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Abstract 
In this study, the first raw transition metals from V to Co complexes with 
benzene-1,2-dithiolate (L2−) ligand have been studied theoretically to eluci-
date the geometry, electronic structure and spectroscopic properties of the 
complexes. Density Functional Theory (DFT) and Time-Dependent Density 
Functional Theory (TD-DFT) methods have been used. The ground state 
geometries, binding energies, spectral properties (UV-vis), frontier molecular 
orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) 
have been investigated. The geometrical parameters are in good agreement 
with the available experimental data. The metal-ligand binding energies are 1 
order of magnitude larger than the physisorption energy of a benzene-1, 
2-dthiolate molecule on a metallic surface. The electronic structures of the 
first raw transition metal series from V to Co have been elucidated by UV-vis 
spectroscopic using DFT calculations. In accordance with experiment the 
calculated electronic spectra of these tris complexes show bands at 522, 565, 
559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are 
mainly attributed to ligand to metal charge transfer (LMCT) transitions. The 
electronic properties analysis shows that the highest occupied molecular or-
bital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas 
the lowest unoccupied molecular orbital (LUMO) is mainly located on the 
metal surface. From calculation of intramolecular interactions and electron 
delocalization by natural bond orbital (NBO) analysis, the stability of the 
complexes was estimated. The NBO results showed significant charge transfer 
from sulfur to central metal ions in the complexes, as well as to the benzene. 
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The calculated charges on metal ions are also reported at various charge 
schemes. The calculations show encouraging agreement with the available 
experimental data. 
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1. Introduction 

A metalloligand can be defined as a complex that contains several potential do-
nor groups that enable coordination to a variety of metal ions. Among the 
well-established metalloligands, interest in the chemistry of dithiolene complex-
es has increased tremendously in the past five decades since their initial popular-
ity in the 1960s [1]. Early interest focused primarily on the structural geometries 
[2], redox properties [3] [4] [5] and magnetic properties [6] of this class of com-
plexes, which arise from the noninnocent property [7] [8] of dithiolenes. Ward 
and McCleverty [7] have pointed out that the term noninnocent is applied 
properly when it is referred to a particular combination of the metal and the li-
gand rather than to redox-active ligands only. 

By taking into account the dithiolene ligands, two main classes of molecules 
can be distinguished. Such as the non-benzenoid dithiolenes, where the 
p-delocalization is confined in the dithiolene core [9] and benzenoid systems, 
where the p-delocalization is extended to the aromatic ring [10]. Dithiolene li-
gands often are referred to as noninnocent when coordinated to transition met-
als [11] [12]. Let us turn our attention to the chemistry of tris (ben-
zene-1,2-dithiolato) complexes. In contrast to their well-studied redox behavior, 
bond-making and bond-breaking reactivities of tris(benzene-1,2-dithiolato) 
complexes have been paid less attention [4]. The term “dithiolene” (L) will be 
used for two classes of ligands as shown in scheme 1(a) and 1(b) of Figure 1 [13], 
irrespective of their “true” oxidation level as monoanionic radical (L•)1−, or as 
dianionic, closed-shell (LRed)2− ligand or as neutral 1,2-dithioketone (LOx)0 [14]. 
Previously, Sproules et al. have calculated the geometry and electronic structures 
of the [V(L)3]z (z = 1+, 0, 1-, 2-, 3-, 4-) series by using density functional theory 
(DFT) and explored the stability of a trigonal prismatic structure over an octa-
hedral one [15] [16]. No dianion containing ligand as shown in scheme 2(a) [13] 
in Figure 1 has been isolated previously. The most reduced, trianionic 
[Cr(dithiolene)3]3− form with an S = 3/2 ground state has been isolated only as 
[PPh4]3 [Cr(mnt)3] salt [17] [18] (as shown in scheme 2(b) [13] in Figure 1). 
Wieghardt et al. and others have successfully elucidated the electronic structures 
for the [Cr(L)3]z (z = 0, 1-, 2-, 3-) [19] [20] electron transfer series and found a 
Werner-type compound with dithiolates. The following dianionic manganese  
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Figure 1. Binding schemes of metals coordination complexes [13]. 
 
(IV) complexes have also been isolated: [PPh4]2 [Mn(mnt)3] and [N(nBu)4]2 
[Mn(Cl4-bdt)3] both of which possess an S = 3/2 ground state [13] [18] [21] and 
only very recently (PNP)2 [Mn(bdt)3] (PNP+ = bis(triphenylphosphine)iminium) 
became the first structurally characterized tris(dithiolene)manganese compound 
[22]. They are isoelectronic with the corresponding trianions [Cr(dithiolene)3]3−. 
The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4] 
[CrIII(3,5L•

S,S)2(3,5LS,S)](S)1/2) has also been isolated: (3,5LS,S)2− represents the closed-shell 
dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L•

S,S)1− is its monoa-
nionic ð radical complex. Milsmann et al. reported on a similar series of iron(III) 
complexes, where a redox-innocent, closed-shell cyclam ligand  
(1,4,8,11-tetraazacyclotetradecane) and a potentially redox-noninnocent dithi-
olene ligand such as toluene-3,4-dithiolate or maleonitrile dithiolate are coordi-
nated to a low-spin ferric ion, affording the octahedral monocations [23] [24]. 
Only a few such complexes containing a cis-[FeIIIN4S2] core structure have been 
reported previously: [FeIII(L-N4Me2)-(bdt)]+(L-N4Me2 =  
N,N0-dimethyl-2,11-diaza [3.3]-(2,6)pyridinophane) [25], [FeIII(tripod)(bdt)]+ 
tripod = tris [(2-pyridyl)methyl]amine, and bis [(2-pyridyl)methyl]  
[(1-methylimidazole-2-yl)-methyl]amine [26] [(bdt)2− is unsubstituted ben-
zene-1,2-dithiolate(2-)]. The former low-spin ferric compound exhibits an un-
usual thermal spin transition from an S = 1/2 low-spin ground state to an S = 3/2 
intermediate-spin excited state [25]. [CoIII(trien)(3,5-DTBsq•)]Cl2 (S = 1/2) is 
one of the earliest examples (1976) [27], whereas [CrIII(tren)-(3,6-DTBsq•)](PF6)2 
is probably the most thoroughly studied [28] [29]. Milsmann et al. employed the 
DFT to establish the presence of an S,S0-coordinated benzene-1,2-dithiolate(1-) 
π radical in the two species [CoIII(tren)(tmsdt•)]2+ and [CrIII(tren)(tmsdt•)]2+ 
[30]. 

The bis(dithiolate) metal and tris(dithiolate) metal complexes have been ex-
tensively studied [2] and only very recently, the spectroscopic methods like S 
K-edge X-ray absorption spectroscopy have been developed to the extent that 
the presence of a benezene-1,2-dithiolate(1-) π radical in a coordination com-
pound can be established beyond doubt [31].  

In the present study, we have performed systematically a theoretical investiga-
tion on the structures, binding energies, spectroscopic and electronic properties 
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of [M(bdt)3]3− (M = V, Cr, Mn , Fe and Co) which contains bdt2− = ben-
zene-1,2-dithiolate ligand (as shown in scheme 2(a) of Figure 1) in the gas phase 
using the first principles HF/DFT hybrid approach. The natural bond orbital 
(NBO) analysis on the tris complexes of benzene-1,2-ditholate (bdt2−) complexes 
including V3+ to Co3+ is reported. These findings help us understand the ther-
modynamic behavior of each system as a function of the quantum chemistry de-
scriptors. 

2. Computational Details 

We have studied the [tris(bdt)M]3− complexes where M = V3+, Cr3+, Mn3+, Fe3+ 
and Co3+ with the bdt2− = benzene-1,2-dithiolate ligand (Figure 2). The dithiolene 
was taken to be oxidized (dithiolate). The compounds are theoretically examined 
by means of HF/DFT hybrid approach B3LYP [32] with the 6-311G(d,p) basis 
sets in gas phase. All the calculations were performed using Gaussian 09 pro-
gram [33]. GaussView 5.0.8 was used for the visualization of the structures and 
simulated vibrational spectra. We have considered dithiolate as a weak-field li-
gand, the metal coordination complex was assumed to have high spin multiplic-
ity. Geometry optimization was taken to be converged if the maximum atomic 
force was smaller than 0.00045 Hartree/Bohr and there was no imaginary fre-
quency. No symmetry was imposed in all the calculations. After optimizing the 
geometry of the coordination complexes, the metal-ligand binding energies were 
calculated as [34] [35] 
 

 
Figure 2. Metal binding to benzene-1,2-dithiolate, optimized geometry of the [Fe(bdt)3]3− 
complex. 
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where complexE , metalE , and ligandE  are the energies of the tris(dithiolate) coor-
dination complex, the metal ion and dithiolate ligand, respectively. Therefore, 
ΔE refers to the binding energy per ligand. The energy was calculated by opti-
mizing the geometry of the complex and the ligand separately. 

Electronically excited state calculation was carried out to compute the UV-Vis 
of the [M(dithiolate)3]3− complexes of V3+, Cr3+, Mn3+, Fe3+ and Co3+. The vertical 
excitation energies were obtained using the time-dependent DFT at the level of 
CAM-B3LYP [36]/6-311 + G(d,p) after the ground state optimization. 

3. Results and Discussion 
3.1. Structural Analysis 

After full optimization, the structural parameters such as bond distances and an-
gles of the [tris(bdt)M]3− (M = V3+, Cr3+, Mn3+, Fe3+ and Co3+) complexes are 
calculated. The calculated geometrical parameters as depicted in Figure 2 and 
Table 1. The metal and the sulfur atoms are 2.51 Å apart for V, 2.48 Å for Cr, 
2.55 Å for Mn, 2.54 Å for Fe and 2.60 Å for Co. The DFT and X-ray analysis of 
the tris-dithiolate complexes reported V-S distances of 2.337 Å and 2.350 Å re-
spectively [15], for Cr-S distances were 2.283 Å and 2.299 Å [19]. The experimen-
tal average Cr-S distance in the monoanion of the tris complexes at 2.299 ± 0.003 
Å, is shorter by 0.086 Å than the calculated one. The experimental average Cr-S 
distance in monoanion of the tris complex is 0.175 Å shorter than that for our 
DFT calculation of the [tris(bdt)Cr]3− complex. The Mn-S distances are 2.383 Å 
and 2.347 Å respectively in the [MnIV(Cl2-bdt)3] [Net4]2. CH2Cl2 complex and 
2.331 Å for the [Mn(bdt)3]2− complex [13]. The DFT calculated [tris(bdt)Mn]3− 
complex is 2.55 (±0.17) and 0.17 Å higher than experiment one [13]. The calcu-
lated Fe-S bond distance of the tris complex is 2.54 Å which is 0.29 Å higher 
than the experimental value of the complex of [FeIII(cyclam)(tdt)] (PF6) where 
the Fe-S distance is 2.25Å [23]. The experimental value deviates due to present  
 
Table 1. Geometric parameters of the tris(benzene-1,2-dithiolato) complexes of various 
transition metal ions. The metal-S bond lengths (dMS’s), C-S bond lengths (dCS’s) and the 
S-M-S bending angles (θSMS’s), the C-C-S bending angles (θCCS’s) and Metal-S-C bending 
angles (θMSC’s) are shown for trivalent metal ions ranging from V3+ to Co3+. The average 
values are listed with the standard deviations in parentheses. 

Metal dMS (Å) dCS (Å) θSMS (˚) θCCS (˚) θMSC (˚) 

V3+ 2.51 (±0.04) 1.76 (±0.00) 90.46 (±7.73) 119.93 (±0.26) 106.88 (±0.87) 

Cr3+ 2.48 (±0.00) 1.77 (±0.00) 90.80 (±4.68) 119.7 (±0.00) 106.10 (±0.00) 

Mn3+ 2.55 (±0.17) 1.77 (±0.01) 90.30 (±6.66) 119.3 (±1.20) 106.10 (±3.10) 

Fe3+ 2.54 (±0.00) 1.76 (±0.00) 90.47 (±7.58) 119.6 (±0.00) 107.00 (±0.00) 

Co3+ 2.60 (±0.09) 1.75 (±0.01) 90.51 (±9.42) 119.14 (±0.15) 106.65 (±1.91) 
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bulky substitute group cyclam. The theoretically calculated average Co-S bond 
lengths is 2.60 Å for the tris complex whereas experimentally measured value 
was found 2.25 Å [30] of the complex [CoIII(tren)(bdt)](PF6)1/2(Cl)1/2∙H2O. This 
deviation was due to present bulky groups tren and bdt in the complex 
[CoIII(tren)(bdt)](PF6)1/2(Cl)1/2∙H2O. 

The present S-M-S angles were significantly larger than the previous X-ray 
crystal structures. The average angle is nearly octahedral angle 90˚. The angles 
formed by the metal ion and the two sulfur atoms of the dithiolate ligands are 
within 90.30˚ to 90.80˚ on an average indicating almost octahedral geometry in 
the coordination. The average S-Cr-S angle of the complex [N(n-Bu)4] 
[CrIII(3,5LS,S)2(3,5LS,S)] is 84.22˚ [19] whereas theoretically calculated value of the 
present tris complex of [Cr(bdt)3]3− is 90.80˚. The experimental S-Mn-S angles of 
the [MnIV(Cl2-bdt)3] [NEt4]2∙CH2Cl2 and [Mn(S,S-C6H4)3]2− complexes was 85.2˚ 
and 92.28˚ respectively [13] The present DFT calculation estimates 90.30˚ 
(±6.66) which are within the experimental range. The theoretical S-Fe-S angles 
in our calculation was 90.47˚, in good agreement with experimentally measured 
value (90.72˚) in the [(n-Bu)4N]2 [Fe(bdt)2]2 complex [37]. The DFT calculated 
average bond angle S-Co-S was found 90.51˚. Figure 2 shows the average M-S 
bond distance’s dMS’s and the angles of S-M-S triplets, θSMS’s. The fluctuation in 
dMS was significant. All the, θSMS’s however fluctuate significantly from their av-
erage values.  

3.2. Binding Energy 

In this study we have investigated the metal-ligand binding energies, ΔE, of the 
trivalent metal ions considered and are presented in Figure 3 and Table 2. The 
ΔE values have greatly exceeded the physiorption energy of benzene-1,2-dithiol 
adsorbed on metallic surface. Lee et al. reported that a single benzene-1,2-dithiol 
molecule binds to a gold (111) surface with a binding energy of 6.0 kcal/mol 
[38]. A similar energy was reported in a DFT study of the adsorption of ben-
zene-1, 2-dithiol to silver (111) surface (3.30 kcal/mol) [38]. The present ΔE  
 

 
Figure 3. Metal-ligand binding energies of the coordination complexes of various metal 
ions for tris [M(bdt)3]3− (M = V to Co) complexes. 
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Table 2. The calculated metal-ligand binding energies ΔE, zero point corrected binding 
energies, ΔEZPEs, thermal energies ΔEtots, enthalpies ΔHs and Gibbs free energies ΔGs. The 
metal-ligand binding energies ΔEs were corrected by using the thermodynamic condition, 
298.15 K and 1 atm. All energies are in units of kcal/mol. 

Metal 
ΔE 

(kcal∙mol−1) 
ΔEZPE 

(kcal∙mol−1) 
ΔEtot 

(kcal∙mol−1) 
ΔH 

(kcal∙mol−1) 
ΔG 

(kcal∙mol−1) 

V3+ 467.19 465.74 465.10 467.19 436.90 

Cr3+ 481.77 480.27 479.68 480.27 468.79 

Mn3+ 486.36 485.04 484.31 484.90 474.08 

Fe3+ 476.58 475.23 474.51 475.11 464.14 

Co3+ 497.20 537.56 495.24 495.83 485.76 

 
values (467.19 - 497.20 kcal/mol) are an order of magnitude larger than these. 
Interestingly, the previous study also reported that trivalent 1st row transition 
metal coordination produced a 1 (one) order of magnitude increase in the 
cross-linking strength [39]. Figure 3 shows that the overall ΔE increases with 
increasing nuclear charge due to the increased electrostatic interaction with in-
creasing nuclear charge. The decreasing ΔE with changing Cr to Mn arises from 
the Jahn-Teller distortion of the metal complex. The dip in ΔE observed for Fe is 
ascribed to the d5 configuration of Fe (III). In this case, as all of the d orbitals are 
occupied, the ligand-to-metal charge transfer is inefficient resulting in a reduced 
ΔE. The peak at Cr can be understood by noting that the ligand field stabiliza-
tion should be largest for the d3 configurations of a high-spin complex. We have 
calculated the binding energies by including the zero-point energies (ZPEs), 
thermal energies, enthalpies and Gibbs free energies as summarized in Table 2. 
The vibrational, thermal, and entropic contributions to ΔE values turned out to 
be small, presumably due to the covalent nature of the metal ligand binding. Re-
gardless of the metal ion, the ZPE-, thermal-energy-, enthalpy-, Gibbs free ener-
gy corrected ΔE value were all within 6% of the uncorrected binding energies.  

3.3. Spectroscopic Data 

In order to assign the electronic absorption bands of the complexes, TD-DFT 
calculations have been carried out on these complexes in gas phase optimized 
geometries at the CAM-B3LYP [34]/6-311 + G(d,p) level of theory. TD-DFT is a 
useful method for studying excitation energies, and its application has increased 
in the recent years. The electronic absorption spectra of complexes formed by V, 
Cr, Mn, Fe and Co have been calculated. The calculated electronic absorption 
spectra of the tris complexes formed by V to Co are presented in Figure 4 and 
Table 3. Transition metal complexes generally show three types of electronic ex-
citation bands which cover a wide wavelength range: d-d (crystal-field) transi-
tions (300 - 1500 nm); metal-to-ligand charge-transfer (MLCT) and ligand-to-metal 
charge transfer (LMCT) transitions (200 - 500 nm) [40]. The LMCT transitions lo-
calized on the ligands commonly known as intra-ligand charge transfer (ILCT) 
transitions, which regularly occur in the ultraviolet region. ILCT results  
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Figure 4. UV-vis spectrum of the tris [M(bdt)3]3− (M = V to Co) complexes obtained 
from the present calculation. 
 
Table 3. Electronic spectra of [tris(bdt)M]3− (M = V, Cr, Mn, Fe and Co) complexes. 

M λmax (nm) 

V 431,448,522,691 

Cr 442,565,687 

Mn 453,488,559 

Fe 394,546,656 

Co 687,731,863 

 
from n → π and n → π* transitions and is affected by the type of coordination. 
The calculated spectra of the model compound [V(bdt)3]3− are 431, 448, 522 and 
691 respectively whereas in [PPh4]2 [V(bdt)3] where vanadium has (IV) oxida-
tion state showed the absorption maxima at 878, 681, 553, 426 and 327 respec-
tively [15]. The calculated spectra of the model compound [Cr(bdt)3]3− are 442 
nm and two d-d transitions with relatively low intensities in the visible region at 
565 and 687 nm, as typical for chromium (III) octahedral complex. The elec-
tronic structure of this complex is best described as [CrIII(3,5LS,S)3]3− with a chro-
mium (III) central ion (d3, S = 3/2) and three closed-shell dithiolate-(2-) ligands 
[19]. The electronic spectra of these tris(dithiolene)chromium complexes resem-
ble closely those reported previously for the corresponding tris(dioxolene) 
chromium complexes [19].  

For the trianion manganese [tris(bdt)Mn]3− complex, the absorption spec-
tra were obtained at 453, 488 and 559 nm. These are in the range of experi-
mentally measured absorption spectra (363, 508, 582 and 741 nm) of the 
[Mn(S,S-C6H4)3]2− complex (where Mn is d3) in CH3CN solution [22]. Our DFT 
calculated absorption spectra of the tris complex of iron [Fe(bdt)3]3− was found 
at 394, 546 and 650 nm respectively. The experimentally measured values of the 
complex of toluene-3,4-Dithiolate(tdt), [FeIII(cyclam)(tdt)](PF6) complex, the 
monocation, shows absorption bands above 400 nm with maximum at 580 nm 
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and 825 nm respectively [23]. The calculated absorption spectra of the Co tris 
complex [tris(bdt)Co]3− was found at 687, 731 and 863 nm which are overesti-
mated compared to the measured spectra of the [Co(III)(tren)(bdt)](PF6)1/2(Cl)1/2∙H2O 
complex at 463 nm and 646 nm respectively [30]. This discrepancies due to 
present bulky groups tren and bdt of the complex  
[Co(III)(tren)(bdt)](PF6)1/2(Cl)1/2∙H2O. 

3.4. Electronic Properties 

The electronic structure parameters are very important for understanding the 
molecular interactions with other species. We have calculated the electronic 
energy gap Eg, electron affinity A, electronegativity χ, chemical hardness η and 
chemical softness S for all the considered complexes. The results are presented in 
Table 4. The energetics of frontier molecular orbitals (FMOs), i.e., the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied molecular or-
bital (LUMO) energies are calculated. HOMO, which can be considered of as the 
outermost orbital containing electrons, tends to give these electrons and acts as 
an electron donor. On the other hand LUMO can be considered as the inner-
most orbital containing free places and accepts electrons. The difference between 
HOMO and LUMO provides the electronic gap Eg as depicted in Figure 5. Our 
investigation shows that Eg for the considered complexes increases in the fol-
lowing direction Mn3+ > V3+ > Cr3+ > Co3+ > Fe3+. The electron affinity and elec-
tro negativity values also follow the same trend (Table 4). From MOs plots 
(Figure 5), it can be concluded that the HOMO is mainly centered on metal 
coordinated sulfur atoms (which acts as a donor atoms) whereas LUMO is 
mainly located on the metal surface. 

The Energy gap characterizes the molecular chemical stability, and it is a crit-
ical parameter in determining molecular electrical transport properties because 
it is a measure of electron conductivity. The energy gap between HOMO and 
LUMO (Eg) also plays important role in predicting the polarizability of a mole-
cule. Smaller the energy gap, the more polarizable the molecule is. The chemical 
stability of molecule can be also studied by the calculation of the chemical hard-
ness η and chemical softness S as shown in Table 4. Large energy gap is an indication 
of hard molecule and small energy gap is the sign of soft molecule. Therefore, 
among the [tris(bdt)M]3− (M = V, Cr, Mn, Fe and Co) complexes, the  
 
Table 4. The electronic parameters calculated for the tris(benzene-1,2-dithiolato) com-
plexes of considered transition metals. 

Metal V3+ Cr3+ Mn3+ Fe3+ Co3+ 

Eg(eV) 2.62 3.33 1.69 4.02 3.82 

Electron affinity A (eV) −6.97 −7.53 −5.80 −8.02 −7.88 

Electronegativity χ (eV) 5.66 5.87 4.95 6.01 5.97 

Chemical hardness (eV) 1.31 1.66 0.85 2.01 1.91 

Chemical softness S (eV) 0.38 0.30 0.59 0.25 0.26 
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Figure 5. Frontier MOs of the tris(benzene-1,2-dithiolato) complexes. The H, C and S 
atoms are shown as white, gray, and yellow spheres, respectively. The orbital lobes shown 
in green and red represent the opposite phases. 
 
[tris(benzene-1,2-dithiolato)Fe]3− complex is the hardest, followed by those of 
Co3+, Cr3+, V3+ and Mn3+ respectively. The soft molecules are more polarizable 
than the hard ones as they need small energy for excitation. 

3.5. Atomic Charges 

The atomic charge on the metal ion has been calculated and summarized in Ta-
ble 5. Four different schemes were used to calculate the charges: Natural Popu-
lation Analysis (NPA) [41], MK [42] (Merz-Singh-Kollman), CHelpG [43] 
(Charges from ELectrostatic Potentials using a Grid based method), and CHelp 
[44] methods. The atomic charges vary according to the schemes. For example, 
according to NPA method, the charge is 1.513 for Fe, but the charge is 2.038 if 
the MK scheme was used. The atomic charge decreased with increasing nuclear 
charge. The present drift of the atomic charge deviated considerably from a uni-
form decrease with increasing nuclear charge. The uniform decrease was attri-
buted to the increased covalent nature of the metal-sulfur bond (hence, the 
charge transfer increased from the ligand to metal). For the present complexes, 
however, the atomic charge was a minimum for Co3+, regardless of the charge 
scheme. The charge also decreased as the metal atom was changed from Cr to 
Mn and Fe, according to the MK, CHelpG and CHelp schemes.  

3.6. NBO Analysis 

In the natural bond orbital (NBO) [45] analysis, electronic wave function is ex-
plained in terms of occupied Lewis and unoccupied Lewis localized orbitals. The 
delocalization of electron density(ED) between occupied Lewis-type and unoc-
cupied non-Lewis NBOs correspond to stabilizing donor-acceptor interactions 
that contribute predominantly to the stabilization of the entire molecular sys-
tem. The strength of donor-acceptor interactions, ( )2

ijE , are evaluated by 
second-order perturbation theory. For each donor (i) and acceptor (j) in the 
complexes, the stabilization energy or second-order perturbation energy, ( )2

ijE  
associated with the delocalization from →i j  was estimated using Equation 
(2). 
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( ) ( )2

2 îj
ij

j i

F
E q

ε ε
∆ = −

−
                        (2) 

In Equation (2), q is the donor orbital occupancy, ε i  and ε j  are diagonal 
elements (orbital energies) of donor and acceptor NBOs respectively and îjF  is 
the off-diagonal NBO Fock matrix element. Values of this energy are propor-
tional to the intensities of NBO interactions or to the extent of intramolecular 
charge transfer (ICT) within a molecular entity. The greater the electron donat-
ing tendency from donor to acceptor NBOs is, the larger the ( )2

ijE  values and 
the more intense the interaction between the electron donors and the electron 
acceptors are. Table 6 summarizes the ( )2

ijE  values of the tris(benzene-1,2-dithiol) 
complexes of trivalent V, Cr, Mn, Fe and Co complexes in gas phase for the im-
portant NBO interactions. The most important interaction energies of these 
complexes are due to interactions between the lone pair electron of the S 
atom(LP0) and antibonding orbital of the M3+( *

MLP ) (M3+ = V, Cr, Mn, Fe and 
Co). According to Table 6, ( )2

ijE  values decrease with a decrease in the ionic 
sizes. Therefore, donor-acceptor interaction energies are the greatest values in 
the tris(benzene-1,2-dithiol) complex of trivalent V ion except Mn. The do-
nor-acceptor interaction value of Mn complex is higher due to Jahn-Teller  
 
Table 5. Atomic charges on the metal atoms obtained using various charge schemes, 
NPA, MK, CHelpG and CHelp schemes. 

Metal 
Atomic charge on metal 

aNPA bMK cCHelpG dCHelp 

V3+ 1.224 1.914 1.846 1.796 

Cr3+ 1.251 2.242 2.083 1.690 

Mn3+ 1.408 2.247 1.927 1.746 

Fe3+ 1.513 2.034 1.875 1.618 

Co3+ 1.362 1.944 1.636 1.598 

aNatural Population Analysis (NPA) [41]. bMK(Merz-Singh-Kollman) [42]. cCHelpG (CHarges from ELec-
trostatic Potentials using a Grid based method) [43]. dCHelp methods to fit the electrostatic potential me-
thod [44]. 

 
Table 6. Significant donor-acceptor interaction energies of  
[M(benzene-1,2-dithiolato)3]3− (M = V3+, Cr3+, Mn3+, Fe3+ and Co3+) complexes. 

Donor-acceptor interaction V3+ Cr3+ Mn3+ Fe3+ Co3+ 

LPS12 → LP*M 28.15 23.92 32.52 23.94 19.35 

LPS13 → LP*M 25.40 24.22 32.52 23.95 17.07 

LPS24 → LP*M 25.37 24.03 14.92 23.95 17.07 

LPS25 → LP*M 28.06 24.23 30.71 23.95 19.34 

LPS36 → LP*M 26.48 24.12 30.71 23.91 23.58 

LPS37 → LP*M 26.21 24.26 14.94 23.98 23.58 
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effect. The strongest interaction in V-complex is LPS12 → LPV, in Cr-complex is 
LPS37 → LPCr, in Mn-complex is LPS12 → LPMn. In Fe-complex the strongest inte-
raction is LPS37 → LPFe and in Co-complex is LPS36 → LPCo. The results of NBO 
analysis reflect generally charge transfer from lone pair orbitals located on the 
donor atoms S to the central metal ions. NBO analysis provides the most accu-
rate possible “natural Lewis structure”.  

4. Conclusion 

The structural, energetic, spectroscopic and electronic properties of 
[M(benzene-1,2-dithiolato)3]3− (M = V3+, Cr3+, Mn3+, Fe3+ and Co3+) complexes 
have been investigated theoretically using quantum chemical calculations based 
on HF/DFT hybrid approach. The calculated geometrical parameters of the tris 
(benzene-1,2-dithiolato) complexes are in good agreement with the experimen-
tal measurement values. The binding energies of the tris complexes range from 
467.19 - 497.20 kcal∙mol−1 which are 1 (one) order higher than physically ad-
sorbed on metallic surface. TD-DFT calculations have been successively em-
ployed to simulate the electronic spectra of the V, Cr, Mn, Fe and Co complexes 
and facilitated a transition assignment. With the electronic structure of this 
tris-complexes, we have begun to make meaningful comparisons to experimental 
spectra for investigation into many tris(dithiolato) complexes of early transition 
metals. The investigation of electronic parameters including frontier molecular 
orbital energies suggests that Fe containing complexes should have the largest 
band gap and therefore being the hardest among all. The results of NBO analysis 
reflect charge transfer from lone pair orbitals located on the donor atoms to the 
central metal ions. The present metal-ligand binding energies, structures, stabil-
ity and atomic charges of the metal-benzene-1,2-ditholato (bdt2−) complexes will 
serve as a cornerstone for such modeling using molecular dynamics or Monte 
Carlo simulations. 
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