

Comparative Analysis of Protein Expression Concomitant with DNA Methyltransferase 3A Depletion in a Melanoma Cell Line

Shengnan Tang^{1,#}, Xiaoyan Liu^{1,#}, Tonghua Li^{1*}, Haoyue Wang², Jiangming Sun¹, Qian Qiao¹, Jun Yao³, Jian Fei²

¹Department of Chemistry, Tongji University, Shanghai, China ²School of Life Science & Technology, Tongji University, Shanghai, China ³School of Medicine, Fudan University, Shanghai, China *E-mail:* **lith@tongji.edu.cn Received March* 17, 2011; *revised May* 3, 2011; *accepted June* 1, 2011

Abstract

DNA methyltransferase 3A (Dnmt3a), a de novo methyltransferase, has attracted a great deal of attention for its important role played in tumorigenesis. We have previously demonstrated that melanoma is unable to grow *in-vivo* in conditions of Dnmt3a depletion in a mouse model. In this study, we cultured the Dnmt3a depletion B16 melanoma (Dnmt3a-D) cell line to conduct a comparative analysis of protein expression con-comitant with Dnmt3a depletion in a melanoma cell line. After two-dimensional separation, by gel electro-phoresis and liquid chromatography, combined with mass spectrometry analysis (1DE-LC-MS/MS), the re-sults demonstrated that 467 proteins were up-regulated and 535 proteins were down-regulated in the Dnmt3a-D cell line compared to the negative control (NC) cell line. The Genome Ontology (GO) and KEGG pathway were used to further analyze the altered proteins. KEGG pathway analysis indicated that the MAPK signaling pathway exhibited a greater alteration in proteins, an interesting finding due to the close relation-ship with tumorigenesis. The results strongly suggested that Dnmt3a potentially controls the process of tu-morigenesis through the regulation of the proteins (JNK1, p38 α , ERK1, ERK2, and BRAF) involved in tu-mor-related pathways, such as the MAPK signaling pathway and melanoma pathway.

Keywords: Dnmt3a, Melanoma Cell Line, 1DE-LC-MS/MS; MAPK Signaling Pathway, Melanoma Pathway

1. Introduction

Malignant melanoma, one of the most aggressive of all skin cancers, exhibits a high skin cancer mortality rate [1]. Upon metastasis, the disease is incurable in most affected people as melanoma does not respond to most systemic treatments and chemotherapy drugs [2].

It is well established that malignant melanoma contains at least 50 genes that exhibit differential expression as abnormal methylation changes emerge in the promoter region [3-5], and that DNA methylation patterns are established and maintained by the coordinated action of three DNA methyltransferases (Dnmts). It has been demonstrated that Dnmt1 [6,7], Dnmt3a, and Dnmt3b [8] are over-expressed in many malignant tumors [9]. Dnmt-3a plays an important role in epigenetic modification that has attracted a great deal of attention in recent years [10,11]. It has been reported that epigenetic modification is induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase-Dnmt3a [10]. Additionally, Dnmt3a has been found to maintain DNA methylation and regulate synaptic function in adult forebrain neurons [12]. Furthermore, it has been demonstrated that Dnmt3a-dependent non-promoter DNA methylation facilitates the transcription of neurogenic genes [13]. Recently, studies of Dnmt3a have focused on its effect on proliferation and apoptosis of hepatocellular carcinoma, colorectal cancer and malignant melanoma [14-16] In a previous study we demonstrated that tumor growth inhibition was mediated by Dnmt3a depletion [17].

In this study we describe the proteomic experiment and comparative analysis of protein expression in the

[#]These authors contributed equally to this work.

Dnmt3a depletion B16 melanoma (Dnmt3a-D) cell line. The mouse B16 melanoma cell line used in our study exhibited a specific down-regulation of Dnmt3a via stable transfection using a Dnmt3a-RNAi construct. We obtained the negative control (NC) cell line through use of an unrelated, non-target, shRNA expression vector. Proteins of the NC cell line and Dnmt3a-D cell line were initially separated by one-dimensional gel electrophoresis (1DE), and the two gel tracks were subsequently split into 20 proteome fractions, respectively, and digested by trypsin. The peptide fractions were analyzed by capillary liquid chromatography and high accuracy mass spectrometric acquisition on a LTO-Orbitrap (Thermo Scientific Germany) in the MS/MS mode using various and complementary fragmentation modes. The results of the comparative proteomics demonstrated that Dnmt3a depletion affects a large number of proteins. The Genome Ontology and KEGG pathway were used to group these altered proteins according to respective cellular components, molecular functions, and pathway. The suppressors of skin tumour development JNK1 and $p38\alpha$ [18] were found to be up-regulated in the MAPK signaling pathway of the Dnmt3a-D cell line. The oncogene BRAF was down-regulated in the melanoma pathway of the Dnmt3a-D cell line. These results strongly suggested that Dnmt3a depletion potentially inhibits melanoma tumorigenesis by regulating the proteins involved in tumorrelated pathways.

2. Materials and Methods

2.1. Cell Culture

The B16 cells were purchased from the American Type Culture Collection (Manassas, VA), cultured in DMEM supplemented with 10% FBS, and maintained in a humidified incubator at 37°C and 5% CO₂. The sequence of Dnmt3a shRNA was 5' gtgcagaaacatcgaggacTTCAAGAGAgtcctcgatgtttctg- cac 3'. A non-target shRNA with the sequence 5'gcaagtctaaccaacgcgt TTCAAGAGAacgcgttggtt - agacttgc 3' was used as negative control (NC). The process of small hairpin RNA (shRNA) RNAi was performed as previously described [17]. At this point in the procedure we chose the B16 cells with Dnmt3a depletion (Dnmt3a-D) for further experiments.

2.2. Protein Extraction and Measurement

After harvesting the cells, the following experimental process was conducted (**Figure 1**). The cells were washed 2-3 times in ice-cold phosphate-buffered saline (PBS), lysed in 900 μ L RIPA lysis buffer (Bi Yun Tian Biotechnology Research Institute, China) plus 10 μ L 100 mM phenylmethanesulfonyl fluoride (PMSF) for approximately 10 - 20 min. The samples were incubated for 2 s in an ice bath and exposed to an ultrasonic power of less than 70 W, and then centrifuged for 45 min at 15,000 rpm at 4°C. The supernatants were then collected into eppendorf tubes for the next measurement.

The total protein of the cells was measured using the BCA Protein Assay (Bi Yun Tian Biotechnology Research Institute, China) with bovine serum albumin as a standard recommended by the manufacturer. The protein was stored at -80° C until performance of isoelectro- focusing (IEF).

2.3. 1-DE and In-Gel Tryptic Digestion

In order to conduct proteomic analysis on proteins expressed at a low level, shotgun proteomics based on 1-DE separation of total protein was evaluated in addition to the analysis of peptide mixtures produced by tryptic digestion of proteins in gel fragments by LC-MS/MS. Equal amounts of NC cell protein and Dnmt3a-D cell protein (40 μ g) were prepared in an identical manner. Respective samples were separated using small analytical immobilized pH gradient (IPG) strips (7 cm, 3 - 10 pH gradient; Bio-Rad). The proteins were electro-focused by initially using a voltage of 8 V/cm for the stacking gel, and subsequently increasing the voltage to 15 V/cm for the separating gel.

Figure 1. The experimental process of proteomic methods used in this study.

Gel lanes were excised from the SDS-PAGE gels using a razor blade and were divided into 20 slices according to the distribution of protein (**Figure 2**). The proteins were separated by 12% resolving gel. Each slice was then further divided into approximately 1 mm³ pieces and placed into an eppendorf tube. The proteins were deoxidized, alkylated, dehydrated and digested. The peptide mixtures were extracted with frequent vortexing at 37° C for 30 min. Samples were evaporated to dryness and stored at -20° C until MS analysis.

2.4. LC-MS/MS Analysis

In recent years, the high performance and sensitivity of the linear quadrupole ion trap-orbitrap (LTQ-Orbitrap) mass spectrometer has interested researchers due to the capacity for top-down analysis of complete protein from tissue, body fluid, and cells [19,20].

The sample was separated using online reverse-phase nanoscale capillary liquid chromatography, and then analyzed by electrospray tandem mass spectrometry. The peptide mixtures loaded and desalted on a C18 trap column (0.5 mm diameter, 2 mm, MICHROM,USA) using a Tempo 1D nanoLC system, then separated on a reverse-phase MagicTM C18 column (100 μ m diameter, 15 cm, MICHROM,USA), using a 120 min linear gradient of mobile phase A (0.875% ACN/0.125% FA/99% H₂O) at a flow rate of 500 nL/min. The eluent was analyzed on a

Figure 2. SDS-PAGE patterns of NC cell proteins and Dnmt3a - D cell proteins.

The LTQ-orbitrap operated in positive ion mode to survey full scan mass spectra (from m/z 385 to 2000). The most intense ten ions were selected for tandem mass spectrometry and the lock-mass option was used as described in previously published reports [21].

2.5. Identification and Analysis of Proteins

SEQUEST (V.28 (rev.12) 1998-2007) was used to identify proteins based on MS/MS spectra with Bioworks software (Rev.3.3.1 SP1, Thermo Scientific). We searched both forward and reverse sequences against the Swissport Mouse 090303 database in order to estimate the number of identifications that were false-positive in the sample.

The parameters for the SEQUEST search were comprised of the following criteria: Enzyme, trypsin; Missed cleavage sites, 2; fragment tolerance, 1.0 Da; peptide tolerance, 50.00 ppm; Numerical results, 250; Ion and Ion Series Calculated, b ion and y ion; Peptide matches, 10; Report duplicate peptide matches, 10. Oxidation of methionine, methylation of lysine, as well as phosphorylation of serine, threonine, and tyrosine were specified as variable modifications.

We inputted the DAT files from SEQUEST to the Trans-Proteomic Pipeline (TPP) v4.2 JETSTREAM rev 1 (ISB/SPC Proteomics Tools) and searched by allocating all DAT files in the biological sample. The parameters for peptide identification probability and protein identification probability were both set at 0.95.

The results were exported and the proteins found to be altered in the Dnmt3a-D cell line as compared to the NC cell line were extracted by a program developed in-house. GO terms of altered proteins for cellular component and molecular function were searched and checked by Swiss-Prot (http://expasy.org/sprot/), NCBI (http://www. ncbi.nlm.nih.gov) and PIR (http://pir.georgetown.edu/ pirwww/index.shtml). The pathways of altered proteins were established using the KEGG mapper (http://www. genome.jp/kegg/.html). Demonstration of the role of altered proteins in metabolic channels and signal transduction pathways was considered significant.

3. Results and Discussion

3.1. Cell Harvest

Growth conditions of the two cell lines were optimized in our previously reported experiment [17] Cultured cells were harvested at a confluence level of 90% (**Fig**-

ure 3(a)).

Western blot analysis was employed to test the efficiency and specificity of the Dnmt3a-RNAi. The results demonstrated that stably transfected B16 Dnmt3a-D cells exhibited a remarkably low level of Dnmt3a expression. No change in Dnmt3a expression was observed in the control NC shRNA transfected cells. The expression of Dnmt3b was not affected in the NC or Dnmt3a-D cells, which is in concordance with our findings in our previous experiment (see **Figure 3 (b)** in [17]).

3.2. Difference of Protein Expression between NC and Dnmt3a-D Cell Lines

The NC and Dnmt3a-D cell line proteins identified were compared to determine their overlap (**Figure 3(b)**). There were 2413 proteins in common between the NC and Dnmt3a-D cell lines, and 467 were unique to the Dnmt3a-D cell line and were considered to be up-regulated proteins in the Dnmt3a-D cell line (Supplementary Materials, **Table S1**). There were 535 proteins unique to the NC cell line considered to be down-regulated proteins in the Dnmt3a-D cell line (Supplementary Materials, **Table S2**). The evidence suggests that Dnmt3a potentially either directly or indirectly regulates the expression of altered proteins.

3.3. Genome Ontology of Altered Proteins

In order to evaluate the effect of Dnmt3a depletion on protein expression and to explore the mechanism of Dnmt3a in tumorigenesis, the altered proteins were the principal targets for analysis. The genome ontology cellular localization of altered proteins was as follows: 35% of up-regulated proteins were localized to the cytoplasm, 24% to the nucleus, and 13% to the mitochondrion. The remainder of the up-regulated proteins were classified as golgi, plasma membrane, endoplasmic reticulum, cytoskeleton, extracellular, ribosome, others, and unclassified (28%). The cellular localization of down-regulated proteins was found to be similar to the cellular localization of the up-regulated proteins (Figure 4(a), (b)). This result demonstrated that the altered proteins are primarily concentrated in the cytoplasm, nucleus, and mitochondria.

Among 467 up-regulated proteins, 161 exhibited an activity function (Figure 4(c)). Among the 535 down-regulated proteins, 178 exhibited an activity function (Figure 4(d)).

There were a large number of altered proteins that exhibited catalytic activity and transferase activity, and they played important roles in the methylation, acetylation, glycosylation, and other epigenetic modifications of

Figure 3. Cell Harvest and overlap of proteins between two cell lines. (a)The confluence of NC and Dnmt3a-D cell was more than 90% after two days under microscope. (b)The proteins of NC and Dnmt3a-D cell line identified, and overlap of proteins between the two cell lines.

Figure. 4 Genome Ontology of altered Proteins. (A) Genome ontology cellular localization of up-regulated proteins. (B) Genome ontology cellular localization of down-regulated proteins. (C) Genome ontology molecular function of up-regulated proteins. (D) Genome ontology molecular function of down-regulated proteins.

the proteins. Another function that attracted our attention was phosphotransferase activity, which is essential for protein phosphorylation. It is well understood that protein phosphorylation is closely related to a variety of biological processes, such as DNA damage and repair [22], transcriptional regulation [23], signal transduction, and the regulation of apoptosis [24,25].

3.4. Pathway of Altered Proteins

extracellular, 7,

The altered proteins were grouped according to their respective KEGG pathway (**Figure 5**). The pathways were arranged according to the number of altered proteins. The pathways that included less than 10 altered proteins were not shown. The four pathways with the largest number of altered proteins were metabolic pathways (71 proteins), endocytosis (21 proteins), mitogen activated protein kinase signaling pathway (MAPK signaling pathway, 19 proteins) and pathways in cancer (17 proteins). Among these four pathways, the MAPK sig-

naling pathway, closely related to the cancer and melanoma pathway, and which plays a key role in melanoma tumorigenesis, attracted our attention. The locations of altered proteins in the two pathway maps were established using the KEGG mapper.

3.4.1. MAPK Signaling Pathway

The altered proteins involved in the MAPK signaling pathway are listed in **Table 1**. The locations of the altered proteins involved in the MAPK signaling pathway are marked by pink boxes (up-regulated proteins) and yellow boxes (down-regulated proteins) as shown **in Figure 6**.

The MAPKs belong to a family of highly conserved kinases that convert extracellular signals to intracellular responses. MAPKs are unique to eukaryotes and are important signal transducing enzymes regulated by a phosphorylation cascade. Two upstream protein kinases are activated in the series that leads to the activation of a MAP kinase; additional kinases may also be required upstream of this three-kinase module. After activation, MAPKs phosphorylate specific serine and threonine residues of target substrates, including other protein kinases and many transcription factors. MAPKs are switched off by both generic phosphatases and dualspecificity phosphatases and are further regulated by scaffold proteins, which are usually specific for each of the three major mammalian MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), and p38 MAPK [18,26,27].

Figure 5. The altered proteins were grouped by KEGG pathway.

Fable 1. The altered	l proteins invo	lved in MAPI	K signaling	pathway.
----------------------	-----------------	--------------	-------------	----------

Location in Pathway	Gen Bank ID	Gene name	Synonyms	Name of Altered Protein; ↑: Up-regulated protein; ↓: Down-regulated protein
DIZ A	18747	Prkaca	Pkaca	cAMP-dependent protein kinase catalytic subunit alpha ↑
РКА	18749	Prkacb	Pkacb	cAMP-dependent protein kinase catalytic subunit beta \uparrow
FDV	26413	Mapk1	Erk2, Mapk, Prkm1	Mitogen-activated protein kinase 1/ERK2 ↑
EKK	26417	Mapk3	Erk1, Prkm3	Mitogen-activated protein kinase 3/ERK1 ↑
Ppp3c	19058	Ppp3r1	Cnb	Calcineurin subunit B type 1 ↑
CrkII	12929	Crkl	Crkol	Crk-like protein ↑
HGK	26921	Map4k4	Nik	Mitogen-activated protein kinase kinase kinase kinase 4 \uparrow
JNK	26419	Mapk8	Jnk1, Prkm8	Mitogen-activated protein kinase 8/JNK1 ↑
Cdc42Rac	12540	Cdc42	/	Cell division control protein 42 homolog precursor ↑
MKK3	26397	Map2k3	Mkk3, Prkmk3	Dual specificity mitogen-activated protein kinase kinase 3 \uparrow
P38	26416	Mapk14	Crk1,Csbp1,Csbp2	Mitogen-activated protein kinase 14/ p38a↑
PP2CB	19043	Ppm1b	Pp2c2, Pppm1b	Protein phosphatase 1B ↑
TAB1	66513	Tab1	Map3k7ip1	TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 \uparrow
Rap1	109905	Rap1a	Krev-1	Ras-related protein Rap-1A precursor ↓
RafB	109880	Braf	B-raf	Serine/threonine-protein kinase B-raf \downarrow
cPLA2	18783	Pla2g4a	Cpla2, Pla2g4	Cytosolic phospholipase A2 \downarrow
CASP	12367	Casp3	Cpp32	Caspase-3 precursor ↓
ECSIT	26940	Ecsit	Sitpec	mitochondrial precursor ↓
MKK6	26399	Map2k6	Prkmk6, Sapkk3	Dual specificity mitogen-activated protein kinase kinase 6 \downarrow

Figure 6. The location of altered proteins involved in MAPK signaling pathway from KEGG database.

In recent years, it has been demonstrated that the MAPK signaling pathway plays a key role in the cell cycle and gene expression regulation of various cells. MAP kinases are major components of the pathways that control embryogenesis, cell differentiation, cell proliferation, and cell death. Current research on the three pathways is described in detail, and offers insight into the mechanism of the pathways. Much of the review highlights research into the JNK and p38 MAPK pathways, stress activated protein kinase pathways that are also often deregulated in cancer. JNKs and p38 MAPKs are activated by environmental and genotoxic stress and are associated with tumorigenesis in humans and mice. The function of JNKs and p38 MAPKs in cancer development are complex and correlate with the wide range of cellular responses that they modulate [28,29].

3.4.2. JNK Pathway

Three genes encode the JNK proteins: MAPK8 encodes JNK1/ MAPK8, MAPK9 encodes JNK2/ MAPK9, and MAPK10 encodes JNK3/ MAPK10 [30]. Various JNKs differ substantially in their ability to interact with JUN, a well-established regulator of cell cycle progression [31]. A JNK2 deficiency results in elevated c-Jun phosphorylation and stability, whereas the absence of JNK1 reduces c-Jun phosphorylation and stability. JNK2 preferentially binds to c-Jun in unstimulated cells, thereby con-

tributing to c-Jun degradation. In contrast, JNK1 becomes the major c-Jun interacting kinase after cell stimulation [32]. It has been recently demonstrated that the JNK pathway is linked to p53-dependent senescence via a conditional JNK1 allele [33]. The contribution of JNK1 to tumour development has also been investigated in mouse skin carcinogenesis. JNK1-knockout mice were shown to be more susceptible to tumours of the skin [34]. These results indicate that JNK1 may act as a suppressor of skin tumour development. In this study, JNK1 was found to be up-regulated in the Dnmt3a-D cell line which is unable to grow *in-vivo*, which potentially illustrates the fact that Dnmt3a depletion affects melanoma tumorigenesis by regulation of JNK1 expression.

3.4.3. p38 MAPK Pathway

The p38 MAPKs are activated by the upstream MKK3 and MKK6 kinases as shown in **Figure 6**. There are four genes that encode p38 MAPKs: MAPK14 encodes p38 α /MAPK14; MAPK11 encodes p38 β /MAPK11; MA-PK12 encodes p38 γ /MAPK12; and MAPK13 encodes p38 δ /MAPK13 [35]. Among these, p38 α was found to be up-regulated in the Dnmt3a-D cell line. Most of the published studies that have investigated p38 MAPKs refer to p38 α , as p38 α was highly abundant in most cell types [36]. A stress-activated protein kinase, p38 α suppresses tumor formation by negatively regulating cell cycle progression and proliferation, or by inducing apoptosis [37-40].

There is evidence that indicates that $p38\alpha$ also may be an important regulator of differentiation programs in many cell types, including epithelial lung cells and embryonic stem cells [41,42]. Moreover, p38a directly phosphorylates and modulates the activity of several transcription factors involved in tissue-specific differentiation. The differentiation-inducing activity of $p38\alpha$ may be related to tumour suppression, as $p38\alpha$ activation triggers a high level of specific differentiation and lowers transformed phenotypes in renal carcinoma and colon cancer cell lines compared to cancer cell lines in which $p38\alpha$ has not been activated [43-45]. The function of $p38\alpha$ as a tumour suppressor *in-vivo* has been observed in a mouse model [18]. These results provide a reasonable explanation as to why the Dnmt3a-D cell line with p38a up-regulated is unable to grow in-vivo. Dnmt3a depletion potentially directly or indirectly regulates the expression of $p38\alpha$.

3.4.4. ERK Pathway

ERK1 and ERK2 are ubiquitously expressed, although their relative abundance in tissues is variable. They are stimulated to a certain extent by a vast number of ligands and cellular perturbations, and there is evidence of some cell type specificity [46]. They are highly expressed in postmitotic neurons and other highly differentiated cells [47], and in these cells they are often involved in adaptive responses, such as long-term potentiation [48,49]. The receptor tyrosine kinase uses the ERK1 and ERK2 cell membrane signaling pathway [50-52]. Stimulation of these receptors by the appropriate ligand results is an increase in the catalytic activity of the receptor and subsequent autophosphorylation on tyrosine residues. Phosphorylation of these receptors results in the formation of multiprotein complexes whose organization dictates further downstream signaling events.

The ERK pathway is a major pathway involved in the control of growth signals, cell survival, and invasion.

ERK acts as a central point where multiple signaling pathways coalesce to drive transcription, and it plays a critical role in the pathway downstream of Ras, Raf, and MEK. Melanomas are known to harbour activation mutations for both Ras and BRAF, suggesting that the downstream effector ERK may be playing a key role in the oncogenic behaviour of these tumours. In-vitro studies have demonstrated that melanoma cell lines and tumour tissues exhibit high constitutive ERK activity. The high constitutive ERK activity in melanoma is most likely a consequence of mutations in the upstream components of the MAPK pathway [53,54]. In this study, we found that tumour cells cannot grow normally with ERK1 and ERK2 up-regulated while upstream components B-raf are concurrently down-regulated. Accordingly, we suspected that the activity of ERK1 and ERK2 was limited by the down-regulation of upstream components B-raf. This may account for the ability of Dnmt3a to affect the growth of melanoma by regulating the activity of ERK.

3.4.5. Melanoma Pathway

The altered proteins involved in the melanoma pathway are listed in **Table 2**. The locations of the altered proteins involved in the melanoma pathway are indicated with pink boxes (up-regulated proteins) and yellow boxes (down-regulated proteins) in **Figure 7**. The figure was manually edited. BRAF plays an important role in replicative and oncogene-induced senescence, as indicated by the red oval.

Frequent somatic mutation of BRAF is described in melanoma cell lines, such as the B16 mouse melanoma cell line, and other tumors [55,56]. BRAF is a serine/ threonine kinase that is commonly activated by a somatic point mutation in human cancer, and may provide new therapeutic opportunities for malignant melanoma [57]. Thus, we focused on BRAF in the melanoma pathway.

It has been reported that PTEN deficiency combined with BRAF activation induces a melanoma in-situ like phenotype without dermal invasion [58]. In our study,

Location in Pathway	Gen Bank ID	Gene name	Synonyms	Name of Altered Protein; ↑: Up-regulated protein; ↓: Down-regulated protein
EDV	26413	Mapk1	Erk2, Mapk, Prkm1	Mitogen-activated protein kinase 1 ↑
EKK	26417	Mapk3	Erk1, Prkm3	Mitogen-activated protein kinase 3 \uparrow
BRAF	109880	Braf	B-raf	Serine/threonine-protein kinase B-raf ↓
Raf	109880	Braf	B-raf	Serine/threonine-protein kinase B-raf ↓
CDK4/6	12571	Cdk6	Crk2	Cell division protein kinase 6 ↓

Table 2. The altered proteins involved in melanoma pathway.

Figure 7. The location of altered proteins involved in melanoma pathway from KEGG database.

BRAF was found to be down-regulated in the melanoma pathway of the Dnmt3a-D cell line (**Figure 7**). Most likely, the down-regulated expression of BRAF resulted in the suppression of tumorigenesis. Dnmt3a depletion inhibited the growth of melanoma by directly or indirectly regulating the expression of BRAF.

4. Conclusions

This study demonstrates the varied changes in protein level, and that in the Dnmt3a-D cell line 467 proteins were up-regulated, while 535 proteins were down-regulated as compared to the NC cell line. GO analysis indicated that the altered proteins were primarily concentrated in the cytoplasm, nucleus, and mitochondrion, and that the altered proteins exhibiting activity function were primarily classified as exhibiting catalytic activity, transferase activity, and phosphotransferase activity. KEGG pathway analysis demonstrated that the MAPK signaling pathway exhibited a greater level of altered proteins, a fact that attracted our attention due to the close relationship with tumorigenesis. Taken together, our results strongly suggested that Dnmt3a depletion has a great impact on the expression of melanoma cell proteins. Additionally, Dnmt3a depletion may affect tumorigenesis through regulation of the proteins involved in tumorrelated pathways, such as the MAPK signaling pathway and the melanoma pathway. These results indicated that the tumor-related pathways may be potentially valuable for the treatment of malignant melanoma in the future.

5. Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (20675057, 20705024).

6. References

- A. J. Miller and M. C. Jr Mihm, "Melanoma," *The New England Journal of Medicine*, Vol. 355, 2006, pp. 51-65.
- [2] A. D. Sasse, E. C. Sasse, L. G. Clark, L. Ulloa and O. A. Clark, "Chemoimmunotherapy Versus Chemotherapy for Metastatic Malignant Melanoma," *Cochrane Database System Reviews*, 2007, p. D5413.
- [3] M. F. Paz, M. F. Fraga, S. Avila, M. Guo, M. Pollan, J. G. Herman and M. Esteller, "A Systematic Profile of Dna Methylation in Human Cancer Cell Lines," *Cancer Research*, Vol. 63, 2003, pp. 1114-1121.
- [4] W. M. Gallagher, O. E. Bergin, M. Rafferty, Z. D. Kelly, I. M. Nolan, E. J. Fox, A. C. Culhane, L. McArdle, M. F. Fraga, L. Hughes, C. A. Currid, F. O'Mahony, A. Byrne, A. A. Murphy, C. Moss, S. McDonnell, R. L. Stallings, J. A. Plumb, M. Esteller, R. Brown, P. A. Dervan and D. J. Easty, "Multiple Markers for Melanoma Progression Regulated by Dna Methylation: Insights From Transcriptomic Studies," *Carcinogenesis*, Vol. 26, No. 11, 2005, pp. 1856-1867.
- [5] P. A. Van der Velden, W. Zuidervaart, M. H. Hurks, S. Pavey, B. R. Ksander, E. Krijgsman, R. R. Frants, C. P. Tensen, R. Willemze, M. J. Jager and N. A. Gruis, "Expression Profiling Reveals that Methylation of Timp3 is Involved in Uveal Melanoma Development," *Interna*-

tional Journal of Cancer, Vol. 106, No. 4, 2003, pp. 472-479.

- [6] E. Li, T. H. Bestor, and R. Jaenisch, "Targeted Mutation of the Dna Methyltransferase Gene Results in Embryonic Lethality," *Cell*, Vol. 69, No. 6, 1992, pp. 915-926.
- [7] H. Lei, S. P. Oh, M. Okano, R. Juttermann, K. A. Goss, R. Jaenisch and E. Li, "De Novo Dna Cytosine Methyltransferase Activities in Mouse Embryonic Stem Cells," *Development*, Vol. 122, 1996, pp. 3195-3205.
- [8] M. Okano, D. W. Bell, D. A. Haber and E. Li, "Dna Methyltransferases Dnmt3a and Dnmt3B are Essential for De Novo Methylation and Mammalian Development," *Cell*, Vol. 99, No, 3, 1999, pp. 247-257.
- [9] K. D. Robertson, E. Uzvolgyi, G. Liang, C. Talmadge, J. Sumegi, F. A. Gonzales and P. A. Jones, "The Human Dna Methyltransferases (Dnmts) 1, 3a and 3B: Coordinate Mrna Expression in Normal Tissues and Overexpression in Tumors," *Nucleic Acids Research*, Vol. 27, No. 11, 1999, pp. 2291-2298. doi:org/10.1093/nar/27.11.2291
- [10] D. L. Zheng, L. Zhang, N. Cheng, X. Xu, Q. Deng, X. M. Teng, K. S. Wang, X. Zhang, J. Huang and Z. G. Han, "Epigenetic Modification Induced by Hepatitis B Virus X Protein Via Interaction with De Novo Dna Methyltransferase Dnmt3a," *Journal of Hepatology*, Vol. 50, No. 2, 2009, pp. 377-387. doi:org/10.1016/j.jhep.2008.10.019
- [11] D. V. Maltseva, A. A. Baykov, A. Jeltsch, and E. S. Gromova, "Impact of 7,8-Dihydro-8-Oxoguanine On Methylation of the Cpg Site by Dnmt3a," *Biochemistry*, Vol. 48, No. 6, 2009, pp. 1361-1368.
- [12] J. Feng, Y. Zhou, S. L. Campbell, Le T, E. Li, J. D. Sweatt, A. J. Silva and G. Fan, "Dnmt1 and Dnmt3a Maintain Dna Methylation and Regulate Synaptic Function in Adult Forebrain Neurons," *Nature Neuroscience*, Vol. 13, 2010, pp. 423-430. doi:org/10.1038/nn.2514
- [13] H. Wu, V. Coskun, J. Tao, W. Xie, W. Ge, K. Yoshikawa, E. Li, Y. Zhang and Y. E. Sun, "Dnmt3a-Dependent Nonpromoter Dna Methylation Facilitates Transcription of Neurogenic Genes," *Science*, Vol. 329, No. 5990, 2010, pp. 444- 448.
- [14] J. Nawarak, R. Huang-Liu, S. H. Kao, H. H. Liao, S. Sinchaikul, S. T. Chen and S. L. Cheng, "Proteomics Analysis of a375 Human Malignant Melanoma Cells in Response to Arbutin Treatment," *Biochim Biophys Acta*, Vol. 1794, No. 2, 2009, pp. 159-167.
- [15] Y. Zhang, Y. Gao, G. Zhang, S. Huang, Z. Dong, C. Kong, D. Su, Du J, S. Zhu, Q. Liang, J. Zhang, J. Lu, and B. Huang, "Dnmt3a Plays a Role in Switches Between Doxorubicin-Induced Senescence and Apoptosis of Colorectal Cancer Cells," *International Journal of Cancer*, Vol. 128, No. 3, 2010, pp. 551-561.
- [16] Z. Zhao, Q. Wu, J. Cheng, X. Qiu, J. Zhang and H. Fan, "Depletion of Dnmt3a Suppressed Cell Proliferation and Restored Pten in Hepatocellular Carcinoma Cell," *Journal of Biomedicine and Biotechnology*, Vol. 2010, Vol. 2010, pp. 737535-737545. doi:org/10.1155/2010/737535

- [17] T. Deng, Y. Kuang, L. Wang, J. Li, Z. Wang, and J. Fei, "An Essential Role for Dna Methyltransferase 3a in Melanoma Tumorigenesis," *Biochemical and Biophysical Reseasch Communications*, Vol. 387, No. 3, 2009, pp. 611-616. doi:org/10.1016/j.bbrc.2009.07.093
- [18] E. F. Wagner and A. R. Nebreda, "Signal Integration by Jnk and P38 Mapk Pathways in Cancer Development," *Nature Reviews Cancer*, Vol. 9, 2009, pp. 537-549. doi:org/10.1038/nrc2694
- [19] A. Zougman, B. Pilch, A. Podtelejnikov, M. Kiehntopf, C. Schnabel, C. Kumar and M. Mann, "Integrated Analysis of the Cerebrospinal Fluid Peptidome and Proteome," *Journal of Proteome Research*, Vol. 7, 2008, pp. 386-399. doi:org/10.1021/pr070501k
- [20] B. Macek, L. F. Waanders, J. V. Olsen and M. Mann, "Top-Down Protein Sequencing and Ms3 On a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer," *Mol Cell Proteomics*, Vol. 5, 2006, pp. 949-958.
- [21] J. V. Olsen, L. M. de Godoy, G. Li, B. Macek, P. Mortensen, R. Pesch, A. Makarov, O. Lange, S. Horning and M. Mann, "Parts Per Million Mass Accuracy On an Orbitrap Mass Spectrometer Via Lock Mass Injection Into a C-Trap," *Mol Cell Proteomics*, Vol. 4, 2005, pp. 2010-2021. doi:org/10.1074/mcp.T500030-MCP200
- [22] S. K. Binz, A. M. Sheehan and M. S. Wold, "Replication Protein a Phosphorylation and the Cellular Response to Dna Damage," *DNA Repair (Amst)*, Vol. 3, No. 8-9, 2004, pp. 1015-1024. doi:org/10.1016/j.dnarep.2004.03.028
- [23] M. S. Kobor and J. Greenblatt, "Regulation of Transcription Elongation by Phosphorylation," *Biochim Biophys Acta*, Vol. 1577, No. 2, 2002, pp. 261-275.
- [24] H. Ohkura, "Phosphorylation: Polo Kinase Joins an Elite Club," *Current Biology*, Vol. 13, 2003, pp. R912-R914. doi:org/10.1016/j.cub.2003.11.012
- [25] P. P. Ruvolo, X. Deng and W. S. May, "Phosphorylation of Bcl2 and Regulation of Apoptosis," *Leukemia*, Vol. 15, No. 4, 2001, pp. 515-522.
- [26] L. Chang and M. Karin, "Mammalian Map Kinase Signalling Cascades," *Nature*, Vol. 410, No. 6824, 2001, pp. 37-40.
- [27] J. M. Kyriakis and J. Avruch, "Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation," *Physiological Reviews*, Vol. 81, No. 2, 2001, pp. 807-869.
- [28] A. R. Nebreda and A. Porras, "P38 Map Kinases: Beyond the Stress Response," *Trends in Biochemical Sciences*, Vol. 25, No. 6, 2000, pp. 257-260. doi:org/10.1016/S0968-0004(00)01595-4
- [29] M. Karin and E. Gallagher, "From Jnk to Pay Dirt: Jun Kinases, their Biochemistry, Physiology and Clinical Importance," *Iubmb Life*, Vol. 57, No. 4-5, 2005, pp. 283-295.<u>doi:org/10.1080/15216540500097111</u>
- [30] S. Gupta, T. Barrett, A. J. Whitmarsh, J. Cavanagh, H. K. Sluss, B. Derijard and R. J. Davis, "Selective Interaction of Jnk Protein Kinase Isoforms with Transcription Factors," *EMBO Journal*, Vol. 15, 1996, pp. 2760-2770.
- [31] R. Eferl and E. F. Wagner, "Ap-1: A Double-Edged

Sword in Tumorigenesis," *Nature Reviews Cancer*, Vol. 3, 2003, pp. 859-868. doi:org/10.1038/nrc1209

- [32] K. Sabapathy, K. Hochedlinger, S. Y. Nam, A. Bauer, M. Karin and E. F. Wagner, "Distinct Roles for Jnk1 and Jnk2 in Regulating Jnk Activity and C-Jun-Dependent Cell Proliferation," *Molecular Cell*, Vol. 15, No. 5, 2004, pp. 713-725. doi:org/10.1016/j.molcel.2004.08.028
- [33] M. Das, F. Jiang, H. K. Sluss, C. Zhang, K. M. Shokat, R. A. Flavell and R. J. Davis, "Suppression of P53-Dependent Senescence by the Jnk Signal Transduction Pathway," *Proceedingof the Natlonal Academy Sciences of the U S A*, Vol. 104, 2007, pp. 15759-15764. doi:org/10.1073/pnas.0707782104
- [34] D. Morse, L. E. Otterbein, S. Watkins, S. Alber, Z. Zhou, R. A. Flavell, R. J. Davis and A. M. Choi, "Deficiency in the C-Jun Nh2-Terminal Kinase Signaling Pathway Confers Susceptibility to Hyperoxic Lung Injury in Mice," *American Journal of Physiology-Lung Cellular Molecular Physiology*, Vol. 285, No. 1, 2003, pp. L250-L257.
- [35] J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter and Al. Et, "A Protein Kinase Involved in the Regulation of Inflammatory Cytokine Biosynthesis," *Nature*, Vol. 372, 1994, pp. 739-746.
- [36] K. Ono and J. Han, "The P38 Signal Transduction Pathway: Activation and Function," *Cellular Signalling*, Vol. 12, No. 1, 2000, pp. 1-13.
 <u>doi:org/10.1016/S0898-6568(99)00071-6</u>
- [37] D. V. Bulavin and AJ Jr Fornace, "P38 Map Kinase's Emerging Role as a Tumor Suppressor," Advances In Cancer Research, Vol. 92, 2004, pp. 95-118. doi:org/10.1016/S0065-230X(04)92005-2
- [38] I. Dolado, A. Swat, N. Ajenjo, G. De Vita, A. Cuadrado and A. R. Nebreda, "P38Alpha Map Kinase as a Sensor of Reactive Oxygen Species in Tumorigenesis," *Cancer Cell*, Vol. 11, No. 2, 2007, pp. 191-205.
- [39] F. B. Engel, M. Schebesta, M. T. Duong, G. Lu, S. Ren, J. B. Madwed, H. Jiang, Y. Wang and M. T. Keating, "P38 Map Kinase Inhibition Enables Proliferation of Adult Mammalian Cardiomyocytes," *Genes Development*, Vol. 19, 2005, pp. 1175-1187. <u>doi:org/10.1101/gad.1306705</u>
- [40] L. J. Hui, L. Bakiri, A. Mairhorfer, N. Schweifer, C. Haslinger, L. Kenner, V. Komnenovic, H. Scheuch, H. Beug and E. F. Wagner, "P38X3B1; Suppresses Normal and Cancer Cell Proliferation by Antagonizing the JnkX2013;C-Jun Pathway," *Nature Genetics*, Vol. 39, 2007.
- [41] A. Jones and A. Charlton, "Determination of Metaldehyde in Suspected Cases of Animal Poisoning Using Gas Chromatography-Ion Trap Mass Spectrometry," *Journal Agric Food Chemistry*, Vol. 47, No. 11, 1999, pp. 4675-4677. doi:org/10.1021/jf990026d
- [42] X. Wang, C. H. Goh and B. Li, "P38 Mitogen-Activated Protein Kinase Regulates Osteoblast Differentiation through Osterix," *Endocrinology*, Vol. 148, 2007, pp. 1629-1637.
- [43] C. Hikita, S. Vijayakumar, J. Takito, H. Erdjument-Bromage, P. Tempst and Q. Al-Awqati, "Induction of

Terminal Differentiation in Epithelial Cells Requires Polymerization of Hensin by Galectin 3," *Journal of Cell Biology*, Vol. 151, No. 6, 2000, pp. 1235-1246. doi:org/10.1083/jcb.151.6.1235

- [44] P. Ordonez-Moran, M. J. Larriba, H. G. Palmer, R. A. Valero, A. Barbachano, M. Dunach, A. G. de Herreros, C. Villalobos, M. T. Berciano, M. Lafarga and A. Munoz, "Rhoa-Rock and P38Mapk-Msk1 Mediate Vitamin D Effects On Gene Expression, Phenotype and Wnt Pathway in Colon Cancer Cells," *Journal of Cell Biology*, Vol. 183, No. 4, 2008, pp. 697-710. doi:org/10.1083/jcb.200803020
- [45] G. J. Finn, B. S. Creaven and D. A. Egan, "Daphnetin Induced Differentiation of Human Renal Carcinoma Cells and its Mediation by P38 Mitogen-Activated Protein Kinase," *Biochemical Pharmacology*, Vol. 67, 2004, pp. 1779-1788. doi:org/10.1016/j.bcp.2004.01.014
- [46] T. S. Lewis, P. S. Shapiro and N. G. Ahn, "Signal Transduction through Map Kinase Cascades," *Advances In Cancer Research*, Vol. 74, 1998, pp. 49-139. doi:org/10.1016/S0065-230X(08)60765-4
- [47] T. G. Boulton, S. H. Nye, D. J. Robbins, N. Y. Ip, E. Radziejewska, S. D. Morgenbesser, R. A. DePinho, N. Panayotatos, M. H. Cobb and G. D. Yancopoulos, "Erks: A Family of Protein-Serine/Threonine Kinases that are Activated and Tyrosine Phosphorylated in Response to Insulin and Ngf," *Cell*, Vol. 65, 1991, pp. 663-675.
- [48] C. M. Atkins, J. C. Selcher, J. J. Petraitis, J. M. Trzaskosand J. D. Sweatt, "The Mapk Cascade is Required for Mammalian Associative Learning," *Nature Neuroscience*, Vol. 1, 1998, pp. 602-609. <u>doi:org/10.1038/2836</u>
- [49] R. Brambilla, N. Gnesutta, L. Minichiello, G. White, A. J. Roylance, C. E. Herron, M. Ramsey, D. P. Wolfer, V. Cestari, C. Rossi-Arnaud, S. G. Grant, P. F. Chapman, H. P. Lipp, E. Sturani and R. Klein, "A Role for the Ras Signalling Pathway in Synaptic Transmission and Long-Term Memory," *Nature*, Vol. 390, 1997, PP. 281-286.
- [50] G. Pearson, F. Robinson, Gibson T. Beers, B. E. Xu, M. Karandikar, K. Berman and M. H. Cobb, "Mitogen-Activated Protein (Map) Kinase Pathways: Regulation and Physiological Functions," *Endocrine Reviews*, Vol. 22, No. 2, 2001, pp. 153-183. doi:org/10.1210/er.22.2.153
- [51] T. Pawson and J. D. Scott, "Signaling through Scaffold, Anchoring, and Adaptor Proteins," *Science*, Vol. 278, No. 5346, 1997, pp. 2075-2080.
- [52] T. Hunter, "Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling," *Cell*, Vol. 80, No. 2, 1995, pp. 225-236.
- [53] A. M. Aronov, C. Baker, G. W. Bemis, J. Cao, G. Chen, P. J. Ford, U. A. Germann, J. Green, M. R. Hale, M. Jacobs, J. W. Janetka, F. Maltais, G. Martinez-Botella, M. N. Namchuk, J. Straub, Q. Tang and X. Xie, "Flipped Out: Structure-Guided Design of Selective Pyrazolylpyrrole Erk Inhibitors," *Journal of Medicinal Chemistry*, Vol. 50, No. 5, 2007, pp. 1280-1287. doi:org/10.1021/jm061381f
- [54] K. S. Smalley, "A Pivotal Role for Erk in the Oncogenic Behaviour of Malignant Melanoma?" International

Journal of Cancer, Vol. 104, No. 5, 2003, pp. 527-532. doi:org/10.1002/ijc.10978

- [55] H. Gear, H. Williams, E. G. Kemp and F. Roberts, "Braf Mutations in Conjunctival Melanoma," *Invest Ophthalmology Visual Science*, Vol. 45, No. 8, 2004, pp. 2484-2488. doi:org/10.1167/iovs.04-0093
- [56] V. K. Goel, A. J. Lazar, C. L. Warneke, M. S. Redston and F. G. Haluska, "Examination of Mutations in Braf, Nras, and Pten in Primary Cutaneous Melanoma," *Journal of Investigative Dermatology*, Vol. 126, 2006, pp. 154-160.
- [57] H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A.

Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton and P. A. Futreal, "Mutations of the Braf Gene in Human Cancer," *Nature*, Vol. 417, No. 6892, 2002, pp. 949-954.

[58] R. S. Lo and O. N. Witte, "Transforming Growth Factor-Beta Activation Promotes Genetic Context-Dependent Invasion of Immortalized Melanocytes," *Cancer Research*, Vol. 68, No. 4248, 2008, pp. 4248-4257. doi:org/10.1158/0008-5472.CAN-07-5671

Supporting Information Available

There are 467 proteins were up-regulated (Supplementary Materials, **Table S1**) and 535 proteins were down-regulated (Supplementary Materials, **Table S2**) in the Dnmt3a-D cell line as compared with the NC cell line. Supplementary materials **Table S3** including the abbreviated words and their full name.

protein	Protein probability	num unique peps	precursor ion charge	peptide sequence
sp Q8CGP0 H2B3B_MOUSE	0.9997	2	2	AMGIMNSFVNDIFER
sp Q8QZT1 THIL_MOUSE	1	18	2	ASKPTLNEVVIVSAIR
sp Q9QZQ8 H2AY_MOUSE	1	9	2	AASADSTTEGTPTDGFTVLSTK
sp O88544 CSN4_MOUSE	1	11	2	AIQLSGTEQLEALK
sp Q9CR16 PPID_MOUSE	1	15	2	DGSGDSHPDFPEDADIDLK
sp Q9WVJ2 PSD13_MOUSE	1	10	2	LYENFISEFEHR
sp P40336 VP26A_MOUSE	1	11	2	ELALPGELTQSR
sp Q921H8 THIKA_MOUSE	1	12	2	AEELGLPILGVLR
sp P63085 MK01_MOUSE	1	12	2	FDM[147]ELDDLPK
sp Q9QWL7 K1C17_MOUSE	1	5	2	LLEGEDAHLTQYK
sp Q99J62 RFC4_MOUSE	1	10	2	AITFLQSATR
sp Q60737 CSK21_MOUSE	1	11	2	GGPNIITLADIVK
sp Q91WK2 EIF3H_MOUSE	1	11	2	LFM[147]AQALQEYNN
sp O54984 ARSA1_MOUSE	1	8	2	GM[147]NFSVVVFDTAPTGH
sp Q07417 ACADS_MOUSE	1	10	2	GISAFLVPM[147]PTPGLTLGK
sp Q99KV1 DJB11_MOUSE	1	7	2	FQDLGAAYEVLSDSEK
sp Q9DAR7 DCPS_MOUSE	1	9	2	IVFENPDPSDGFVLIPDLK
sp Q9R1T2 SAE1_MOUSE	1	9	2	AQNLNPM[147]VDVK
sp Q9D0M1 KPRA_MOUSE	1	10	2	GQDIFIIQTIPR
sp Q9JHJ0 TMOD3_MOUSE	1	7	2	DLGDYKDLDEDELLGK
sp Q9Z2K1 K1C16_MOUSE	1	4	2	TRLEQEIATYR
sp Q9Z1G3 VATC1_MOUSE	1	11	2	VAQYM[147]ADVLEDSKDK

Table S1

sp P70362 UFD1_MOUSE	1	7	2	FQPQSPDFLDITNPK
sp P47811 MK14_MOUSE	1	9	2	HENVIGLLDVFTPAR
sp Q9R0U0 FUSIP_MOUSE	1	6	2	GFAYVQFEDVR
sp P63276 RS17_MOUSE	1	3	2	IAGYVTHLM[147]K
sp Q9CXW2 RT22_MOUSE	1	8	2	LM[147]TQAQLEEATR
sp Q6Y7W8 PERQ2 MOUSE	1	9	2	EVESPYEVHDYTR
sp O9CPX6 ATG3 MOUSE	1	5	2	LWLFGYDEOR
sp P70318 TIAR MOUSE	1	4	2	FEDVVNOSSPK
sp[P05132]KAPCA_MOUSE	1	9	2	ILOAVNFPFLVK
splO9DBS1/TMM43_MOUSE	1	9	2	LLSDPNYGVHLPAVK
sp P54923 ADPRH_MOUSE	1	7	3	DGETIHOOLAOM[147]GDLEAIDVAR
spl09D7G0lPRPS1_MOUSE	1	6	2	IFSGSSHODLSOK
splQ9ER00ISTX12_MOUSE	1	4	2	FLGSLPLPLSASEOR
splQ9ER88 BT29_MOUSE	1	6	2	EDOPLEASTWIK
spiQ2ER00[R122_MOUSE	1	6	2	
spiQ92000/01FC1_MOUSE	1	4	2	
	1	4	2	
splQ9CQ11 E12BL_MOUSE	1	6	2	AGAGGPGLAALVAFVK
sp Q9WUL7 ARL3_MOUSE	1	6	2	LNVWDIGGQR
sp P47964 RL36_MOUSE	0.9975	2	2	YPM[147]AVGLNK
sp P26516 PSD7_MOUSE	1	5	2	TNDQM[147]VVVYLASLIR
sp Q8K157 GALM_MOUSE	1	4	2	VSPDGEEGYPGELK
sp P58774 TPM2_MOUSE	0.9994	1	2	ATDAEADVASLNR
sp P61963 WDR68_MOUSE	1	3	2	DM[147]FASVGADGSVR
sp Q64442 DHSO_MOUSE	1	4	2	AM[147]GAAQVVVTDLSASR
sp Q99J09 MEP50_MOUSE	1	4	2	IWDLAQQVSLNSYR
sp Q9CX34 SUGT1_MOUSE	1	6	2	DYASALETFAEGQK
sp Q9QYA2 TOM40_MOUSE	1	6	2	FVNWQVDGEYR
sp Q9QYJ3 DNJB1_MOUSE	1	6	2	DGSDVIYPAR
sp P68181 KAPCB_MOUSE	0.9987	1	2	ILQAVEFPFLVR
sp Q60766 IRGM_MOUSE	1	5	2	DLSTSVLSEVR
sp Q64213 SF01 MOUSE	1	4	3	ILRPWQSSETR
sp Q8R323 RFC3 MOUSE	1	7	2	AIYHLEAFVAK
sp O8R574 KPRB_MOUSE	1	5	2	IFVM[147]ATHGLLSSDAPR
sp O99JB2 STML2_MOUSE	1	4	2	AEOINOAAGEASAVLAK
spl09E080INIF3L_MOUSE	1	5	2	TLM[147]OVLAFLSODR
spl09ILC8ISACS_MOUSE	1	9	2	LILVINK
spl009174 AMACR MOUSE	1	5	2	GONIL DGGAPEVTTVK
spi005174 AMACK_MOUSE	1	7	2	OTOL TTDGL PL GINL GK
spl03343311 KD_MOUSE	1	5	2	
	1	5	2	
spip/069/IDCUP_MOUSE	1	5	2	EVQQM[147]EDDFGPQK
sp Q6118/ 1S101_MOUSE	1	5	2	ELVNLIGIIPVK
sp Q6PD19 CJ076_MOUSE	I	6	2	LQDGLDQYER
sp Q91WM2 CECR5_MOUSE	1	5	2	QM[147]LVSGQGPLVENAR
sp P18872 GNAO_MOUSE	0.9998	2	2	TTGIVETHFTFK
sp P47941 CRKL_MOUSE	1	4	2	IHYLDTTTLIEPAPR
sp Q8VDT9 RM50_MOUSE	1	5	2	DVLDFYNVPVQDK
sp Q99M71 EPDR1_MOUSE	1	3	2	ALVSYDGLNQR

sp Q9WTQ8 TIM23_MOUSE	1	3	2	NVQILNM[147]VTR
sp Q80WQ2 VAC14_MOUSE	1	4	2	DFVAQNNTM[147]QIK
sp Q9CQ92 FIS1_MOUSE	1	2	2	GLLQTEPQNNQAK
sp Q9CXE7 TMED5_MOUSE	1	4	2	LEDILESINSIK
sp Q9DC50 OCTC_MOUSE	1	5	2	AASDLQIAASTFTSFGK
sp Q9JK48 SHLB1_MOUSE	1	4	2	LAADAGTFLSR
sp Q8K0D0 PCTK2_MOUSE	1	4	2	LDSEGIELITK
sp Q99J95 CDK9_MOUSE	0.9997	3	2	LADFGLAR
sp P21278 GNA11_MOUSE	1	6	2	IATVGYLPTQQDVLR
sp Q8BMS9 RASF2_MOUSE	1	5	2	TSVFTPAYGSVTNVR
sp Q99JT2 MST4_MOUSE	1	3	2	LADFGVAGQLTDTQIK
sp O70493 SNX12_MOUSE	0.9966	2	2	TNLPIFK
sp O08915 AIP_MOUSE	1	3	2	VLELDPALAPVVSR
sp P59708 PM14_MOUSE	1	3	2	GTAYVVYEDIFDAK
sp P70404 IDH3G_MOUSE	1	6	2	ENTEGEYSSLEHESVAGVVESLK
sp Q80V26 IMPA3_MOUSE	1	3	2	EM[147]LAVAVLAAER
sp Q8BGR9 UBCP1_MOUSE	1	4	2	LDDFLELNHK
sp Q8BTZ7 GMPPB_MOUSE	1	5	2	ALILVGGYGTR
sp Q8N9S3 AHSA2_MOUSE	1	4	2	LQASPVALGVR
sp Q91YM2 GRLF1_MOUSE	1	6	2	EQLTEGEEIAQEIDGR
sp Q99JF8 PSIP1_MOUSE	1	4	2	QVDTEEAGM[147]VTAATASNVK
sp Q9CQR4 THEM2_MOUSE	1	2	2	TLAFASVDLTNK
sp Q9CXY9 GPI8_MOUSE	1	3	2	NVLITDFFGSVR
sp Q9JHI5 IVD_MOUSE	1	4	2	IGQFQLM[147]QGK
sp Q9WVL0 MAAI_MOUSE	1	2	2	VITSGFNALEK
sp O08583 THOC4_MOUSE	1	3	2	QQLSAEELDAQLDAYNAR
sp Q63844 MK03_MOUSE	1	3	2	FDM[147]ELDDLPK
sp Q00899 TYY1_MOUSE	1	3	2	TLEGEFSVTM[147]WSSDEKK
sp Q3URS9 CCD51_MOUSE	1	4	2	EDNQYLELATLEHR
sp Q8R2U6 NUDT4_MOUSE	1	2	2	LLGIFENQDR
sp P13011 ACOD2_MOUSE	0.9913	1	2	DDLYDPTYQDDEGPPPK
sp O70439 STX7_MOUSE	1	2	2	TLNQLGTPQDSPELR
sp O88543 CSN3_MOUSE	1	2	2	AM[147]DQEITVNPQFVQK
sp P47199 QOR_MOUSE	1	3	2	VFEFGGPEVLK
sp Q8BG94 COMD7_MOUSE	1	3	2	FGVTSGSSELEK
sp Q8BH69 SPS1_MOUSE	1	4	2	IIEVAPQVATQNVNPTPGATS
sp Q8CAY6 THIC_MOUSE	1	5	2	ILVTLLHTLER
sp Q8K2Z2 PRP39_MOUSE	1	4	2	DLLTGEQFIQLR
sp Q8R349 CDC16_MOUSE	1	4	2	YAEALDYHR
sp Q8VCG3 WDR74_MOUSE	1	3	2	VWDLQGSEEPVFR
sp Q921X9 PDIA5_MOUSE	1	4	2	FHISAFPTLK
sp Q99K23 UFSP2_MOUSE	1	4	2	INAYHFPDELYK
sp Q99LD9 EI2BB_MOUSE	1	4	2	FVAPEEVLPFTEGDILEK
sp Q9D2R6 CCD56_MOUSE	1	3	2	FLDELEDEAK
sp Q9D8X5 CNOT8_MOUSE	1	3	2	GGLQEVADQLDLQR
sp Q9DCA5 BXDC2_MOUSE	1	4	2	EFLIQIFSTPR
sp P21279 GNAQ_MOUSE	1	2	2	M[147]FVDLNPDSDK

X. Y. LIU ET AL.

sp Q8VE80 THOC3_MOUSE	0.9992	2	2	YVLGM[147]QELFR
sp Q62422 OSTF1_MOUSE	0.9989	2	2	ALYTFEPR
sp P61294 RAB6B_MOUSE	0.9979	1	2	GSDVIIMLVGNK
sp Q8R2E9 ERO1B_MOUSE	0.9969	1	2	TLLLSIFQDTK
sp O09110 MP2K3_MOUSE	1	2	2	FPYESWGTPFQQLK
sp O35658 C1QBP_MOUSE	1	2	2	AFVEFLTDEIKEEK
sp P62488 RPB7_MOUSE	1	3	2	GEVVDAVVTQVNK
sp Q59J78 MIMIT_MOUSE	1	3	2	ETSEELLPSPTATQVK
sp Q60866 PTER_MOUSE	1	3	2	GGGALVENTTTGLSR
sp Q61249 IGBP1_MOUSE	1	3	2	AAGM[147]LSQLDLFSR
sp Q62203 SF3A2_MOUSE	1	4	2	M[147]EKPPAPPSLPAGPPGVK
sp Q78HU3 F125A_MOUSE	1	2	2	GPLPSGFSAVNDPQDIK
sp Q78JW9 UBFD1_MOUSE	1	4	2	IM[147]VVGSTINDVLAVNTPK
sp Q8BFQ8 PDDC1_MOUSE	1	2	2	AIDFVDVTESNAR
sp Q8CFE2 CD027_MOUSE	1	5	2	DSPDELPVYVGTNEAK
sp Q8R1J3 ZCHC9_MOUSE	1	2	2	GM[147]SADYEDVLDVPK
sp Q8VDG7 PAFA2_MOUSE	1	4	2	TVVNVFPGGLDLM[147]TLK
sp Q8VDQ1 PTGR2_MOUSE	1	4	2	GLENM[147]GVAFQSM[147]M[147]TGG NVGK
sp Q91VE6 MK67I_MOUSE	1	3	2	GIDYSFPSLVLPK
sp Q91WE2 NIP30_MOUSE	1	3	2	GLDEDETNFLDEVSR
sp Q99LC2 CSTF1_MOUSE	1	3	2	LGM[147]ENDDTAVQYAIGR
sp Q9CQI9 MED30_MOUSE	1	2	2	IGQETVQDIVYR
sp Q9D753 EXOS8_MOUSE	1	3	2	ATTVNIGSISTADGSALVK
sp Q9D832 DNJB4_MOUSE	1	5	2	VIGYGLPFPK
sp Q9DBL1 ACDSB_MOUSE	1	5	2	SGNYYVLNGSK
sp Q9EPJ9 ARFG1_MOUSE	1	3	2	IFDDVSSGVSQLASK
sp Q9JK38 GNA1_MOUSE	1	2	2	VLGQLTETGVVSPEQFM[147]K
sp Q9WUN2 TBK1_MOUSE	1	5	2	LSSSQGTIESSLQDISSR
sp Q9Z2D8 MBD3_MOUSE	1	2	2	AFM[147]VTDDDIR
sp P18653 KS6A1_MOUSE	0.9993	1	3	DLKPENILLDEEGHIK
sp P97820 M4K4_MOUSE	1	4	2	GQNVLLTENAEVK
sp Q91YS8 KCC1A_MOUSE	0.9999	2	2	LIFQVLDAVK
sp Q921E2 RAB31_MOUSE	0.9999	2	2	GSAAAVIVYDITK
sp P0C7N9 PSMG4_MOUSE	0.9998	2	2	AAADADVSLHNFSAR
sp P59438 HPS5_MOUSE	0.9998	4	2	LLDPLVLFEPK
sp Q8C5Q4 GRSF1_MOUSE	0.9998	2	2	LGDEVDDVYLIR
sp Q9Z1B5 MD2L1_MOUSE	0.9998	2	2	YGLTLLTTTDPELIK
sp P47226 TES_MOUSE	0.9997	2	2	NVM[147]ILTNPVAAK
sp O09117 SYPL1_MOUSE	0.9992	2	2	SAFQINLNPLK
sp Q9D7H3 RTC1_MOUSE	0.999	3	2	AFVAGVLPLK
sp Q91X78 ERLN1_MOUSE	0.9969	1	2	ISEIEDAAFLAR
sp A6PWY4 WDR76_MOUSE	1	3	2	VFDSSSISSQLPLLSTIR
sp O08579 EMD_MOUSE	1	3	2	DYNDDYYEESYLTTK
sp O54784 DAPK3_MOUSE	1	3	2	ESLTEDEATQFLK
sp P33611 DPOA2_MOUSE	1	3	2	QLLSPSSFSPSATPSQK
sp P97789 XRN1 MOUSE	1	4	2	APELFSYIAK

sp Q3U1V6 UEVLD_MOUSE	1	5	2	DGVLSPSSQAQLSSR	
sp Q64669 NQO1_MOUSE	1	3	2	ALIVLAHSEK	
sp Q78JE5 FBX22_MOUSE	1	2	2	STYVLSNLAEVVER	
sp Q810A3 TTC9C_MOUSE	1	3	2	AGVAFFHLQDYDR	
sp Q8BKX1 BAIP2_MOUSE	1	2	2	EGDLITLLVPEAR	
sp Q8BWR2 CA128_MOUSE	1	2	2	GLAYGLYLR	
sp Q8C407 YIPF4_MOUSE	1	3	2	SAASLLVGEEFK	
sp Q8CEC0 NUP88_MOUSE	1	2	2	GPSGGGVEPPLSQYQR	
sp Q8CF89 TAB1_MOUSE	1	3	2	VLLQAFDVVER	
sp Q8K194 SNR27_MOUSE	1	3	2	VDGSVNAYAINVSQK	
sp Q8K409 DPOLB_MOUSE	1	3	2	EEM[147]LQM[147]QDIVLNEIK	
sp Q8VDS4 RPR1A_MOUSE	1	2	2	SVYENDVLEQLK	
sp Q8VDS8 STX18_MOUSE	1	3	2	TAVLDFVDDYLK	
sp Q91WK1 SPRY4_MOUSE	1	3	2	VGLLLDYEAK	
sp Q91XI1 DUS3L_MOUSE	1	4	2	ISEM[147]LLGPVPPGFVFLPK	
sp Q9CR95 NECP1_MOUSE	1	3	2	ASGTGGLSLLPPPPGGK	
sp Q9CY28 GTPB8_MOUSE	1	3	2	LFDPSLEDIGR	
sp Q9CZX9 TMM85_MOUSE	1	2	2	GSGQGDSLYPVGYLDK	
sp Q9D8M4 RL7L_MOUSE	1	4	2	TVPLTDNTVIEEHLGR	
sp Q9DBX2 PHLP_MOUSE	1	3	2	EVLVLTSVR	
sp Q9ER73 ELP4_MOUSE	1	4	2	NLSDTVVGLESFIGSER	
sp Q9JLB2 MPP5_MOUSE	1	4	2	EGDEDNQPLAGLVPGK	
sp Q9R099 TBL2_MOUSE	1	3	2	APIINIGIADTGK	
sp Q9WVB0 RBPMS_MOUSE	1	3	2	ENTPSEANLQEEEVR	
sp Q6ZPF4 FMNL3_MOUSE	0.9983	1	2	AAAVSLENVLLDVK	
sp Q921Y2 IMP3_MOUSE	0.9999	2	2	VGPDVVTDPAFLVTR	
sp Q3V009 TMED1_MOUSE	0.9998	2	2	SIQM[147]LTLLR	
sp Q9CQ71 RFA3_MOUSE	0.9991	2	2	M[147]FILSDGEGK	
sp Q9CQG2 MET10_MOUSE	0.9983	2	2	APEDVILALEER	
sp O55125 NIPS1_MOUSE	0.9904	1	2	AGPNIYELR	
sp O09114 PTGDS_MOUSE	1	3	2	AQGLTEEDIVFLPQPDK	
sp P27601 GNA13_MOUSE	1	4	2	ALWEDSGIQNAYDR	
sp P42669 PURA_MOUSE	1	2	2	GPGLGSTQGQTIALPAQGLIEFR	
sp P62748 HPCL1_MOUSE	1	3	2	IYANFFPYGDASK	
sp P97493 THIOM_MOUSE	1	2	2	TTFNVQDGPDFQDR	
sp Q3U0V2 TRADD_MOUSE	1	3	2	DPALDSLAYEYER	
sp Q3UE37 UBE2Z_MOUSE	1	3	2	GHFDYQSLLM[147]R	
sp Q5SSK3 CQ042_MOUSE	1	2	2	LENLIDVPLIQYK	
sp Q62086 PON2_MOUSE	1	4	2	FQEEENSLLHLK	
sp Q8BJZ4 RT35_MOUSE	1	3	2	IPNFLHLTPVAIK	
sp Q8BKF1 RPOM_MOUSE	1	4	2	QLAELLVQAVQM[147]PR	
sp Q8BMZ5 SEN34_MOUSE	1	3	2	FGGDFLVYPGDPLR	
sp Q8BNV1 TRM2A_MOUSE	1	4	2	DDLFTSEIFK	
sp Q8BP40 PPA6_MOUSE	1	4	2	AAISQPGISEDLEK	
sp Q8BVI5 STX16_MOUSE	1	2	2	QIVQSISDLNEIFR	
sp Q8K2M0 RM38_MOUSE	1	4	2	TPPLGPM[147]PNEDIDVSNLER	
sp Q8R322 GLE1_MOUSE	1	4	2	IEAITSSGQM[147]GSFIR	

sp Q8R4Y8 RTTN_MOUSE	1	5	2	AILLYLLQGR
sp Q8VD00 TMM97_MOUSE	1	3	2	DPLM[147]QEPPVWFK
sp Q91VJ5 PQBP1_MOUSE	1	3	2	KDEELDPM[147]DPSSYSDAPR
sp Q920R0 ALS2_MOUSE	1	5	2	GTSDFPLYGGGSSVQR
sp Q921T2 TOIP1_MOUSE	1	3	2	FESLPAGSTLIFYK
sp Q9CXR1 DHRS7_MOUSE	1	3	2	LM[147]LISM[147]ANDLK
sp Q9CYY7 SLMO2_MOUSE	1	2	2	LNAEIEELAASAR
sp Q9CZU4 ERAL_MOUSE	1	3	2	ETQVILLDTPGIISPVK
sp Q9D2R8 RT33_MOUSE	1	2	2	VVSLFSEQPLAK
sp Q9EP72 CO024_MOUSE	1	3	2	SEVPGAAAEGPGGSGVGLGDR
sp Q9WV03 FA50A_MOUSE	1	3	2	SGPLFNFDVHDDVR
sp Q925E7 2ABD_MOUSE	0.9951	1	2	INLWHLEITDR
sp Q9JI46 NUDT3_MOUSE	1	2	2	LVGIFENQER
sp Q3UA16 SPC25_MOUSE	0.9999	3	2	LQFIFTSIDPK
sp Q6PAQ4 REXO4_MOUSE	0.9999	3	2	VSIVNQYGK
sp Q810J8 ZFYV1_MOUSE	0.9999	3	2	FLGDASEAYLK
sp Q8BH66 ATLA1_MOUSE	0.9999	4	2	SFLM[147]DFM[147]LR
sp Q8JZV7 NAGA_MOUSE	0.9999	3	2	ATEDVGSGVALVAR
sp Q9D7X8 GGCT_MOUSE	0.9999	2	2	SYLM[147]TNYESAPPSPQYK
sp O88952 LIN7C_MOUSE	0.9999	2	2	TEEGLGFNIM[147]GGK
sp Q9EQS3 MYCBP_MOUSE	0.9998	2	2	LVQYEPPQEEK
sp Q9WV84 NDKM_MOUSE	0.9996	2	2	M[147]LQAPESILAEHYR
sp Q9CQX4 PAF_MOUSE	0.9995	2	2	VLGSSTFVTNSSSSSR
sp Q9D4J1 EFHD1_MOUSE	0.9987	1	2	VFNPYTEFPEFSR
sp Q8R035 ICT1_MOUSE	0.9975	2	2	AGELVLTSESSR
sp Q5BL07 PEX1_MOUSE	0.9963	1	2	YPELFANLPIR
sp O35448 PPT2_MOUSE	0.9929	2	2	ESLRPLWEQVQGFR
sp Q99JF5 ERG19_MOUSE	0.9913	1	2	GLQVAPVLLSDELK
sp Q9CXA2 PRCM_MOUSE	0.9913	1	2	DLVDAASALTGAVK
sp A2ADY9 DDI2_MOUSE	1	2	2	NPPLAEALLSGDLEK
sp A2RSX7 CB060_MOUSE	1	2	2	DAQYLYLSGSK
sp A3KMP2 TTC38_MOUSE	1	2	2	VLELLLPIR
sp O35295 PURB_MOUSE	1	2	2	GGGGGGGGGGGGGGGGGAPR
sp O35623 BET1_MOUSE	1	2	2	LLAEM[147]DSQFDSTTGFLGK
sp Q03958 PFD6_MOUSE	1	2	2	ETLAQLQQEFQR
sp Q3UGP9 LRC58_MOUSE	1	2	2	DLTYDPPTLLELAAR
sp Q4FK66 PR38A_MOUSE	1	2	2	YVLEEAEQLEPR
sp Q4FZF3 DDX49_MOUSE	1	2	2	ELAYQIAEQFR
sp Q56A08 GPKOW_MOUSE	1	3	2	AVVVLSGPYR
sp Q61823 PDCD4_MOUSE	1	3	2	DLPELALDTPR
sp Q6P3D0 NUD16_MOUSE	1	2	2	EQLLEALQDLK
sp Q6PCP5 MFF_MOUSE	1	3	2	IQYEM[147]EYTEGISQR
sp Q80TH2 LAP2_MOUSE	1	4	2	IYDILGDDGPQPPSAAVK
sp Q80UW2 FBX2_MOUSE	1	2	2	TDAGSLYELTVR
sp Q8BGU5 CCNY_MOUSE	1	2	2	IVLGAILLASK
sp Q8BHL8 PSMF1_MOUSE	1	2	2	VLIDPSSGLPNR
sp Q8C163 EXOG_MOUSE	1	2	2	SPESTEPLALGAFVVPNK

sp Q8JZM0 TFB1M_MOUSE	1	2	2	FIPGLQM[147]LSDAAPGK
sp Q8K3J1 NDUS8_MOUSE	1	2	2	GLGM[147]TLSYLFR
sp Q8R3Y8 I2BP1_MOUSE	1	2	2	LALPSPALEYTLGSR
sp Q8VC70 RBMS2_MOUSE	1	3	2	GYGFVDFDSPSSAQK
sp Q8VCN9 TBCC_MOUSE	1	2	2	QGQAALAQLQAVLTER
sp Q8VHR5 P66B_MOUSE	1	3	2	LQQQAALSPTTAPAVSSVSK
sp Q8WTY4 CPIN1_MOUSE	1	2	2	KPNFEVGSSSQLK
sp Q91YY4 ATPF2_MOUSE	1	2	2	LTVEQAVLLSR
sp Q920Q8 NS1BP_MOUSE	1	3	2	LYIVGGSDPYGQK
sp Q922Q9 CHID1_MOUSE	1	3	2	FTQISPVWLQLK
sp Q99K43 PRC1_MOUSE	1	2	2	EIWELIGIPEEQR
sp Q99N94 RM09_MOUSE	1	2	2	LLSQGLAVYASPENR
sp Q9D1C1 UBE2C_MOUSE	1	2	2	LQQELM[147]ILM[147]TSGDK
sp Q9D920 L12R1_MOUSE	1	2	2	GLLSGQTSPTNAK
sp Q9DCT8 CRIP2_MOUSE	1	2	2	GVNTGAVGSYIYDKD
sp Q9JHE7 TSSC4_MOUSE	1	2	2	DAALAFLSSR
sp Q9JJZ4 UB2J1_MOUSE	1	2	2	TALLAIIGFM[147]PTK
sp Q9JKJ9 CP39A_MOUSE	1	4	2	TVLESISSVFGTAGK
sp Q9JLJ0 LITAF_MOUSE	1	2	2	GM[147]NPPSYYTQPVPVPNAN
sp Q9JMG1 EDF1_MOUSE	1	2	2	INEKPQVIADYESGR
sp P34056 AP2A_MOUSE	1	3	2	AVAEFLNR
sp P36993 PPM1B_MOUSE	1	3	2	GPTEQLVSPEPEVYEIVR
sp Q9JHD1 PCAF_MOUSE	1	3	2	LFMADLQR
sp P42230 STA5A_MOUSE	0.9999	2	2	IQAQFAQLGQLNPQER
sp Q3UX61 ARD1B_MOUSE	0.9999	2	2	YVSLHVR
sp Q80WC1 K2030_MOUSE	0.9999	3	2	VVPTLPEGLPVLLEK
sp Q91YD9 WASL_MOUSE	0.9999	2	2	FYGSQVNNISHTK
sp Q9DCS3 MECR_MOUSE	0.9999	3	2	DLGADYVLTEEELR
sp Q02614 S30BP_MOUSE	0.9998	2	2	DPQELVASFSER
sp Q8BSQ9 PB1_MOUSE	0.9998	3	2	VVDDEIYYFR
sp Q9DAU1 CNPY3_MOUSE	0.9998	2	2	ELGGLGEDANAEEEEGVQK
sp Q7TQK4 EXOS3_MOUSE	0.9996	2	2	LYPLEIVFGM[147]NGR
sp Q8K4F5 ABHDB_MOUSE	0.9996	2	2	LNLDTLAQHLDK
sp Q9D6Y7 MSRA_MOUSE	0.9996	3	2	VISAEEALPGR
sp A2APY7 CT007_MOUSE	0.9994	2	2	IFQTDIAEHALK
sp O70126 AURKB_MOUSE	0.9994	3	2	FGNVYLAR
sp Q60759 GCDH_MOUSE	0.9994	2	2	AITGIQAFTVGK
sp P49586 PCY1A_MOUSE	0.9992	2	2	TEGISTSDIITR
sp Q9Z0M5 LICH_MOUSE	0.9992	2	2	LYDEIISLM[147]K
sp Q9QYL7 ABT1_MOUSE	0.9991	2	2	NLLSAYGEVGR
sp O88520 SHOC2_MOUSE	0.999	2	2	LVLTNNQLSTLPR
sp Q9CR09 UFC1_MOUSE	0.999	3	3	LKEEYQSLIR
sp Q9DCF9 SSRG_MOUSE	0.9983	2	2	QQSEEDLLLQDFSR
sp Q8BGX2 CS052_MOUSE	0.9982	2	2	ILDVGFVGR
sp Q9Z1R4 CF047_MOUSE	0.9978	2	2	AILDALGLR
sp Q9DBY1 SYVN1_MOUSE	0.9977	3	2	VHTFPLFAIR
sp Q9Z2G0 FEM1B_MOUSE	0.9977	2	2	VLTLAALLLNR

X. Y. LIU ET AL.

sp P62484 ABI2_MOUSE	0.996	1	2	ALFDSYTNLER
sp A2A4P0 DHX8_MOUSE	0.9957	1	2	FSQYFYEAPIFTIPGR
sp Q9D735 CS043_MOUSE	0.9913	1	2	GGPGPTLSFVGK
sp Q3UBX0 TM109_MOUSE	0.9904	1	2	ETSADILTQIGR
sp O35972 RM23_MOUSE	1	2	2	NYLEQIYNVPVAAVR
sp Q2TPA8 HSDL2_MOUSE	1	2	2	ADVVM[147]SM[147]ATDDFVK
sp Q80VL1 TDRKH_MOUSE	1	2	2	DM[147]ATETDDSLASILTETK
sp Q8C156 CND2_MOUSE	1	2	2	TIEQNLSNINVSEADGK
sp Q8CHT0 AL4A1_MOUSE	1	3	2	TVIQAEIDAAAELIDFFR
sp Q8K2L8 TTC15_MOUSE	1	2	2	QVLNASSVEQSFVGLK
sp Q8R2N2 CIR1A_MOUSE	1	2	2	TDGTVEIYNLSANYFQEK
sp Q8VE18 CQ071_MOUSE	1	2	2	AANYDFYQLLEEK
sp Q91ZR2 SNX18_MOUSE	1	2	2	APEPGPPADGGPGAPAR
sp Q921W4 QORL1_MOUSE	1	2	3	LSAGVFRPLLDEPIPLYEAK
sp Q99MZ7 PECR_MOUSE	1	2	2	NQVAVVTGGGTGIGK
sp Q9D7A8 ARMC1_MOUSE	1	2	2	AEALASAIASTK
sp Q9DC71 RT15_MOUSE	1	3	2	TLEAQIIALTVR
sp Q9ESP1 SDF2L_MOUSE	1	2	2	AM[147]EGIFIKPGADLSTGHDEL
sp Q9WV85 NDK3_MOUSE	1	2	2	ALIGATDPGDAM[147]PGTIR
sp Q3V300 KIF22_MOUSE	0.9999	3	2	ALM[147]DLLQLAR
sp Q8BHE8 CB047_MOUSE	0.9999	2	2	QLLSASYEFQR
sp Q8BVU5 NUDT9_MOUSE	0.9999	3	2	EFGEEALNSLQK
sp Q8R107 PRLD1_MOUSE	0.9999	2	2	AVQEFGLAR
sp Q9CRA5 GOLP3_MOUSE	0.9999	2	2	SDAPTGDVLLDEALK
sp Q9D125 RT25_MOUSE	0.9999	2	2	IM[147]TVNYNTYGELGEGAR
sp Q9D2E2 TOE1_MOUSE	0.9999	3	2	VPVVDVQSDNFK
sp Q9DB90 CS061_MOUSE	0.9999	2	2	GGNQTSGIDFFITQER
sp Q9WVM3 APC7_MOUSE	0.9999	2	2	AIQLNSNSVQALLLK
sp Q9Z2E1 MBD2_MOUSE	0.9999	2	2	LQGLSASDVTEQIIK
sp Q8K0C9 GMDS_MOUSE	0.9998	2	2	FYQASTSELYGK
sp Q9ESW8 PGPI_MOUSE	0.9998	2	2	SAFVHVPPLGK
sp Q62036 AZI1_MOUSE	0.9997	2	2	PAEPTDFLM[147]LFEGSTSGR
sp Q99N87 RT05_MOUSE	0.9997	3	2	EPEPEPEVPDTK
sp Q9CYI4 LUC7L_MOUSE	0.9997	2	2	ALLDQLM[147]GTAR
sp Q9R1Z7 PTPS_MOUSE	0.9997	2	3	LHSPSLSDEENLR
sp Q64437 ADH7_MOUSE	0.9997	3	2	M[147]LTYDPM[147]LLFTGR
sp Q924W5 SMC6_MOUSE	0.9996	2	2	SAVLTALIVGLGGK
sp Q9R0X0 MED20_MOUSE	0.9996	2	2	SLQQTVELLTK
sp Q9D8V7 SC11C_MOUSE	0.9993	2	2	GDLLFLTNFR
sp Q9DB40 MED27_MOUSE	0.9993	2	2	TPLYSQLLQAYK
sp Q80W93 HYDIN_MOUSE	0.9992	3	3	QKLT[181]LLAQGQGLEPR
sp Q91Y86 MK08_MOUSE	0.9988	3	2	NIIGLLNVFTPQK
sp Q63810 CANB1_MOUSE	0.9977	2	3	M[147]M[147]VGNNLKDTQLQQIVDK
sp Q91ZF0 DJC24_MOUSE	0.9973	2	2	LILLYHPDK
sp Q8VC65 NRM_MOUSE	0.996	2	2	YFGVLQR
sp Q99KK9 SYHM_MOUSE	0.9945	1	2	DQGGELLSLR
sp Q9D6M3 GHC1_MOUSE	0.9933	2	2	SEGYFGM[147]YR

sp Q8BIJ7 RUFY1_MOUSE	0.9902	2	2	GSALQLQLSQLR
sp O89050 MKLN1_MOUSE	1	3	2	VFGGM[147]NEENM[147]TELLSSGLK
sp P04184 KITH_MOUSE	1	2	2	KLFASQQVLQYNSAN
sp P63271 SPT41_MOUSE	1	2	3	VSNFKPGVYAVSVTGR
sp Q8R088 GLP3L_MOUSE	1	3	2	DLVELDPEVEGTK
sp Q9D8T7 SLIRP_MOUSE	1	3	2	IPWTAAASELR
sp O70325 GPX41_MOUSE	1	3	2	TDVNYTQLVDLHAR
sp Q5SYD0 MYO1D MOUSE	0.9963	1	2	LMYNSSNPVLK
sp P40338 VHL MOUSE	0.9999	3	2	SLYEDLEDYPSVR
sp Q921G6 LRCH4 MOUSE	0.9999	2	2	SYDLSDITQADLSR
sp Q99JN2 KLH22 MOUSE	0.9999	3	2	LFVIGGSNNDAGYR
sp Q9D4J7 PHF6 MOUSE	0.9999	3	2	VAIDQQLTQQQLNGN
sp P15327 PMGE_MOUSE	0.9998	3	2	HYGALIGLNR
sp Q8K273 MMGT1_MOUSE	0.9998	3	3	NHPSFYVFNHR
sp Q8K3C3 LZIC MOUSE	0.9998	2	2	KVEILTALR
sp A3KGB4 TBC8B MOUSE	0.9998	3	2	DSLALWTFR
splO60967/PAPS1 MOUSE	0.9996	2	2	M[147]VAGANFYIVGR
sp O8BZH4 POGZ_MOUSE	0.9996	2	2	SFLVASVLPGPDGNVNSPTR
sp O9CYX7 RRP15 MOUSE	0.9995	2	2	GVVOLFNAVOK
spP11930NUD19_MOUSE	0.9994	2	2	LENFASLSALYR
spl06P6I9ITXD15_MOUSE	0 9994	2	2	GDPM[147]VVLSVVPGAAEDOR
sp Q9D1R1 T126B_MOUSE	0.9994	2	2	LEVTDALOSGDISK
splQ80TF4 KLH13_MOUSE	0.9993	3	2	NFAALLSTGEFLK
splQ881S4IUN84B_MOUSE	0.9993	2	2	ADVESOFPDWIR
splQ3TMH2lSCRN3_MOUSE	0.9991	- 2	2	SPTFEPERPVAK
splQ99KL7lRAB28_MOUSE	0.9991	- 2	2	ADIVNYNOEPLSR
splQ8P48/AMPM1_MOUSE	0.9989	2	2	EVI DIA AGM[147]IK
spiQ09M04ILLAS_MOUSE	0.9985	3	2	VGNELGELYTASGPLVR
splQ90M04 EMS_MOUSE	0.9985	2	2	NIOGI FAPI K
splQ9CX71INDUS4_MOUSE	0.9984	2	2	I DITTI TGVPFFHIK
splQ9272211100054_MOUSE	0.9983	2	2	IFIOTI TGI FK
sp[230280]CCND2_MOUSE	0.9983	2	2	SVEDPDOATTPTDVRDVDI
spl09Z0V7ITI17B_MOUSE	0.9983	2	2	EGSDADGYDNVOOVH
	0.9982	2	2	
apl008014/EAAH1_MOUSE	0.998	2	2	
sp 008914 FAAI11_MOUSE	0.9979	2	2	
sp P00700 CDC42_MOUSE	0.9979	2	2	
splQ9D6H2 HSB11_MOUSE	0.9979	2	2	
splQ9DD18 D1D1_MOUSE	0.9979	2	2	ASVIVGGEQISAIGK
sp Q31KY6 SDC10_MOUSE	0.9978	2	2	EDQILALLSQFK
spiQ9ERAU TFCP2_MOUSE	0.9978	2	2	
sp Q3TQB2 FXRD1_MOUSE	0.9976	2	2	HDM[147]SPFLFTR
sp Q9D1H6 HRP20_MOUSE	0.9976	2	2	IAQEYYLELK
sp Q9D2X5 K0892_MOUSE	0.9976	2	2	GLFSFFQGR
sp Q9CQ02 COMD4_MOUSE	0.9971	2	2	ELLGQGIDYEK
sp Q80UU2 RPP38_MOUSE	0.9969	1	2	VPSLNVPWLPDR
sp Q9DBS5 KLC4_MOUSE	0.9969	1	2	DHPAVAATLNNLAVLYGK
sp P02468 LAMC1_MOUSE	0.9966	1	2	LSAEDLVLEGAGLR

X. Y. LIU ET AL.

sp Q64152 BTF3_MOUSE	0.9963	2	2	TATADDKKLQFSLK
sp Q8BRN9 C2D1B_MOUSE	0.9963	1	2	GM[147]NLPAPPGVTPDDLDAFVR
sp P19182 IFRD1_MOUSE	0.9961	2	2	VLYEFVLER
sp Q91Z38 TTC1_MOUSE	0.9958	2	2	AIQLNPTYIR
sp Q9D8T0 FAM3A_MOUSE	0.9958	2	2	IVSGAANVIGPK
sp O09111 NDUBB_MOUSE	0.9954	2	2	EVNGLPIM[147]ESNYFDPSK
sp Q9CYA0 CREL2_MOUSE	0.9949	2	2	YEFSEIR
sp Q6ZQF0 TOPB1_MOUSE	0.9942	2	2	NLTVALANSSR
sp Q8CI70 LRC20_MOUSE	0.9933	2	2	FM[147]TTFNQLR
sp Q7TSG2 CTDP1_MOUSE	0.9931	2	2	VLTQLVLSPDAPDR
sp Q8BRK8 AAPK2_MOUSE	0.9923	1	2	IADFGLSNM[147]M[147]SDGEFLR
sp O35459 ECH1_MOUSE	0.9913	1	2	EVDM[147]GLAADVGTLQR
sp P17095 HMGA1_MOUSE	0.9913	1	2	KQPPVSPGTALVGSQK
sp Q9CQ26 STABP_MOUSE	0.9913	1	2	NEFTITHVLIPR
sp Q9CRB2 NHP2_MOUSE	0.9913	1	2	ELLVNLNPIAQPLASR
sp Q9D0I4 STX17_MOUSE	0.9913	1	2	VAGIAAALGGGVLGFTGGK
sp Q8BW94 DYH3_MOUSE	0.9908	2	2	VFLEALNNNIR
sp P70353 NFYC_MOUSE	0.9904	1	2	M[147]ISAEAPVLFAK
sp P60762 MO4L1_MOUSE	1	2	2	VDPTVENEETFM[147]NR
sp Q8BLY7 HPS6_MOUSE	1	2	2	LLSDLSNFTGAAR
sp Q9DBZ1 IKIP_MOUSE	1	2	2	LLQTESSEFQGLQSK
sp Q8C863 ITCH_MOUSE	0.9904	1	2	FIDTGFSLPFYK
sp Q91W34 CP058_MOUSE	0.9999	2	2	ALVLETLNESR
sp Q4VAA7 SNX33_MOUSE	0.9998	2	2	IAETYSIEM[147]GPR
sp Q9DCT5 SDF2_MOUSE	0.9997	2	2	AM[147]EGIFM[147]KPSELLR
sp Q9D287 SPF27_MOUSE	0.9996	2	2	EAAAALVEEETR
sp Q9JKK1 STX6_MOUSE	0.9995	2	2	DQM[147]SASSVQALAER
sp P97434 MPRIP_MOUSE	0.9993	2	2	LLAEETAATISAIEAMK
sp Q3TRM4 PLPL6_MOUSE	0.9993	3	2	GDLIGVVEALTR
sp Q9D115 MCEE_MOUSE	0.9988	2	3	M[147]ELLHPLGSDSPITGFLQK
sp O55060 TPMT_MOUSE	0.9983	2	2	GALVAINPGDHDR
sp Q64362 AKTIP_MOUSE	0.9983	2	2	IDTTSPLNPEAAVLYEK
sp Q9Z2Q5 RM40_MOUSE	0.9983	2	2	VYTQVEFKR
sp Q3UH68 LIMC1_MOUSE	0.9978	2	2	TSVPESIASAGTGSPSK
sp Q8CE50 SNX30_MOUSE	0.9976	2	2	VEFDLPEYSVR
sp Q8BQZ4 K1219_MOUSE	0.9973	2	2	EVPVIFIHPLNTGLFR
sp Q99JY4 TRABD_MOUSE	0.9971	2	2	TVTQLVAEDGSR
sp Q8VCR3 CF035_MOUSE	0.9966	1	2	GTM[147]ATAALPESGSSLALR
sp Q9D892 ITPA_MOUSE	0.9931	3	2	IDLPEYQGEPDEISIQK
sp A2RTL5 RSRC2_MOUSE	0.9913	1	2	NTAM[147]DAQEALAR
sp O54916 REPS1_MOUSE	0.9913	1	2	LVAVAQSGFPLR
sp Q8BKW4 ZCHC4_MOUSE	0.9913	1	2	YLSFIQLPLAQR
sp Q8BU04 UBR7_MOUSE	0.9913	1	2	EDIQQFFEEFQSK
sp Q9CXK8 NIP7_MOUSE	0.9913	1	2	LHVTALDYLAPYAK
sp Q9D8Z1 ASCC1_MOUSE	0.9913	1	2	TFENFYFGSLR
sp Q9ET47 ESPN_MOUSE	0.9913	1	2	SFNM[147]M[147]SPTGDNSELLAEIK
sp 09.II44 DMAP1_MOUSE	0.9913	1	2	TPEOVAEEEYLLOELR

0.9913	1	2	EQGPEPEAISFLGALR
0.9913	1	2	IQEYNVLLDTLSR
0.991	3	2	LLT[181]HLLLPR
0.9904	1	2	LSEAEELAVR
0.9977	2	2	ALSTAQDSEAAFAK
0.997	2	2	GQENQLVALIPYSDQR
0.9967	2	2	GLGGLILVNK
0.9954	2	3	PK[142]PTSPNNLVNTVQEGETER
0.9914	1	2	YVDDAGVPVSSAISR
0.9913	1	2	HAVGDEAQFEM[147]DI
0.9913	1	2	EAGENAPVLSDDELVSM[147]SVR
0.9913	1	2	EVQSALSTAAADDSK
0.9913	1	2	VADAAASLEQQLEQVK
0.9904	1	2	EPLPPIVTFQLIPK
1	2	2	DAVLLVFANK
1	2	2	VLDELTLAR
0.9993	2	2	LPVS[167]IPAPQR
0.9961	1	3	VSHVSTGGGASLELLEGK
0.9961	1	2	GNSIIMLEALER
0.9961	1	2	DLLVQTLENSGVLNR
0.9942	1	2	QVELALWDTAGQEDYDR
0.9942	1	2	DPLVIELGQK
0.9914	1	2	GFGFVTFMDQAGVDK
	0.9913 0.9913 0.991 0.9904 0.9977 0.997 0.9967 0.9954 0.9914 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9904 1 1 0.9904 1 1 0.9993 0.9961 0.9961 0.9961 0.9961 0.9942 0.9914	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table	S2

protein	protein probability	Num unique peps	precursor ion charge	peptide sequence
sp P68033 ACTC_MOUSE	1	9	2	AGFAGDDAPR
sp Q64524 H2B2E_MOUSE	1	10	2	AMGIMNSFVNDIFER
sp Q7TPR4 ACTN1_MOUSE	1	35	2	AGTQIENIEEDFR
sp Q9WU78 PDC6I_MOUSE	1	33	2	ATLVKPTPVNVPVSQK
sp Q62448 IF4G2_MOUSE	1	23	2	EWLTELFQQSK
sp Q6PIC6 AT1A3_MOUSE	0.9951	4	2	GVGIISEGNETVEDIAAR
sp P16110 LEG3_MOUSE	1	13	2	IQVLVEADHFK
sp Q61206 PA1B2_MOUSE	1	2	2	IIVLGLLPR
sp Q61941 NNTM_MOUSE	1	11	2	AVVLAANHFGR
sp Q8BH74 NU107_MOUSE	1	13	2	AIYAALSGNLK
sp Q9Z2I0 LETM1_MOUSE	1	9	2	ADDKLISEEGVDSLTVK
sp Q921N6 DDX27_MOUSE	1	13	2	ALQEFDLALR
sp Q6PAR5 GAPD1_MOUSE	1	12	2	AVETPPM[147]SSVNLLEGLSR
sp Q9DBY8 NVL_MOUSE	1	13	2	AVANESGLNFISVK
sp Q9WVL3 S12A7_MOUSE	1	13	2	DLQMFLYHLR
sp P28271 ACOC_MOUSE	1	10	2	TSLSPGSGVVTYYLR
sp Q9QZQ1 AFAD_MOUSE	1	12	2	LAAGDQLLSVDGR
sp Q80TP3 UBR5_MOUSE	1	12	2	LLTATNLVTLPNSR

X. Y. LIU ET AL.

sp Q8VED5 K2C79_MOUSE	0.9908	1	3	NKYEDEINKR
sp P42859 HD_MOUSE	1	14	2	TLFGTNLASQFDGLSSNPSK
sp P43247 MSH2_MOUSE	1	11	2	DSLIIIDELGR
sp Q6P5H2 NEST_MOUSE	1	12	2	AGLELEQEVVGLEDPR
sp Q64310 SURF4_MOUSE	1	9	2	GQNDLM[147]GTAEDFADQFLR
sp Q60790 RASA3_MOUSE	1	11	2	FGDEFLGELR
sp Q69ZN7 MYOF_MOUSE	1	9	2	ANVTVLDTQIR
sp Q8BTI8 SRRM2_MOUSE	1	11	2	IPAASAAAM[147]NLASAR
sp Q921G8 GCP2_MOUSE	1	11	2	ILPVAASYSTVTR
sp Q6P2K6 P4R3A_MOUSE	1	9	2	AESDGSLLLESK
sp Q91ZU6 BPA1_MOUSE	1	15	2	AGNDLIESSEGEEASNLQYK
sp Q3TLH4 BA2D1_MOUSE	1	9	2	ESVTDYTTPSSSLPNTVATNNAK
sp Q99K01 PDXD1_MOUSE	1	11	2	AVPVSNIAPAAVGR
sp P48722 HS74L_MOUSE	1	11	2	EDINSIEIVGGATR
sp Q07113 MPRI_MOUSE	1	8	2	LASM[147]QLDYR
sp Q62383 SPT6H_MOUSE	1	9	2	IDTASLGDSTDSYIEVLDGSR
sp Q6P549 SHIP2_MOUSE	1	10	2	ALQDM[147]SSTAPPAPLQPSIR
sp Q8R0Y6 FTHFD_MOUSE	1	7	2	ANATEFGLASGVFTR
sp Q8VHE0 SEC63_MOUSE	1	10	2	LIM[147]VLAGASEFDPQYNK
sp Q3TZZ7 ESYT2_MOUSE	1	7	2	ALALLEDEEQAVR
sp Q9CY27 GPSN2_MOUSE	1	8	2	LPVGTTATLYFR
sp P53986 MOT1_MOUSE	1	4	2	AAQSPQQHSSGDPTEEESPV
sp Q6Q899 DDX58_MOUSE	1	9	2	DNVAELEQVVYKPQK
sp Q9DBT5 AMPD2_MOUSE	1	10	2	SAPYEFPEESPIEQLEER
sp P46425 GSTP2_MOUSE	0.9995	1	2	AFLSSPEHVNRPINGNGK
sp Q9EPK7 XPO7_MOUSE	1	9	2	AALSGSYVNFGVFR
sp Q9ERA6 TFP11_MOUSE	1	7	2	AVSSNVGAYM[147]QPGAR
sp P97386 DNLI3_MOUSE	1	7	2	HVLDALDPNAYEAFK
sp Q8BI84 MIA3_MOUSE	1	6	2	ELEGLLEDMSIR
sp Q9D2M8 UB2V2_MOUSE	0.9998	6	2	WTGM[147]IIGPPR
sp Q61703 ITIH2_MOUSE	1	3	2	IQPSGGTNINEALLR
sp Q8BH24 TM9S4_MOUSE	1	6	2	ITEEYYVHLIADNLPVATR
sp Q91YR7 PRP6_MOUSE	1	6	2	LSQVSDSVSGQTVVDPK
sp Q9ERG2 STRN3_MOUSE	1	6	2	AYIASAGADALAK
sp Q9CR68 UCRI_MOUSE	0.9999	2	2	LQVTNVLSQPLTQATVK
sp P08775 RPB1_MOUSE	1	5	2	INISQVIAVVGQQNVEGK
sp Q61263 SOAT1_MOUSE	1	6	2	LLAAEAEELKPLFM[147]K
sp Q8BPM2 M4K5_MOUSE	1	7	2	LISENTEGSAQAPQLPR
sp Q99KD5 UN45A_MOUSE	1	3	2	ASFITANGVSLLK
sp Q9D0A3 CO038_MOUSE	1	6	2	VNTGFLM[147]SSYK
sp Q9DBC3 FTSJ2_MOUSE	1	8	2	IHAFVQDTTLSEPR
sp O35678 MGLL_MOUSE	1	3	2	GAYLLM[147]ESSR
sp Q8BX70 VP13C_MOUSE	1	7	2	SLDVFNIILVR
sp Q8BYW9 AER61_MOUSE	1	5	2	AFTDYDVIHLK
sp Q924Z4 LASS2_MOUSE	1	5	2	AGTLIM[147]ALHDASDYLLESAK

X. Y. LIU ET AL.

sp Q9Z160 COG1_MOUSE	1	8	2	ALQLLYDLR
sp O08759 UBE3A_MOUSE	1	6	2	M[147]M[147]ETFQQLITYK
sp P22892 AP1G1_MOUSE	1	6	2	AM[147]ELSFALVNGNNIR
sp Q52KI8 SRRM1_MOUSE	1	6	2	DSSVQEATSTSDILK
sp Q6PGH2 HN1L_MOUSE	1	4	2	GSGIFDESTPVQTR
sp Q80U72 LAP4_MOUSE	1	7	2	SLEELLLDANQLR
sp Q8BVG4 DPP9_MOUSE	1	4	2	ELVQPFSSLFPK
sp Q8R3S6 EXOC1_MOUSE	1	6	2	ALQEGDLVSSR
sp Q9D4H1 EXOC2_MOUSE	1	6	2	ASNTADTLFQEVLGR
sp O54988 SLK_MOUSE	1	6	2	AGNILFTLDGDIK
sp P16056 MET_MOUSE	1	5	2	GDLTIANLGTSEGR
sp O35382 EXOC4_MOUSE	1	5	2	FIQEIEHALGLGPAK
sp P39053 DYN1_MOUSE	1	4	2	SSVLENFVGR
sp P39447 ZO1_MOUSE	1	5	2	LAGGNDVGIFVAGVLEDSPAAK
sp Q7TSC1 BAT2_MOUSE	1	5	2	AVGTPGANAGGAGPGISAM[147]SR
sp Q8BU03 PWP2_MOUSE	1	3	2	AGQLLPVVQFLQK
sp Q8BYH7 TBC17_MOUSE	1	5	2	IFSGGLSPGLR
sp Q8CCB4 VPS53_MOUSE	1	6	2	M[147]VLLDLPSIGSQVVR
sp Q8K368 FANCI_MOUSE	1	6	2	FVSDLLTALFR
sp Q8R5L3 VPS39_MOUSE	1	8	2	AINLLPANTQINDIR
sp Q99NH0 ANR17_MOUSE	1	6	2	NVSDYTPLSLAASGGYVNIIK
sp Q9DC40 TELO2_MOUSE	1	6	2	LLGDLPDELLEAR
sp Q9QX47 SON_MOUSE	1	5	2	AGIEGPLLASEVER
sp Q9R0L6 PCM1_MOUSE	1	7	2	ALYALQDIVSR
sp P83741 WNK1_MOUSE	1	5	2	IGDLGLATLK
sp Q8CJG0 I2C2_MOUSE	1	5	2	YAQGADSVEPM[147]FR
sp P17897 LYZ1_MOUSE	0.9976	2	2	STDYGIFQINSR
sp P03911 NU4M_MOUSE	1	5	2	IILPSLM[147]LLPLTWLSSPK
sp P45377 ALD2_MOUSE	1	4	3	AVQREDLFIVSK
sp P97452 BOP1_MOUSE	1	4	2	VNVDPEDLIPK
sp Q3U487 HECD3_MOUSE	1	4	2	AGLPLPAALAFVPR
sp Q6PF93 PK3C3_MOUSE	1	5	2	DGDESSPILTSFELVK
sp Q6PR54 RIF1_MOUSE	1	7	2	TIGDLSTLTASEIK
sp Q8BIG7 CMTD1_MOUSE	1	2	2	PGGVLAVLR
sp Q8BUV3 GEPH_MOUSE	1	5	2	DLVQDPSLLGGTISAYK
sp Q8VBZ3 CLPT1_MOUSE	1	4	2	NLLTGETEADPEM[147]IK
sp Q9D8V0 HM13_MOUSE	1	3	2	QYQLLFTQGSGENK
sp Q9WV70 NOC2L_MOUSE	1	3	2	SIAFPELVLPTVLQLK
sp Q99KH8 STK24_MOUSE	1	7	2	KTSYLTELIDR
sp P01027 CO3_MOUSE	0.9999	3	2	SSVAVPYVIVPLK
sp Q8BIV3 RNBP6_MOUSE	0.9985	2	2	EGFVEYTEQVVK
sp O54827 AT10A_MOUSE	0.9919	2	2	ASPSPSLVIDGR
sp O35604 NPC1_MOUSE	1	5	2	LQEETLDQQLGR
sp O70579 PM34_MOUSE	1	4	2	LSSLDVFIIGAIAK
sp P58021 TM9S2_MOUSE	1	5	2	RPSENLGQVLFGER

X. Y. LIU ET AL.

sp Q3UDW8 HGNAT_MOUSE	1	2	2	ADPLSADYQPETR
sp Q61464 ZN638_MOUSE	1	6	2	DVTVLSM[147]AEEQDLQQER
sp Q6PIP5 NUDC1_MOUSE	1	6	2	LPTDVTAYDNR
sp Q8VDF2 UHRF1_MOUSE	1	6	2	YDDYPEHGVDIVK
sp Q91V04 TRAM1_MOUSE	1	3	2	LDFSTGNFNVLAVR
sp Q9DBF1 AL7A1_MOUSE	1	5	2	GAPTTSLVSVAVTK
sp Q9QY36 ARD1A_MOUSE	1	4	2	YYADGEDAYAM[147]K
sp Q91W97 HKDC1_MOUSE	0.9956	2	2	M[147]ISGLYM[147]GELVR
sp P31786 ACBP_MOUSE	1	5	2	TYVEKVDELKK
sp P41216 ACSL1_MOUSE	1	2	2	LM[147]ITGAAPVSATVLTFLR
sp P58404 STRN4_MOUSE	1	5	2	ALIASAGADALAK
sp Q0VGY8 TANC1_MOUSE	1	7	2	ANFQEIISALPFVK
sp Q3TCJ1 F175B_MOUSE	1	3	2	AIYQVYNALQEK
sp Q3UVK0 ERMP1_MOUSE	1	5	2	AFINLEAAGVGGK
sp Q5H8C4 VP13A_MOUSE	1	4	2	ALVGGAVGGLAGAASK
sp Q60953 PML_MOUSE	1	4	2	DNSVSSFLDSTR
sp Q6P9Q6 FKB15_MOUSE	1	5	2	EVATDGLLQGNSR
sp Q80Y81 RNZ2_MOUSE	1	4	2	LDNIFLTR
sp Q8C8R3 ANK2_MOUSE	1	3	2	VVTEEVTTTTTTTTEK
sp Q8K1X1 BRWD2_MOUSE	1	3	2	LLLDPDFSLLQR
sp Q8R4G6 MGT5A_MOUSE	1	4	2	TLAVLLDNILQR
sp Q8VDC0 SYLM_MOUSE	1	4	2	AM[147]QDALADLPEWYGIK
sp Q91W86 VPS11_MOUSE	1	3	2	GNYPVTGLAFR
sp Q99PG2 OGFR_MOUSE	1	3	2	QSALDYFLFAVR
sp Q9EPU4 CPSF1_MOUSE	1	4	2	VLVDSSFGQPTTQGEVR
sp Q9ERG0 LIMA1_MOUSE	1	5	2	SQDVGFWEGEVVR
sp Q9ET30 TM9S3_MOUSE	1	4	2	DAFVYAIK
sp Q9JIX8 ACINU_MOUSE	1	4	2	KVTLGDTLTR
sp P46467 VPS4B_MOUSE	1	4	2	GILLFGPPGTGK
sp Q922W5 P5CR1_MOUSE	0.9999	2	2	LGAQALLGAAK
sp O35609 SCAM3_MOUSE	1	3	2	AQQEFAAGVFSNPAVR
sp P11688 ITA5_MOUSE	1	3	2	VTAPLEAEYSGLVR
sp P81117 NUCB2_MOUSE	1	3	2	AATADLEQYDR
sp Q0KL02 TRIO_MOUSE	1	5	2	DNFDAFYSEVAELGR
sp Q3TMX7 QSOX2_MOUSE	1	5	2	EGSDAVWLLDSGSVR
sp Q3U186 SYRM_MOUSE	1	2	2	GGVTFLEDVLNEVQSR
sp Q3UMF0 COBL1_MOUSE	1	3	2	DYQAQEPLDLTK
sp Q6ZQ93 UBP34_MOUSE	1	10	2	SFLLLAASTLLK
sp Q8BTY8 SCFD2_MOUSE	1	3	2	SQIAVNDVFM[147]ALR
sp Q8BXN9 TM87A_MOUSE	1	3	2	ADEIESYLENLK
sp Q8C0L8 COG5_MOUSE	1	3	2	GALEAYVQSVR
sp Q8C754 VPS52_MOUSE	1	3	2	FLEQLQELDAK
sp Q8CBQ5 P4K2B_MOUSE	1	3	2	IAAIDNGLAFPFK
sp Q8K2C9 PTAD1_MOUSE	1	3	3	VELSDVQNPAISITDNVLHFK
sp Q8R0A0 T2FB_MOUSE	1	4	3	VVTTNYKPVANHQYNIEYER

sp Q8R5J9 PRAF3_MOUSE	1	2	2	TPM[147]GIILDALEQQEDNINK
sp Q8VEL2 MTMRE_MOUSE	1	2	2	AATPSPSGAIGGLLEQFAR
sp Q922U1 PRPF3_MOUSE	1	5	2	LFEAVEEGR
sp Q99LB7 SARDH_MOUSE	1	3	2	DPSGGPVSLDFVK
sp Q9CQJ6 DENR_MOUSE	1	3	2	QETGITEGQGPVGEEEEK
sp Q9D853 METLA_MOUSE	1	3	2	SGNTVAALVFQK
sp Q9WV68 DECR2_MOUSE	1	5	2	VAFITGGGSGIGFR
sp Q61411 RASH_MOUSE	1	3	2	LVVVGAGGVGK
sp Q3UV17 K22O_MOUSE	0.99	1	2	AQYEDIAQK
sp Q8K0V4 CNOT3_MOUSE	1	3	2	M[147]LDNDSILVDAIR
sp Q921C5 BICD2_MOUSE	1	4	2	VGLLATLQDTQK
sp Q811J3 IREB2_MOUSE	0.9999	3	2	EGIPLIILAGK
sp P00397 COX1_MOUSE	0.9983	2	2	M[147]IGAPDM[147]AFPR
sp Q8BZ98 DYN3_MOUSE	0.9964	2	2	SSVLENFVGR
sp Q9ERY9 ERG28 MOUSE	0.9955	2	2	YLEAEPVSR
sp 008784 TCOF MOUSE	1	3	2	AGAVTSSASLSSPALAK
sp O35657 NEUR1 MOUSE	1	3	2	GTLLAFAEAR
sp P03888 NU1M MOUSE	1	3	2	GPNIVGPYGILQPFADAM[147]K
sp P70206 PLXA1_MOUSE	1	4	2	FVDDLFETIFSTAHR
sp Q3UMC0 SPAT5 MOUSE	1	6	2	ALANESGLNFLAIK
sp Q5DTT3 CJ018 MOUSE	1	4	2	VIPILPALSYALLEAK
sp O5RJG1 NOL10 MOUSE	1	3	2	DLENLGLTHLIGSPFLR
splO68FF6 GIT1_MOUSE	1	3	2	SLSSPTDNLELSAR
splO80YV3 TRRAP_MOUSE	1	5	2	NFIOTILTSLIEK
splO8BM72/HSP13_MOUSE	1	4	2	IFTPEELEAEVGR
splO8R151/ZNFX1_MOUSE	1	5	2	INVEDEGOWPSK
splO8VCR7 ABHEB_MOUSE	1	3	2	FSVLLLHGIR
spl091X52/DCXR_MOUSE	1	4	2	GVPGAIVNVSSOASOR
splO9D8N2FAM45_MOUSE	1	3	2	M[147]M[147]ESYIAVLTK
spl090WT9KIFC1_MOUSE	1	4	2	LTYLLONSLGGSAK
spl09Z2G6lSE1L1_MOUSE	1	3	2	AADM[147]GNPVGOSGI GM[147]AYLYGR
splp10648lGSTA2_MOUSE	1	3	2	SHGODYLVGNR
spl03B772l0SBP1_MOUSE	1	4	2	IPM[147]PVNFNFPI SM[147]I OR
splQ3B722 00BF1_MOUSE	0 9999	2	2	DIVOEVPER
spl@3DER2 01 NE4_MOUSE	0.9999	3	2	Μ[147]Ι ΝΥΤΑΡΤΡΟΟΙ ΟΔΕΚ
spi08K4L0DDX54_MOUSE	0.9997	3	2	AGI TEPVI IR
splQ6GQT11A2MP_MOUSE	0.9997	3	2	MI1471VSGEIDI KPTVK
sp Q80Q11 A2MI_MOUSE	0.9989	2	2	ELLOEVELR
sp Q8D1K1 ZCC11L_WOUSE	0.994	1	2	NGM[147]I NVSDIGD
sp 095021 1 MM1_M003E	0.994	2	2	
spic/CLATINISSA_WOUSE	1	2	2	EAAVSVOEESDI EK
en[D52875]TM165_MOUSE	1	2	2	M[1/7]SDDEGOEELEEVOAELV
$\frac{10003E}{10000}$	1	2	2	IVAGOM[147]AVI GP
spli 217700007_MOUSE	1	2	2	ETGATIEFEVAR
	1	3	2	
δμίζοι μέσι 12μα_MOUSE	1	3	2	11 QEEEMI[14/ JEESGAUSEFINK

sp Q3UHJ0 AAK1_MOUSE	1	4	2	AGQTQPNPGILPIQPALTPR
sp Q60596 XRCC1_MOUSE	1	3	2	HFFLYGEFPGDER
sp Q60855 RIPK1_MOUSE	1	3	2	AEYNEVLLEEGK
sp Q80TE0 RPAP1_MOUSE	1	4	2	VSSLLLPVPK
sp Q80U70 SUZ12_MOUSE	1	5	2	ETLTTELQTR
sp Q811D0 DLG1_MOUSE	1	3	2	QVTPDGESDEVGVIPSK
sp Q8BI72 CARF_MOUSE	1	4	2	GSASFVSSLLK
sp Q8BM55 TM214_MOUSE	1	4	2	SQSVFTGNPSVWLK
sp Q8BT07 CEP55_MOUSE	1	5	2	YSSSSLFEQLEEK
sp Q8BZ20 PAR12_MOUSE	1	4	2	LGLSSDLVSR
sp Q8CGU1 CACO1_MOUSE	1	3	2	AALLGEELASAAGAR
sp Q8K0Q5 RHG18_MOUSE	1	4	2	IEEGSLETEGLLR
sp Q8R2M2 TDIF2_MOUSE	1	3	2	LTSSSIDPGLNIK
sp Q8VIM9 IRGQ_MOUSE	1	3	2	PLPQGDVTALFLGPPGSGK
sp Q91VW5 GOGA4_MOUSE	1	3	2	SLLEELASQLDSR
sp Q91WR3 ASCC2_MOUSE	1	3	2	HNIFQNDEFDVFSR
sp Q91YK2 RRP1B_MOUSE	1	3	2	LGALPDSSSDLPVQK
sp Q99J27 ACATN_MOUSE	1	4	2	YTAGPQPLNIFYK
sp Q99KB8 GLO2_MOUSE	1	3	2	HVEPGNAAIQEK
sp Q99LB2 DHRS4_MOUSE	1	4	2	LAEDGAHVVVSSR
sp Q99M28 RNPS1_MOUSE	1	3	2	DHIMEIFSTYGK
sp Q9D2N9 VP33A_MOUSE	1	4	2	IISAAFEER
sp Q9DBR0 AKAP8_MOUSE	1	3	2	TVEFLQEYIINR
sp Q9JJA2 COG8_MOUSE	1	3	2	ISQFLQVLETDLYR
sp Q9WTR1 TRPV2_MOUSE	1	3	2	GVPEELTGLLEYLR
sp Q9Z2V5 HDAC6_MOUSE	1	3	2	LVDALM[147]GAEIR
sp Q64261 CDK6_MOUSE	0.9917	1	2	VQTSEEGM[147]PLSTIR
sp P63011 RAB3A_MOUSE	1	2	2	M[147]SESLDTADPAVTGAK
sp Q04692 SMRCD_MOUSE	0.9999	2	2	QEQLYSGLFNR
sp Q3U308 CP084_MOUSE	0.9999	3	2	DLPSLDPLPPYVLAEAQLR
sp Q8VHE6 DYH5_MOUSE	0.9999	7	2	RTDLNYIAAVDLK
sp P24638 PPAL_MOUSE	0.9998	2	2	LQGGVLLAQILK
sp Q8BZQ7 ANC2_MOUSE	0.9998	2	2	IEELFSIIR
sp Q99KR7 PPIF_MOUSE	0.9998	3	2	HVGPGVLSM[147]AN
sp P83510 TNIK_MOUSE	0.9993	2	2	NIATYYGAFIK
sp P62858 RS28_MOUSE	0.9984	2	2	EGDVLTLLESER
sp Q8R2U4 ME11A_MOUSE	0.9978	2	2	TAGLSLLAEER
sp P45878 FKBP2_MOUSE	0.9968	2	2	LVIPSELGYGER
sp P08032 SPTA1_MOUSE	0.9967	3	2	FLTLLAK
sp Q8C7B8 ZSWM4_MOUSE	0.9943	2	2	LQPALTSR
sp O35682 MYADM_MOUSE	1	2	2	TTITTTSSSTTVGSAR
sp O70481 UBR1_MOUSE	1	2	2	INSENAEALAQLLTLAR
sp O88746 TOM1_MOUSE	1	4	2	SSPDLTGVVAVYEDLR
sp P48771 CX7A2_MOUSE	1	2	2	LFQEDNGM[147]PVHLK
sp P62313 LSM6_MOUSE	1	2	2	GNNVLYISTQK

sp P97314 CSRP2_MOUSE	1	2	2	GFGYGQGAGALVHAQ	
sp Q00547 HMMR_MOUSE	1	3	2	DVTAQLESVQEK	
sp Q3TVI8 PBIP1_MOUSE	1	2	2	QEGLALFGVELAPVR	
sp Q3UVG3 F91A1_MOUSE	1	3	2	VQGDYFETLLYK	
sp Q60772 CDN2C_MOUSE	1	3	2	DGTGFAVIHDAAR	
sp Q64FW2 RETST_MOUSE	1	3	2	ATVQSVLLDSAGR	
sp Q6DVA0 LEMD2_MOUSE	1	3	2	ELQALGFQPGPITDTTR	
sp Q6NVE8 WDR44_MOUSE	1	2	2	LLASAGQDNIVR	
sp Q6NZN0 RBM26_MOUSE	1	3	2	VIQPLVQQPILPVVK	
sp Q80XU3 NUCKS_MOUSE	1	2	3	TPSPKEEDEEAESPPEKK	
sp Q8BFW7 LPP_MOUSE	1	3	2	M[147]LYDM[147]ENPPADDYFGR	
sp Q8BTZ5 ANR46_MOUSE	1	2	2	LLESLEEQEVK	
sp Q8BUY5 CC001_MOUSE	1	2	2	AGAVAADSPGFVEDR	
sp Q8C3I8 BRP16_MOUSE	1	3	2	DQGAYLILR	
sp Q8C9B9 DIDO1_MOUSE	1	3	2	TASPLEHILQTLFGK	
sp Q8K3X4 EAP1_MOUSE	1	2	2	YGLSAAAAAAAAAAAVEQR	
sp Q8R307 VPS18_MOUSE	1	3	2	LGALQGDPDALTLYR	
sp Q8R3P6 CO044_MOUSE	1	3	2	AALAFGFLDLLK	
sp Q8R3V5 SHLB2_MOUSE	1	2	2	LASDAGIFFTR	
sp Q8R5H6 WASF1_MOUSE	1	3	2	IENDVATILSR	
sp Q8VD04 GRAP1_MOUSE	1	4	2	TQTGDSSSVSSFSYR	
sp Q91VS7 MGST1_MOUSE	1	2	2	IYHTIAYLTPLPQPNR	
sp Q91VX9 TM168_MOUSE	1	2	2	TVDIEEADPPQLGDFTR	
sp Q91VY9 ZN622_MOUSE	1	3	3	VHSFFIPDIEYLSDLK	
sp Q922S8 KIF2C_MOUSE	1	4	2	FSLVDLAGNER	
sp Q922Y1 UBXN1_MOUSE	1	2	2	GEEPGQDQDPVQLLSGFPR	
sp Q923D5 WBP11_MOUSE	1	2	2	AVSILPLLGHGVPR	
sp Q9CQU3 RER1_MOUSE	1	2	2	LGQIYQSWLDK	
sp Q9CYK1 SYWM_MOUSE	1	3	2	YGEFFPLPK	
sp Q9D0M0 EXOS7_MOUSE	1	3	3	VYIVHGVQEDLR	
sp Q9D1C8 VPS28_MOUSE	1	2	2	AM[147]DEIQPDLR	
sp Q9DB96 NGDN_MOUSE	1	2	2	ASGASLQGHPAVLR	
sp Q9DC29 ABCB6_MOUSE	1	2	2	APDIILLDEATSALDTSNER	
sp Q9DCD2 SYF1_MOUSE	1	2	2	FYEDNGQLDDAR	
sp Q9QUJ7 ACSL4_MOUSE	1	4	2	SDQSYVISFVVPNQK	
sp Q9QWF0 CAF1A_MOUSE	1	2	2	LVGGQGPIDSFLR	
sp Q9QY06 MYO9B_MOUSE	1	3	2	TPIESLFIEATER	
sp Q9Z1T6 FYV1_MOUSE	1	3	2	DYFPEQIYWSPLLNK	
sp Q9Z2A5 ATE1_MOUSE	1	3	2	SLEDLIFQSLPENASHK	
sp Q9Z2L7 CRLF3_MOUSE	1	2	2	LIEHGVNTADDLVR	
sp O35638 STAG2_MOUSE	0.9999	2	2	M[147]YSDAFLNDSYLK	
sp P25425 PO2F1_MOUSE	1	3	2	LYGNDFSQTTISR	
sp P42232 STA5B_MOUSE	1	4	2	IQAQFAQLGQLNPQER	
sp P61620 S61A1_MOUSE	1	5	3	GM[147]EFEGAIIALFHLLATR	
sp P84075 HPCA_MOUSE	0.997	1	2	IYANFFPYGDASK	

X. Y. LIU ET AL.

sp P15116 CADH2_MOUSE	0.9999	3	2	LNGDFAQLNLK
sp P70700 RPA2_MOUSE	0.9999	3	2	ISLTIVDAVISPPSVPK
sp Q60928 GGT1_MOUSE	0.9999	2	2	FVDVSQVIR
sp Q8CI95 OSB11_MOUSE	0.9999	3	2	SVILHLLSQLK
sp Q91V01 PCAT3_MOUSE	0.9999	2	2	LATSLGASEQALR
sp Q9D0P8 RAYL_MOUSE	0.9999	2	2	SQTSGISLPGVLVGTK
sp Q9JJL8 SYSM_MOUSE	0.9999	2	2	VLIALLESNQQK
sp Q9QZ08 NAGK_MOUSE	0.9999	2	2	LGILTHLYR
sp Q02780 NFIA_MOUSE	0.9999	2	2	LDLVM[147]VILFK
sp Q91W69 EPN3_MOUSE	0.9999	2	2	NIVHNYSEAEIK
sp Q9CTG6 AT132_MOUSE	0.9996	3	2	ELSLLGLLVM[147]R
sp Q9R0Q9 MPU1_MOUSE	0.9996	2	2	GLGLGIVAGSLLVK
sp Q60848 HELLS_MOUSE	0.9995	2	2	LISQIQPEVNR
sp Q91ZN5 S35B2_MOUSE	0.9994	2	2	APDEVLLAPR
sp Q9WUU9 MCM3A_MOUSE	0.9994	3	2	LPLYLPQTLVSFPDSIK
sp P00848 ATP6_MOUSE	0.9993	2	2	LSM[147]AIPLWAGAVITGFR
sp Q8BTI7 ANR52_MOUSE	0.9993	2	2	DAVSPFSFSLLK
sp Q9JHS3 MAPIP_MOUSE	0.9993	2	2	NGNQAFNEDSLK
sp Q3TYS2 CQ062_MOUSE	0.9991	2	2	DIQDVNVEEEK
sp O88848 ARL6_MOUSE	0.999	3	2	IPILFFANK
sp Q80TZ9 RERE_MOUSE	0.999	2	2	VDSFFYILGYNPETR
sp P97412 LYST_MOUSE	0.9988	5	2	DLSGLLVSAFK
sp Q9CPP0 NPM3_MOUSE	0.9988	2	2	DHDNQEIAVPVANLR
sp Q8BFS6 CSTP1_MOUSE	0.9986	2	2	LTEQAVEAINK
sp Q8R1S0 COQ6_MOUSE	0.9981	2	2	ILLLEAGPK
sp Q8VHN7 GPR98_MOUSE	0.998	4	2	FAEPCVLR
sp Q9R0M6 RAB9A_MOUSE	0.9976	2	2	EPESFPFVILGNK
sp Q8BYU6 TOIP2_MOUSE	0.9957	5	2	FESLPAGSTLIFYK
sp Q9WTL7 LYPA2_MOUSE	0.9956	2	2	FGALTAEK
sp Q9Z2R6 U119A_MOUSE	0.9949	1	2	QPIGPEDVLGLQR
sp Q9CQT2 RBM7_MOUSE	0.9919	2	2	TLFVGNLETK
sp Q9CY57 CA077_MOUSE	0.9917	1	2	EQLDNQLDAYM[147]SK
sp P03930 ATP8_MOUSE	1	2	2	VSSQTFPLAPSPK
sp P24610 PAX3_MOUSE	1	3	2	TTFTAEQLEELER
sp P70302 STIM1_MOUSE	1	3	2	YAEEELEQVR
sp P70677 CASP3_MOUSE	1	4	2	LEFM[147]HILTR
sp Q09143 CTR1_MOUSE	1	2	2	VIYAM[147]AEDGLLFK
sp Q3UA37 QRIC1_MOUSE	1	3	2	EIQEAIAVANATTM[147]H
sp Q3UGY8 BIG3_MOUSE	1	4	2	NLIDTLSTPLTGR
sp Q3UW53 NIBAN_MOUSE	1	4	2	VLTSEEEYSLLSDK
sp Q64430 ATP7A_MOUSE	1	5	2	QIEAVGFPAFIK
sp Q8BHY8 SNX14_MOUSE	1	3	2	LVSLITLLR
sp Q8BTG3 T11L1_MOUSE	1	3	2	AIFSVLDLM[147]K
sp Q8C5W3 TBCEL_MOUSE	1	3	2	YYVDVPQEEVPFR
sp Q8CIM8 INT4_MOUSE	1	3	2	FLQEVDFFQR

sp Q91VZ6 SMAP1_MOUSE	1	3	2	LLYEANLPENFR
sp Q9JLV1 BAG3_MOUSE	1	3	2	ELLALDSVDPEGR
sp Q9QYC7 VKGC_MOUSE	1	3	2	DGLTGELGYLNPGVFTQSR
sp Q9QYH6 MAGD1_MOUSE	1	3	2	ATEAVLWEALR
sp Q9R0I7 YLPM1_MOUSE	1	3	2	VFSSEQGLGESSALSQSIIAAK
sp P61028 RAB8B_MOUSE	0.9993	2	2	SSTNVEEAFFTLAR
sp Q8JZR6 S4A8_MOUSE	0.9984	2	2	FLFILLGPVGK
sp Q9CQK7 RWDD1_MOUSE	1	4	3	AKFDAELLEIKK
sp P10922 H10_MOUSE	0.9999	2	2	YSDM[147]IVAAIQAEK
sp Q3UUQ7 PGAP1_MOUSE	0.9998	3	2	AFFDLIDADTK
sp Q8CHC4 SYNJ1_MOUSE	0.9998	3	2	VLDAYGLLGVLR
sp Q8K370 ACD10_MOUSE	0.9998	4	2	LSLQPSEAIFLDDLGSNLK
sp Q8BGZ2 F168A_MOUSE	0.9997	2	2	SIPSAIYPAPVAAPR
sp Q922H1 ANM3_MOUSE	0.9997	3	2	QTVFLLEKPFPVK
sp P58854 GCP3_MOUSE	0.9996	3	2	YLLLGQGDFIR
sp Q9CQZ6 NDUB3_MOUSE	0.9996	3	2	M[147]ELPDYR
sp P47713 PA24A_MOUSE	0.9995	3	2	DVPVVAILGSGGGFR
sp Q99JP7 GGT7_MOUSE	0.9995	3	2	LPEDEPAPAAPLR
sp O55242 OPRS1_MOUSE	0.9994	2	2	QYAGLDHELAFSR
sp Q8K5B2 MCFD2_MOUSE	0.9994	2	2	DDDKNNDGYIDYAEFAK
sp Q5U430 UBR3_MOUSE	0.9992	3	2	LDPDYFISSVFER
sp Q9QZH6 ECSIT_MOUSE	0.9992	3	2	IFVHYPR
sp Q9Z0J0 NPC2_MOUSE	0.9991	2	2	LPVKNEYPSIK
sp Q6P8H8 ALG8_MOUSE	0.999	2	2	AILLAILPM[147]SLLSVEK
sp Q8K4M5 COMD1_MOUSE	0.999	2	2	LSEVEESINR
sp Q9CQB5 CISD2_MOUSE	0.9987	3	2	QLPVPDSITGFAR
sp Q03173 ENAH_MOUSE	0.9986	2	2	VEDGSFPGGGNTGSVSLASSK
sp Q9EPN1 NBEA_MOUSE	0.9984	3	2	EISNFEYLM[147]FLNTIAGR
sp Q9R0Q4 MO4L2_MOUSE	0.9983	2	2	EYAVNEVVGGIK
sp Q8VCI5 PEX19_MOUSE	0.9975	2	2	ELAEEEPHLVEQFQK
sp Q80U78 PUM1_MOUSE	0.9973	1	2	SASSASSLFSPSSTLFSSSR
sp Q6ZPE2 MTMR5_MOUSE	0.9964	2	2	GLLALLFPLR
sp Q8CHT3 INT5_MOUSE	0.9957	2	2	EQPLLFELLK
sp Q91XL9 OSBL1_MOUSE	0.9917	1	2	ITM[147]PVIFNEPLSFLQR
sp Q80UG2 PLXA4_MOUSE	0.9911	1	2	FVDDLFETIFSTAHR
sp A2AAJ9 OBSCN_MOUSE	0.9904	3	2	EDENFVCIR
sp P97857 ATS1_MOUSE	0.99	1	2	GIGYFFVLQPK
sp O89017 LGMN_MOUSE	1	2	2	DYTGEDVTPENFLAVLR
sp Q3UFM5 NOM1_MOUSE	1	3	2	ELITEAQTQASGAGNK
sp Q5PRF0 HTR5A_MOUSE	1	2	2	VLILEQLLNSIK
sp Q5SUC9 SCO1_MOUSE	1	2	2	LVGLTGTKEEIDGVAR
sp Q64282 IFIT1_MOUSE	1	3	2	ISEQVQFLDIK
sp Q91WG2 RABE2_MOUSE	1	2	2	LQAELETSEQVQR
sp Q99MU3 DSRAD_MOUSE	1	3	2	YLNTNPVGGLLEYAR
sp Q9CR88 RT14_MOUSE	1	2	2	HLADHGLLSGVQR

sp Q9D187 FA96B_MOUSE	1	2	2	SGERPVTAGEEDEEVPDSIDAR
sp Q9Z0R9 FADS2_MOUSE	1	3	2	ALIDIVSSLK
sp Q61771 KIF3B_MOUSE	1	2	2	HLIIENFIPLEEK
sp O08601 MTP_MOUSE	0.9999	3	2	SGFTTANQVLGVSSK
sp O35350 CAN1_MOUSE	0.9999	2	2	APSDLYQIILK
sp O88879 APAF_MOUSE	0.9999	2	2	GSPLVVSLIGALLR
sp Q3SXD3 HDDC2_MOUSE	0.9999	2	2	LQDFYDSTAGK
sp Q3U5F4 YRDC_MOUSE	0.9999	2	2	LPESEPVEAASPER
sp Q80XQ2 TBCD5_MOUSE	0.9999	2	2	TFPEM[147]QFFQQENVR
sp Q8BKX6 SMG1_MOUSE	0.9999	4	2	AQDTFQTIEGIIR
sp Q9CQ75 NDUA2_MOUSE	0.9999	2	2	TVSLNNLSADEVTR
sp Q9DBA9 TF2H1_MOUSE	0.9999	2	2	M[147]LQEDPVLFQLYK
sp Q9EQG9 C43BP_MOUSE	0.9999	2	2	DVLYLSAIR
sp Q3TEL6 RN157_MOUSE	0.9999	2	2	VSYLLQEIYGIENK
sp Q66T02 PKHG5_MOUSE	0.9998	3	2	SLGEVLLPVFER
sp Q8R080 GTSE1_MOUSE	0.9998	2	2	VPQFSVGESPGGVTPK
sp Q8VHL1 SETD7_MOUSE	0.9998	2	2	VYVADSLISSAGEGLFSK
sp Q99LH1 NOG2_MOUSE	0.9998	2	2	VIDSSDVVVQVLDAR
sp Q05793 PGBM_MOUSE	0.9997	5	2	VIPYFTQTPYSFLPLPTIK
sp Q3UGP8 AG10B_MOUSE	0.9997	2	2	YFILPYIIYR
sp Q9D4H2 GCC1_MOUSE	0.9997	2	2	TQLATLTSSLATVTQEK
sp Q9Z1X9 CC45L_MOUSE	0.9997	2	2	LQEFLADM[147]GLPLK
sp Q6IQX7 CHSS2_MOUSE	0.9996	2	2	LTVLLPLAAAER
sp Q6PEV3 WIPF2_MOUSE	0.9996	2	2	GSSGGYGPGAAALQPK
sp Q6XUX1 RIPK5_MOUSE	0.9996	2	3	SPLYGQLVDLGYLSSSHR
sp Q6ZWZ2 UB2R2_MOUSE	0.9996	2	2	FPIDYPYSPPTFR
sp P40201 CHD1_MOUSE	0.9927	2	2	M[147]LDILAEYLK
sp Q5SWT3 S2535_MOUSE	0.9994	2	2	LGTYGLAESR
sp Q91ZR1 RAB4B_MOUSE	0.9994	2	2	M[147]GSGIQYGDISLR
sp P46414 CDN1B_MOUSE	0.9993	2	2	NLFGPVNHEELTR
sp Q3U5Q7 CMPK2_MOUSE	0.9993	2	2	AFYSLGNYLVASEIAK
sp Q9CQ86 CQ037_MOUSE	0.9993	2	2	EEYPGIEIESR
sp P62311 LSM3_MOUSE	0.9992	2	2	GDGVVLVAPPLR
sp Q5BLK4 ZCHC6_MOUSE	0.9992	2	2	NTEPVGQLWLGLLR
sp Q8R550 SH3K1_MOUSE	0.9992	2	2	M[147]EPAVSSQAAIEELK
sp P54116 STOM_MOUSE	0.9991	2	2	EASM[147]VITESPAALQLR
sp Q501J2 F173A_MOUSE	0.9991	2	2	LQAELPVGAR
sp Q3UDR8 YIPF3_MOUSE	0.999	2	2	DIPAVLPAAR
sp Q9EPQ7 STAR5_MOUSE	0.999	2	2	SM[147]AEFYPNLQK
sp Q9CYZ6 CS060_MOUSE	0.9989	2	2	DAPIATLVQR
sp P28741 KIF3A_MOUSE	0.9988	2	2	SAKPETVIDSLLQ
sp Q9CYA6 ZCHC8_MOUSE	0.9988	2	2	LVNYPGFNISTPR
sp Q9R1S3 PIGN_MOUSE	0.9988	2	2	EATLPFLFTPFK
sp Q9R207 NBN_MOUSE	0.9988	2	2	LLPAAGAAPGEPYR
sp Q9JKX4 AATF_MOUSE	0.9987	2	2	ALLTTNQLPQPDVFPVFK

-	sp Q5KU39 VPS41_MOUSE	0.9986	4	2	IVLLM[147]DFDSEK
	sp P0C1Q2 PDE11_MOUSE	0.9985	2	2	DISNDLDLTSLSYK
	sp Q76KJ5 RPA34_MOUSE	0.9985	2	2	EATLLASSSEAGGR
	sp Q9D850 TMM68_MOUSE	0.9985	2	2	TFLGDPIPYDPK
	sp Q9R0D8 WDR54_MOUSE	0.9985	2	2	TISALDLAPEVGK
	sp Q8K2F8 LS14A_MOUSE	0.9981	2	2	YEGILYTIDTENSTVALAK
	sp Q9CPV5 PMF1_MOUSE	0.9981	2	2	NQELADAVLAGR
	sp Q9DCI9 RM32_MOUSE	0.998	2	2	QQIGAQEGGPFR
	sp Q9CQ18 RNH2C_MOUSE	0.9978	2	2	HDADGLQASFR
	sp Q9D8Y1 T126A_MOUSE	0.9978	2	2	ILNVTQAR
	sp Q9WTK3 GPAA1_MOUSE	0.9976	2	2	YGVEALTLR
	sp P70444 BID_MOUSE	0.9975	2	2	IEPDSESQEEIIHNIAR
	sp Q07139 ECT2_MOUSE	0.9974	2	2	LPSVALLLNDLK
	sp Q8BMD6 CN101_MOUSE	0.9974	3	2	LPGTGIDPEVLLSEAIR
	sp Q9D600 PSF2_MOUSE	0.9974	2	2	TNLQPSESTQSQDF
	sp Q8BTJ4 ENPP4_MOUSE	0.9973	2	2	EVDDLIGDIVLK
	sp Q8QZX2 CD015_MOUSE	0.9973	2	2	TNPM[147]VFLSQFPLGK
	sp Q924L1 LTMD1_MOUSE	0.9972	2	2	LGIGQLTAQEVK
	sp Q7TSZ8 NACC1_MOUSE	0.9971	2	2	FSTPDLALNR
	sp Q61207 SAP_MOUSE	0.997	2	2	TVVTEAGNLLK
	sp Q9D023 BR44_MOUSE	0.9969	3	2	YSLVIIPK
	sp Q8K1A6 C2D1A_MOUSE	0.9967	2	2	SFDPVLEALSR
	sp Q9CPR1 RWDD4_MOUSE	0.9966	2	2	SIYEGDNSFR
	sp Q3TBW2 RM10_MOUSE	0.996	2	2	VFPSQVLKPFLENSK
	sp Q8BK75 CC075_MOUSE	0.9958	2	2	GQLVFLEGLK
	sp P50096 IMDH1_MOUSE	0.9954	1	2	NLIDAGVDGLR
	sp P63139 NFYB_MOUSE	0.9951	2	2	EQDIYLPIANVAR
	sp Q9R059 FHL3_MOUSE	0.9949	2	2	TLTQGGVTYR
	sp Q3ULF4 SPG7_MOUSE	0.9944	2	2	EGGFSAFNQLK
	sp Q80UZ2 SDA1_MOUSE	0.9943	1	2	DLLVQYATGK
	sp Q8VE19 MIO_MOUSE	0.9932	2	2	NLAIFDLR
	sp Q9JKK8 ATR_MOUSE	0.9931	3	2	FLDLIPQDTLAVASFR
	sp Q8CIG3 AOF1_MOUSE	0.9927	2	2	VLVTVPLAILQR
	sp Q3TDD9 KLRAQ_MOUSE	0.9917	2	2	EGLAQQVQQSLEK
	sp Q6PCM2 INT6_MOUSE	0.9917	1	2	NLQAEGLTTLGQSLR
	sp Q8K2F0 BRD3_MOUSE	0.9917	1	2	EYPDAQGFAADIR
	sp Q8R0J7 VP37B_MOUSE	0.9917	1	2	SLAEGNLLYQPQLDAQK
	sp Q9QUG2 POLK_MOUSE	0.9912	2	2	ASTVPAAISTAEEIFAIAK
	sp Q68EF0 RAB3I_MOUSE	0.9908	1	2	IDVLQAEVAALK
	sp Q7TPM1 BAT2L_MOUSE	0.99	1	2	LLSFSPEEFPTLK
	sp O35379 MRP1_MOUSE	1	2	2	LYAWELAFQDK
	sp P70399 TP53B_MOUSE	1	3	2	VITDVYYVDGTEVER
	sp Q4FZC9 SYNE3_MOUSE	1	2	2	AATLLEQVTSSVR
	sp Q6P8M1 TATD1_MOUSE	1	2	2	HQDDLQDVIER
	sp Q8BK03 FA73B_MOUSE	1	2	2	PAAAYEEALQLVK

sp Q8BW10 NOB1_MOUSE	1	2	2	TDVFAPDYIAGVSPFAENDISSR
sp Q99K74 MED24_MOUSE	1	2	2	VESLVALLNNSSEM[147]K
sp Q9CQF4 CF203_MOUSE	1	2	2	SEQEEELESEPGVAK
sp Q9Z2A7 DGAT1_MOUSE	1	2	2	LQDSLFSSDSGFSNYR
sp P59016 VP33B_MOUSE	0.9999	2	2	AGLLTEQAPGDTLTAVESK
sp Q5DU25 IQEC2_MOUSE	0.9999	2	2	LIEAFSQR
sp Q8VDD9 PHIP_MOUSE	0.9999	2	3	YHDM[147]PDVIDFLVLR
sp A2AR02 PPIG_MOUSE	0.9998	2	2	DFM[147]VQGGDFSEGNGR
sp Q8C3X8 LMF2_MOUSE	0.9998	2	2	LFGSVEHLQLANSYGLFR
sp P70188 KIFA3_MOUSE	0.9997	2	2	SLNANTDITSLAR
sp Q9ER69 FL2D_MOUSE	0.9997	2	2	STM[147]VDPAINLFFLK
sp Q9QZ73 DCNL1_MOUSE	0.9997	2	2	QFM[147]IFTQSSEK
sp P58501 GCFC_MOUSE	0.9996	2	2	TLQELSIDGLLNR
sp P22366 MYD88_MOUSE	0.9991	2	2	FALSLSPGVQQK
sp P97480 EYA3_MOUSE	0.999	2	2	SNVGGLLSPQR
sp Q0P678 ZCH18_MOUSE	0.999	2	3	ASQQAAAPQPAVPGQPQQGSFVAHK
sp Q9CX00 K0174_MOUSE	0.999	2	2	ELDSGLAESVSTLIWAAPR
sp Q61037 TSC2_MOUSE	0.9987	3	2	LGYLPYSLLFR
sp P46938 YAP1_MOUSE	0.9985	2	2	GDSETDLEALFNAVM[147]NPK
sp P62046 LRCH1_MOUSE	0.9985	2	2	NLESIDPQFTIR
sp P97473 TRBP2_MOUSE	0.9985	2	2	TPISLLQEYGTR
sp Q5PSV9 MDC1_MOUSE	0.9985	3	2	LGLPLLSPEFLLTGVLK
sp Q9JKL4 CC060_MOUSE	0.9985	2	2	IEIVVVGTGNK
sp P97300 NPTN_MOUSE	0.9984	2	3	KRPDEVPDDDEPAGPM[147]K
sp Q99KY4 GAK_MOUSE	0.9984	2	2	IAVM[147]SFPAEGVESAIK
sp P59672 ANS1A_MOUSE	0.9981	3	2	LLLNGFDDVR
sp Q8VDR9 DOCK6_MOUSE	0.9979	2	2	VAELYLPLLSLAR
sp Q80VQ1 LRRC1_MOUSE	0.9967	1	2	SLEELLLDANQLR
sp Q9CXF7 CHD1L_MOUSE	0.9963	2	2	GIPTYIYYFPR
sp Q9D820 U566_MOUSE	0.9962	2	2	FVLDSAFLEGGHEK
sp Q8K2J4 CCD14_MOUSE	0.9952	3	2	NVSQTAEK
sp P49769 PSN1_MOUSE	0.9937	2	2	NETLFPALIYSST
sp Q3V1H1 CKAP2_MOUSE	0.9924	2	2	IEPITSPIENIISIYEK
sp P70236 MP2K6_MOUSE	0.9923	2	2	ADDLEPIVELGR
sp O35375 NRP2_MOUSE	0.9917	1	2	IFQANNDATEVVLNK
sp P50427 STS_MOUSE	0.9917	1	2	VLAALDELGLAR
sp P84089 ERH_MOUSE	0.9917	1	2	ADTQTYQPYNK
sp Q5DTK1 CHSS3_MOUSE	0.9917	1	2	DNTVQGQQVYYPIIFSQYDPK
sp Q8K4R9 DLGP5_MOUSE	0.9917	1	2	ANEILVQQGLESLTDR
sp Q91YU8 SSF1_MOUSE	0.9917	1	2	TEEELQAILAAK
sp Q9CQ39 MED21_MOUSE	0.9917	1	2	IQSALADIAQSQLK
sp Q9Z0R4 ITSN1_MOUSE	0.9917	1	2	LQEIDVFNNQLK
sp Q8VCF0 MAVS_MOUSE	0.9914	2	2	DTLWGLFNNLQR
sp Q6TEK5 VKORL_MOUSE	0.9908	1	2	GFGLLGSIFGK
sp Q9JIA7 SPHK2_MOUSE	0.9908	1	2	LLILVNPFGGR

X. Y. LIU ET AL.

sp Q99LC9 PEX6_MOUSE	0.9902	3	2	LVFVGASEDR
sp Q3U1G5 I20L2_MOUSE	0.9985	2	2	IDLLGEFQSALPK
sp Q8BXA1 GOLI4_MOUSE	0.9981	2	2	DAGFQALEEQNQVEPR
sp P70158 ASM3A_MOUSE	0.998	2	2	NGNPLNSVFVAPAVTPVK
sp Q61624 ZN148_MOUSE	0.9979	2	2	LPQGLQYALNVPISVK
sp Q9QXE7 TBLX_MOUSE	0.9979	2	2	HQEPVYSVAFSPDGK
sp P59997 JHD1A_MOUSE	0.9974	2	2	ILLEELASSDPK
sp Q8BRG8 TM209_MOUSE	0.9918	2	2	YTVAPTSLVVSPGQQALLGLK
sp Q3URD3 SLMAP_MOUSE	0.9917	1	2	IEALQADNDFTNER
sp Q62388 ATM_MOUSE	0.9917	1	2	SVATSSIVGYILGLGDR
sp Q7TMW6 NARFL_MOUSE	0.9917	1	2	APDTEGSELLQQLER
sp Q80YR4 ZN598_MOUSE	0.9917	1	2	TPGLAPTPQAYLVPENFR
sp Q8K3K8 OPTN_MOUSE	0.9917	1	2	ADLLGIVSELQLK
sp Q9CPS7 PNO1_MOUSE	0.9917	1	2	RPVFPPLSGDQLLTGK
sp P70261 PALD_MOUSE	0.9908	1	2	ALGNILAYLSDAK
sp Q8BW49 TTC12_MOUSE	0.9908	1	2	ANTAIGILTDLALEER
sp Q91W92 BORG5_MOUSE	0.9908	1	2	LTADM[147]ISPPLGDFR
sp Q9Z0P7 SUFU_MOUSE	0.9908	1	2	VSILPDVVFDSPLH
sp P62737 ACTA_MOUSE	1	5	2	AVFPSIVGR
sp P12246 SAMP_MOUSE	0.9965	1	2	APPSIVLGQEQDNYGGGFQR
sp P62835 RAP1A_MOUSE	0.9952	1	2	INVNEIFYDLVR
sp Q80Y17 L2GL1_MOUSE	0.9948	1	2	APVVAIAVLDGR

Table S3

All the abbreviated words and their full name	
1DE-LC-MS/MS	dimensional gel electrophoresis- liquid chromatography-mass spectrometry
ACN	Acetonitrile
BSA	Bovine Albumin Standards
DMEM	Dulbecco's Modified Eagle Media
Dnmt3a	DNA methyltransferase 3A
Dnmt3a-D	Dnmt3a depletion B16 melanoma
ERK	extracellular signal-regulated kinase
FBS	Fetal bovine serum
GO	Genome Ontology
IEF	isoelectro- focusing
IPG	immobilized pH gradient
IPI	International Protein Index
JNK	c-Jun N-terminal kinase
KEGG	Kyoto Encyclopedia of Genes and Genomes
LTQ-Orbitrap	Linear ion trap Orbitrap
MAPK	mitogen activated protein kinase signaling pathway
NC	negative control cell line
PBS	phosphate-buffered saline
PMSF	phenylmethanesulfonyl fluoride
TPP	Trans-Proteomic Pipeline