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ABSTRACT 

A new modified palm shell activated carbon paste electrode based on 1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxat- 
ridecane, 8,8-(1,4,7,10,13-Pentaoxatridecylene)-diquinoline (Kryptofix®5) and plasticizing agent was prepared and 
studied as Hg2+ selective electrode. The best performance was observed with the electrode composition having the 
ionophore-palm shell activated carbon-plasticizer composition 10%:50%:40% with Nernstian response over the con-
centration range of 1.0 × 10−8 - 1.0 × 10−2 M with a slope of 42 ± 1.5 mV per decade of concentration. The detection 
limit as determined from the calibration plot is 1.0 × 10–7 M. The proposed electrode shows good selectivity for Hg(II) 
with interfering ions. The response time of the electrode is fast (≤10 s), and can be used in the pH range of 3 - 11. The 
electrode was used to determine mercury in drinking water. 
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1. Introduction 

Contaminate water recourses by heavy metal is a serious 
worldwide environmental problem. Many metals such as 
mercury, cadmium, chromium and lead are known to be 
significantly toxic [1].  

The importance of mercury to the environment cannot 
be overemphasized. From an environmental point of view, 
it is highly toxic, causing severe damage to the human 
central nervous system. Mercury concentrations in drink- 
ing, river or sea water are typically below 5 µg·L−1, mak- 
ing it extremely difficult to measure using many tech- 
niques.  

Therefore, measurement of free Hg(II) is important in 
assessing mercury toxicity and environmental monitoring. 
A number of methods, such as atomic absorption spec- 
trometry (AAS) [2,3], inductively coupled plasma [4], 
X-ray fluorescence spectrometry [5], anodic stripping 
voltammetry [6,7] and potentiometry [8,9] have been 
used for determination of mercury in the analytical sam- 
ples. Many sensors for potentiometric determination of 
mercury(II) based on carbon paste CPE [10-16], poly- 
meric membranes PVC [17-25] and coated wire elec- 
trodes [26-30] have been reported. However, these elec- 

trodes are not very fruitful as they have either one, two, 
or in some cases, all the following problems: 1) a high 
detection limit; 2) a narrow working concentration rang; 
3) a long response time; 4) serious interferences from 
various cations. 

Potentiometric sensors based on ion-selective elec- 
trodes are especially suited for determination of several 
chemical species because they offer advantages such as 
selectivity, sensitivity, good precision, simplicity, and 
low cost. 

Carbon-paste electrodes are considered a category of 
ion-selective electrodes that is composed of a carbon 
powder with a pasting liquid (an organic binder). The ad- 
vantages of carbon paste electrodes such as ease of pre- 
paration and use, renewal of surface, chemical inertness, 
robustness, stability of response, low ohmic resistance, 
no need of internal solution and suitability for a variety 
of sensing and detection application drew the attention of 
researchers in recent years where these advantages were 
exploited for various measurements, including potenti-
ometric measurements. 

Palm shell activated carbon is a waste produced during 
palm kernel oil production, which is an important sector 
of Malaysia’s economy. This material is easily available 
at low cost and has good electrochemical properties, such  *University of Malaya, Postgraduate Research Grant (PPP). 
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as good electrical conductivity, chemical and electro- 
chemical inertness, favorable electrochemical behavior 
with analytes, low background current, and high surface 
area [31,32]. 

In this work, the application of Kryptofix®5 as an 
ionophore shown in Figure 1 have been discussed for the 
detection of Hg(II) ions in drinking water samples. The 
sensor responds to Hg(II) ions. The recognition of small 
molecules in binding with heavy metals has gained im- 
portance in the field of research. The Kryptofix®5 has 
two donating nitrogen atoms and five oxygen atoms, low 
molecular weight and flexible structure were expected to 
act as a suitable ionophore in the preparation of carbon 
paste sensors for mercury ions of proper size and charge. 

Structure of 1,13-Bis(8-quinolyl)-1,4,7,10,13-pen- 
taoxatridecane,8,8-(1,4,7,10,13-Pentaoxatridecylene)-di-  
qui-noline (Kryptofix®5). 

2. Materials and Method 

2.1. Materials  

All analytical reagent grade chemicals and distilled, de- 
ionized water were used for preparing all aqueous solu- 
tions. Commercial granular palm shell activated carbon 
(PSAC) was provided by Pacific Activated Carbon a 
local manufacturer in Johor Bahru, Malaysia. Activated 
carbon granules with particle size ˂45 µm were used 
throughhout the experiments. PSAC was washed with 
distilled water and was dried in an oven at 100˚C for 24 h. 
Metal salts as well as the plasticizers, bis(2-ethylhexyl)- 
adipate (DOA), dioctyl phthalate (DOP), tris(2-ethyl-
hexyl) phosphate (DOPh), dioctyl sebacate (DOS), butyl 
phosphate (BPh), dibutyl phosphate (DBPh), and tributyl 
phosphate (TBPh) were purchased from Merck. The 
ionophore Kryptofix®5 was purchased from Sigma-Al-
drich.  
 

 

Figure 1. Structure of 1,13-Bis(8-quinolyl)-1,4,7,10,13-pen- 
taoxatridecane,8,8-(1,4,7,10,13-Pentaoxatridecylene)-di-qui- 
noline (Kryptofix® 5). 

2.2. Experimental Equipments 

All potentiometric measurements were made with a pH/ 
Ion meter (Metrohm-781, Germany) and pH Module 
(Metrohm-867) using proposed sensor in conjunction 
with a double junction Ag/AgCl reference electrode. The 
temperature of the cell holder was maintained at 25˚C. 
The electrochemical cell used for this study as follow: 

Ag(s), AgCl(s), KCl(3M sat.) sample solution modi- 
fied palm shell activated carbon paste electrode. 

Scanning electron micrographs (SEM) of the electrode 
surfaces were obtained by using scanning electron mi- 
croscopy (AMETEK, advanced microanalysis solutions) 
at an accelerating voltage of 25 kV. 

Hg(II) samples were analysed by Inductivity Couple 
Plasma ICP (PerkinElmer, model ICP optima 7000DV).  

2.3. Palm Shell Activated Carbon Paste  
Electrode Preparations and Potential  
Measurements 

Modified palm shell activated carbon paste was prepared 
by mixing of specified amount, as shown in Table 1, of 
palm shell activated carbon powder, Kryptofix®5 and plas- 
tecizer. The constituents were thoroughly hand mixed in a 
50 mm petridish to produce a paste according to opti- 
mum value of ingredients, then the paste poured and 
packed into empty glassy carbon electrode (5 mm dime- 
ter), conected with the pH/Ion meter by a thin copper 
wire to produce electrical contact. The composite surface 
was smoothed on a weighing paper until the surface 
showed shiny appearance and rinsed carefully with dou- 
ble-distilled water prior to each experiment. 

The potentiometric measurements were conducted as 
follows. The modified carbon paste electrode was pleased 
in a stirred 50 ml 0.1 M Hg2+ solution for a given period 
of time untill the potential reading became constant. The 
addition method was used for investigating the electrode 
response characteristics. Mercury salts standard solutions 
were added, so that the mercury concentration ranged 
between 10−8 and 10−1 M. Potential readings were re- 
corded after each addition, when stable values had been 
obtained (usually after 30 - 60 s). Potentiometric selec-
tivity of this electrode towards different cations were 
calculated by using the matched potential method (MPM) 
[33]. In this method, the activity of Hg(II) was increased 
from aA = 1.0 × 10−5 M (primary ion) to áA = 5.0 × 10−5 
M, and the corresponding potential change (ΔE) were 
measured. Then a solution of an interfering ion (aB) in 
the range 1.0 × 10−1 - 1.0 × 10−2 M was added to a new 
primary ion (áA) until the same potential change (ΔE) 
was recorded. The selectivity factor, KpotA,B for each 
interferent was calculated using the following: KpotA,B = 
(áA – aA)/aB.  
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Table 1. Palm shell activated carbon paste electrode compositions and general performance characteristics of mercury (II) 
ion selective electrode. 

Electrode composition (wt%) Electrode characteristics 
Electrode 

No. 
Ionophore PSAC DOP Slope (mV) Linear range (M) 

Detection limit 
(M) 

Response time 
(s) 

1 0 55 45 55.52 10−2 - 10−5 1 × 10−4 15 - 20 

2 0.2 55 44.8 61.86 10−2 - 10−6 1 × 10−6 15 - 20 

3 0.5 55 44.5 59.55 10−2 - 10−6 1 × 10−6 ~15 

4 1 54 45 54.07 10−2 - 10−5 1 × 10−5 ~15 

5 2 54 44 53.73 10−2 - 10−6 1 × 10−6 ~15 

6 4 54 42 62.08 10−2 - 10−7 1 × 10−6 ~15 

7 5 50 45 61.46 10−2 - 10−7 1 × 10−7 ~10 

8 6 52 42 64.46 10−2 - 10−6 1 × 10−7 ~15 

9 8 50 42 55.03 10−2 - 10−7 1 × 10−7 ~15 

10 9 47 44 36.12 10−2 - 10−5 1 × 10−6 ~10 

11 10 50 40 42.41 10−2 - 10−8 1 × 10−7 ˂ 10 

12 15 35 50 47.23 10−2 - 10−6 1 × 10−6 ~15 

13 20 30 50 56.90 10−2 - 10−6 1 × 10−4 15 - 20 

14 20 40 40 48.60 10−2 - 10−5 1 × 10−4 15 - 20 

 
3. Results and Discutions Electrode Response 
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The calibration for the Hg2+-selective electrode over a 
wide range of solution Hg2+ activities is shown in Figure 
2. The slope of the calibration curve (42.41 mV/dec) 
closes to that predicted theoretically (58.5 mV/dec) by 
the Nernst equation, indicating that the electrode was 
sensitive to Hg2+ over a wide range of Hg2+ activities 
(10−7 fold).  
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0   1    2    3    4   5    6    7    8   9   10In addition, the electrode showed a linear response over 
this range of activities, showing departure from linearity 
(i.e. loss of sensitivity) at activities lower than 10–7 M 
Hg2+. 

-log Hg2+  

Figure 2. The calibration curve for a modified palm shell 
activated carbon paste electrode over a wide range of solu-
tion Hg2+ activities. 
 3.2. Effect of Plasticizer 
the selectivity and dynamic response range of ISEs [37]. 
Figure 3 shows the effect of various plasticizers on the 
performance of the mercury ion selective electrode. DOP 
was found to have the widest linear range of the elec- 
trode and the best detection limit among those tested.  

The performance of an ISE electrode depends on its 
composition, especially, the plasticizer [34,35]. A plasti- 
cizer is added to ensure a non-interruption mobility of the 
ions in the paste. The proportion of plasticizer used must 
be optimized in order to minimize the electrical asymme- 
try of the paste, to keep the sensor as clean as possible, 
and to stop leaching to the aqueous phase [36]. It also 
determines the polarity as well as provides mechanical 
strength to the electrode. It is well established that the 
polarity and chemical structure of the plasticizer can 
have a significant influence on the sensitivity, stability,  

The good performances are exhibited in Nernstian 
slope of 42.41 mV/decade, linearity of concentration 
ranges between 1.0 × 10−2 and 1.0 × 10−8 M Hg2+, LOD 
at 1.0 × 10−7 M. Average time required for every success- 
sive measurement to reach stable readings with ±2 mV is 
less than 10s. There is no significant change of slope of 
Nernst plot over a period of 30 days. Other plasticizers, 
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Figure 3. Effect of various plasticizers on the performance 
of the proposed mercury ion selective electrode. 
 
i.e. DOA, DBP, DOS, TBP, BP and DOPh are unsuitable 
as they give sub-Nernstian slopes, slower and narrow li- 
near concentration ranges.  

3.3. Effect of pH on Electrode Response 

The effect of pH of the test solutions (1.0 × 10−4 M and 
1.0 × 10−3 M Hg2+) on the electrode potential was invest- 
tigated by following the potential variation of the elec- 
trode over a pH range of 1 - 12. The pH was adjusted by 
introducing small drops of hydrochloric acid (1 M) and/ 
or sodium hydroxide (2 M) to the sample solution. Fig- 
ure 4 shows the influence of pH on the potential re- 
sponse of the electrode e the sample solution on the po- 
tential response of the developed palm shell activated 
carbon paste electrode toward 1.0 × 10−4 M and 1.0 × 
10−3 M Hg2+. The experimental results show that the po- 
tential remained constant in the pH range of 3 - 11, 
which can be used as the working pH range of the pro- 
posed electrode. However, outside this range, the elec- 
trode responses changed significantly. The diminished 
potential at pH > 11 was due to the interference of OH– 
on the plain. The response at pH < 3 seemed ascribable 
to the competitive blinding of protons to the ligands on 
the electrode surface. 

Under more acidic conditions, the ligand may be pro- 
tonated and thereby losing its capacity to form a complex 
with the metal ions. When the pH is nearly neutral, the 
fundamental cation is [HgOH]+, which reacts with the 
ligand. The drift of potential values at pH is attributed to 
the formation of mercury(II) hydroxide [38,39]. 

3.4. Potentiometric Selectivity Coefficients  

The influence of interfering ions on the response behave- 
ior of an ion-selective electrode has usually been de- 
scribed in terms of selectivity coefficient. Potentiometric  

 

Figure 4. FEffect of pH on the potential response of Hg2+ 
palm shell activated carbon paste electrode. 
 
selectivity factors of the proposed mercury ion selective 
electrode over other ions was very important. The values 
of the selectivity coefficients KpotA,B of the proposed 
electrodes towards different species (B) Table 2, were 
determined by the matched potential method. 

As shown in Table 2, it can be observed, that the pro- 
posed electrodes exhibited better selectivity for Hg(II) 
ions. 

Alkaline and alkaline earth metal ions did not interfere 
with the potentiometric response of the proposed elec- 
trodes. Some transition metal ions exhibited a light inter- 
ference effect on the Hg2+ electrodes, which was more 
elevated in the proposed electrode.  

3.5. Response Time and Life Time 

The response time, defined as the time elapsed from the 
dipping of the electrode in the solution until the equilib- 
rium potential was reached, varied from 5 to 10 s de- 
pending on the analyte concentration. The response time 
of the electrode was faster when the concentration was 
higher. The actual potential vs. time traces are shown in 
Figure 5. The sensing behavior of the membrane elec- 
trode did not depend on whether the potentials were re- 
corded from low to high concentrations or vice versa. 

The proposed electrode can be used for one or more 
months without any deterioration or change in the re- 
sponse of the electrode.  

3.6. Scanning Electron Microscopy Results 

Figure 6 compares the typical morphological features of 
palm shell activated carbon (PSAC) and palm shell acti- 
vated carbon paste electrode based on Kryptofix®5 as 
ionophore (PSACPE) using FESEM. Pure palm shell 
activated carbon PSAC surface (Figure 6(a)) have po- 
rosity properties, smooth surfaces with long linear ridges 
and rough surfaces with oval ridges and micropores. 
Figure 6(b) shows a SEM image of PSACPE with more  
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Table 2. Selectivity coefficients of various ions B with Hg2+ 
activated carbon paste ion selective electrode based on 
Kryptofix® 5 using matched potential method (MPM). 

 

Interferention, 
B 

−log 
KpotA,B 

Interferention, 
B 

−log 
KpotA,B 

Cu2+ 0.86 Na+ 4.55 

Cd2+ 3.81 K+ 4.45 

Ca2+ 4.50 Ni2+ 3.50 

Mg2+ 4.15 Cr3+ 3.83 

Zn2+ 3.55 Co2+ 3.48 

Al3+ 2.80 A+g 1.89 

Fe3+ 2.45 Pb2+ 2.55 
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Figure 5. Response time of the palm shell activated carbon 
paste electrode for Hg2+ with changes of concentration from 
1.0 × 10−7 mol·L−1 to 1.0 × 10−4 mol·L−1. 
 
uniform surface topography and unique structure. Sig- 
nificant differences in the surface structure of PSACPE 
and PSACPE surface after it was dipped in 1 × 10−4 M 
Hg2+ solution for 30 min (Figure 6(c)) are observed. 
Scanning electron microscopy images indicate significant 
improvement in the microstructure of the proposed elec- 
trode. 

Aggregates of white needles were observed in the sur- 
face (Figure 6(c)), which could be presumed to be com- 
plexes formed between the Kryptofix®5 and Hg2+ ions. 

SEM images of (a) Pure PSAC, (b) PSAC paste elec- 
trode and (c) PSAC paste electrode surface after it was 
dipped in 1 × 10−4 M Hg2+.  

3.7. Analytical Applications 

The proposed Hg-PSACPE was successfully applied for  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6. SEM images of (a) Pure PSAC; (b) PSAC paste 
electrode and (c) PSAC paste electrode surface after it was 
dipped in 1 × 10−4 M Hg2+. 
 
determination of Hg2+ in grandwater samples. The results 
were compared with data obtained by ICP (Table 3). The 
water samples were collected from Gaza ground water 
well (Palestine). The results indicate that the concentra- 
tion of Hg(II) in groundwater samples are in good 
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Table 3. Tpotentiometric determination of mercury(II) in 
some groundwater samples using Hg(II) electrode and ICP. 

Hg (II) (mg·L−1)b 
Samplea 

PSACPE ICP RSD% Recovery%

(1) 1.363 2.038 3.36 95.4 

(2) 1.089 1.443 1.10 98.5 

(3) 1.151 1.499 4.81 93.4 

(4) 1.108 1.404 2.27 96.8 

aFrom some ground water wells in Gaza Strip. bMean data for three replicate 
measurements. 
 
agreement with those obtained by ICP method. Thus the 
proposed electrode was highly accurate, precise, and re- 
producible and can be employed for quantification of 
Hg(II) in real samples 

4. Conclusion 

A new chemically modified palm shell activated carbon 
paste electrode (PSACPE) based on Kryptofix®5 as iono- 
phore with simple preparation had fast response for de- 
tection of mercury ions. The electrode had wider working 
concentration range (1 × 10−8 to 1.0 × 10−2 mol L−1, low 
detection limit (1 × 10−7) and low response time (˂10 s). 
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