) 

4
4 1 2 3 4mv m m m mC C C C C=                   (15.3) 

5
5 1 2 3 4 5mv m m m m mC C C C C C=                 (15.4) 

6
6 1 2 3 4 5 6mv m m m m m mC C C C C C C=                (15.5) 

The geometric mean heat capacity illustrates that the concept of the particles 
and their collisions for the heat capacity of the metal are counted in the cluster.  

Equation (5) and Equation (6) being combined with Equation (10) and Equa-
tion (13), the excitation isotherm equation of the total triad spins in a cluster, 
NN
mG

 from Equation (16) in the paper [2] is obtained as follows 
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Here let us bring Equation (12) in the paper [1] which is not right, and then let 
us correct as follows, since it is necessary to infer the coming equation (18). 
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By using Equation (17), Equation (16) becomes  
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In the above Equation (16) is accomplished thermodynamically.  

2.2. Planck Constant 
We calculated the Planck constant according to temperatures by using the equa-

tion, 
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tegration of Equation (15.4) with Equation (17.1), quantized heat capacity equa-
tion of five energy level, to the total energy of the measurement gas obtained by 

multiplying NA and NN into the combined equation, 1
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ε = ×  of the 

Equipartition theorem, 1
2 Kk Tε =  [8] and the constant 1.438

K
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k
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[cmK/cycle. In the above the internal energy of metal should use the thermody-

namic temperature (
s

T
T

)  

Here, the terminology of the excitation isotherm can be used by being based 
on the saturation excitation temperature (inflection point in heat capacity equa-
tion), Ts. In Equation (16) the total isotherm equation is a linear function of z 
with the unknown variables, , , , , ,s e eA m T n gβ  and σ . Hence it can be obtained 
arithmetically. 

3. Results and Discussion 

We tried to look over the fitting extent of the theoretically quantized heat capac-
ity equations to the experimental heat capacity data of Ag [9], Cu [10], B [11], Ni 
[12] [13], Pd [14] [15], Pt [16], Al [10] and Li [17] at the constant pressure by 
calculating the standard error(σ ). In all figures A means the constant in the 
semi-empirical equation, 2

p v pC C ATC− = . A of boron is negative. It means 
2

v p pC C ATC− =  in the paper [7] (Table 1). 
Equations in paper [7] were calculated by Fortran. Those of this paper are 

calculated by C(C++) language. Quantization should make the standard errors 
of this paper. 

For all metals we obtained the constant parameters and standard error by 
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Table 1. Parameter values and σ  (standard error) value obtained by fitting Equation 
(15.4) ( 5

5 1 2 3 4 5mv m m m m mC C C C C C= ) to experimental heat capacity data of metals at the 

constant pressure. 

para 
metal 1bβ  

sT  
bg  n m A σ 

Ag 
Cu 
B 
Al 
Li 
Ni 
Pd 
Pt 

0.5112 
0.7912 
0.532 
0.9012 
0.1991 
0.7021 
0.4612 
0.2812 

51.0 
72.5 
340 
91.5 
105 
91.5 
66.0 
58.5 

0.9917 
0.9748 
0.5789 
0.8583 
0.9991 
0.7918 
0.9753 
0.9046 

5 
5 
5 
5 
5 
5 
5 
5 

0.9999 
1.100 
1.075 
1.010 
1.019 
1.001 
1.011 
1.024 

0.000039 
0.000043 

0.0000014 
0.0000288 
0.0000292 
0.0000498 
0.0000588 
0.0000542 

0.0253 
0.0385 
0.0486 
0.0504 
0.0434 
0.0423 
0.0233 
0.0349 

 
optimizing the above theoretical heat equation (Equation 15.4) by trial error 
method through the semi-empirical equation to the experimental heat capacity 
data at constant pressure. As we see in Figure 2, the five energy lines correspond 
to five energy resonances including neutrons surrounding and speeding one va-
cuum wave line. Each proton has five energy lines and each electron also five 
energy lines. Five energy lines have the relationship with geometric mean equa-
tion 5

5 1 2 3 4 5mv m m m m mC C C C C C=  fit best to the experimental heat capacity at 
constant pressure. The electromagnetic wave line seems to touch resonances 
photons lightest. The neutrons aid the electromagnetic wave line get speed. 

4.18 = (conversion factor (cal→joule)): 5n =  (energy level): Tmax (equip
artition maximum temperature): 9.273m =  (quantization number):  

( )
1

1
1 11

11
1

1 exp
exp

1 exp

hh K s
e

hK s
h

K s

DW
D DW k T

DW k T W
k T

β

− − − −  =  − −
  

 

(thermodynamic function ratio between low and higher energy levels) lt (l
ow temperature for integration): ht (high temperature of integration): 

0.108995eg =  (testing function); 103 10 cm secc = ×  (speed of light ); 
236.023 10AN = ×  (Avogadro number); 

Generally the used Planck constant {6.625 × 10−4 h/Js} are in 900 K of Table 2
(a) Instead of this we may use {8.286 × 10−33 h/Js} in 900 K of Table 2(b). 

Figure 2 is 5 energy lines per electron or proton. They draw a large ellipse. 
The neutrons charge the electrons and protons n: This value is the number of 
energy lines required to satisfy the heat capacity. Even if they are fractional 
numbers, all heat capacity equations are satisfied.  

The general text books say that there are two kinds of the spins, the upward 
spin ↑  and the downward spin ↓  for the electrons and the upward spin ⇑  
and the downward spin ⇓  for the proton (+neutrons) in an atom. To discern 
the spins upward and downward is the same as to discern left and right and for-
ward and backward. Since the metals have the three dimensional structures, it is 
not reasonable to discern and arrange the spins one dimensionally whether they  
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Table 2. Planck consts obtained from 
max

4.18 2 1.438

A

Uh
c T N NN

× × ×
=

× × ×
 using parameter values 

fitting Equation (15.4) ( 5
5 1 2 3 4 5mv m m m m mC C C C C C= ) to experimental heat capacity data of 

metals at the constant pressure. (a) Saturation temperature = 1 K (Inflection point of sil-
ver heat capacity); (b) Saturation temperature = 12.5 K (Inflection point of silver heat 
capacity) with the constants of above a except for inflection point. 

(a) 

Tmax/K 
Planck 

Const 10−34 h/Js 
Tmax/K 

Planck 
Const 10−34 h/Js 

Tmax/K 
Planck Const 

10−34 h/Js 

25 6.1915 250 6.5113 700 6.6075 

50 6.2985 300 6.5306 800 6.6180 

75 6.3588 400 6.5589 900 6.6268 

100 6.3992 500 6.5589 1000 6.6344 

200 6.4864 600 6.5950 1500 6.6615 

(b) 

Tmax/K 
Planck 

Const 10−33 h/Js 
Tmax/K 

Planck  
Const 10−33 h/Js 

Tmax/K 
Planck Const 

10−33 h/Js 

25 7.7393 250 8.1391Z 700 8.2593 

50 7.8731 300 8.1632 800 8.2725 

50 7.56953 400 8.1986 900 8.2860 

75 7.9485 500 8.1986 1000 8.2930 

200 7.9990 600 8.2437 1500 8.3268 

 
are electrons or protons (+neutrons). In the present study we have assum
ed that the metal atoms have the sphere forms. It is because then metals 
are crystallized with the consistent spins of the particles. Therefore we can 
discern electrons and protons (+neutron) respectively have two kinds of s
pins, ←  and ⇐  (outward) and →  and ⇒  (inward) toward core of sph
ere. Hence we believe that all metal atoms are made of 4 kinds of orbital 
spin including their orbital neutrons and other scant one kind of spins m
ade of the free neutrons as mentioned in the modeling. We call the latter 
the core spin. sP  was the pressure which is 0µ µ= . sT  is also θDs satisfy 
the continuum theory as mentioned in the introduction [5]. The tempera-
ture when 0µ µ= . 0µ  is the chemical potential at the certain basic point.  

4. Conclusion 

The most promising quantized heat capacity equation for metal clusters at the 
constant volume is 5

5 1 2 3 4 5mv m m m m mC C C C C C= . In order to meet this equation 
we suggest that the spin forms of the five energy levels in metal clusters include 
neutrons. Then vacant wave is speeded up by photons made of proton and elec-
tron with neutrons. But photons do not touch wave line. We can get Planck con-
stant of 6.6256 × 10−34 Js at one of the saturation temperatures. But when the 
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saturation temperature is 12.5, the Planck constant becomes 8.286 × 10−33 Js. As 
Quantization is linear, all equations are linear.  
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