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Abstract 
Regulatory T cells (Treg), a component of adaptive immunity, are well known 
for their immunosuppressive roles and their ability to maintain the balance 
between the immunological and pathological reactions. Treg have been 
shown to provide protective responses and their depletion has resulted severe 
pathology in some pathogen infections. The work presented here has unrav-
elled the potential of regulatory cells in the immune system including differ-
ent repertoir of Treg cell subsets, markers to distinguish them, Treg suppres-
sion mechanisms in the pathogenesis of various infections and summarize 
different mouse models depleting Tregs. These findings would help set up 
future avenues of research to elucidate a key mechanism of action of these 
cells and provide new therapeutic insights for pathogenesis and also for 
broader antibacterial/antiviral/antiproliferative immunity. 
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1. Introduction 

A hallmark of the immune system is to maintain a harmonious balance and se-
lection among its different components. B and T cells are selected rigorously for 
survival during maturation phase. Among the different repertoire of cell subsets, 
regulatory T cells (Treg) have been established as a developmentally and func-
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tionally distinct group that has been recognised as vital for keeping the immune 
system in check, aiding it to escape from self-targeted pathology and unhindered 
selection of both T and B cell populations [1] [2]. In order to maintain a delicate 
balance, immune system is required to respond to pathogens, nevertheless is 
must tolerate beneficial microbes. It is widely acknowledged that Treg play a 
major role in minimizing deleterious immune mediated pathology caused by 
harmful microbes and self-antigens and thus making a significant impact to this 
balance. 

2. Treg 

Treg are currently thoroughly investigated for their key role in the maintenance 
of balance between the immunological and pathological reactions over the body 
[3] [4]. They are crucial for the retainment of self-tolerance and the control of 
immune responses against pathogenic organisms, tumour antigens as well as al-
lergens [5] [6] [7] [8] [9]. Treg are developmentally and functionally different 
from conventional T cells. Treg constitute 5% to 10% of CD4+ T cells. In the 
steady state, they are generated in the thymus and can be induced from naïve 
CD4+ T cells in the periphery.  

Treg are initially characterized as expressing a CD4+CD25high phenotype [10] 
[11]. However, an increasing number of markers have been identified that ex-
press constitutively on Treg. These include: cytotoxic T lymphocyte antigen 4 
(CTLA-4), glucocorticoid-induced tumour necrosis factor receptor family re-
lated protein (GITR); TNFRSF18 (GITR), CD39, HLA-DR, CD45RA, OX40, 
CD127lo, and CD73 [12]-[17]. In fact, none of these surface markers are ex-
pressed exclusively on Treg. Moreover, as CD25 is expressed on other activated 
T cells and there are some Treg in the peripheral tissues which do not express 
CD25 limiting the use of this marker for Treg [18] [19] [20] [21]. To date the 
most specific marker identified for the classification of Treg is expression of the 
transcription factor recognized as forkhead box P3 (Foxp3) [22], which has been 
exhibited to be expressed specifically in CD4+ T cells. The Foxp3 gene encodes 
Scurffin, which is identified as a member of forkhead-winged-helix family of 
transcriptional regulators and is vastly conserved in humans [23]. In mice nei-
ther activated CD4+ T cells nor differentiated Th1/Th2 cells express Foxp3 [24] 
[25]. Foxp3 is found to be expressed almost exclusively by CD4+CD25+ T cells in 
both thymus and periphery [26]. Mutation of Foxp3 causes an aggressive 

X-linked autoimmune disease in scurfy mice [23] and the human equivalent, 
immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome 
(IPEX) [27] [28]. Moreover, forced expression of Foxp3 can transform naive T 
cells to Treg [24] [29]. Foxp3-sufficient or Foxp3-deficient mixed bone marrow 
chimeras study demonstrated that CD4+CD25+ cells only developed from Foxp3 
sufficient bone marrow suggesting that Foxp3 is indispensible for the develop-
ment of Treg [24] [30]. Importantly, expression of green fluorescence protein 
(GFP) under the control of Foxp3 gene showed that Foxp3 expression is limited 
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to CD4+ T cells that exhibit suppressive potency [31]. Also, ablation of Foxp3 in 
Treg results loss of suppressive function and phenotype [32] [33]. Thus, Foxp3 
appeared to be a lineage-specification factor of Treg and its expression is indis-
pensable for the development and function of Treg.  

2.1. Functions of Treg 

Preliminary studies with Treg were based on their role in dominant tolerance 
and development of autoimmune disease. However, a handful of studies indicate 
that Treg play roles in the development of allergic diseases (reviewed in [34]), in 
the suppression of anti-tumour immunity [35], during pathogen infection (re-
viewed in [4]) and in controlling responses to commensal microbes in inflam-
matory diseases [36]. Treg are well known for their immunosuppressive role of 
varying immune cells including non-Treg CD4+ T cells [37], CD8+ T cells [38], 
dendritic cells (DC) [39], B cells [40], Th17 cells [41], natural killer (NK) cells 
[42], macrophages [43] and mast cells [44] which are activated in response to 
pathogen (Figure 1).  

2.2. Different Subsets of Treg 

Studies of Treg have identified several lineages of cells with different sites of 
induction, characterization and to a degree with various mechanisms of action. 
Treg are largely divided in to two major groups: thymus-derived Treg cell 

 

 
Figure 1. Diverse functions of Treg. Treg control Th1 type cells which though secretion of 
IFNγ activate antimicrobial activity of macrophages and cytotoxic activity of CD8 T cells 
which lyse host cells infected with pathogen. Treg suppress Th2 type activity which 
through secretion of IL-4, 5 and 6 activates naïve B cells to produce antibodies as well as 
controlled recruitment of eosinophils. In addition, Treg alter neutrophil activity by inhib-
iting their recruitment on the epithelial cell membrane. 
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(tTreg) and peripherally derived Treg cell (pTreg) (Table 1) [45] [46] [47] 
[48].  

2.2.1. Thymus Derived Treg (tTreg) 
Treg that develop within the thymus were often referred to as natural Treg cells 
as opposed to peripherally derived Treg [46]. tTreg arise during the normal 
process of T cell development in the thymus and are imprinted with regulatory 
function before being released into the periphery. They help prevent autoimmu-
nity and are resistant to thymic deletion and are non-redundantly required for 
the establishment of self-tolerance [49] [50]. tTreg are known to suppress effec-
tor T cell proliferation in vitro through cytokine independent fashion that is 
mostly cell contact dependent [51]. The proportion of tTreg appears to be small 
when any part of this population reacts with antigens [52]. In thymus, tTreg can 
develop from progenitors to tTreg through tTreg precursor cells [53] [54]. Resting 
tTreg express CD45RA+Foxp3low, while activated tTreg express CD45RO+Foxp3high  

 
Table 1. Different subsets of regulatory T cells. 

Cell type Suggested immunosuppressive mechanisms Ref 

tTreg/nTreg 

Require CD28 co-stimulation for their development in thymus [58] [59] [60] 

Il-2 is important for thymic induction of tTreg [61] [62] 

STAT5 has been demonstrated to increase the in vivo frequency of tTreg [63] 

IL-15 is essential for induction of Foxp3 expression in thymocytes [64] 

c-Rel has been shown to be highly expressed by tTreg [65] [66] 

mTECs are responsible for inducing selection of thymic tTreg [2] [69] 

pTreg 

TGF-β and its receptor signal pathway is essential for the generation of pTreg [82] [83] [84] 

CNS-1, a non-coding region of Foxp3 locus are a crucial regulatory element in the 
generation of pTreg 

[87] [88] 

IL-2 play a vital part in the differentiation of Foxp3+ pTreg [89] [90] [91] 

Downstream STAT5-dependent signaling is essential for the differentiation of pTreg [92] [93] [94] 

RA plays a significant role in enhancing the generation of Foxp3 Treg cells in the GALT [95] [96] [97] 

Smad 2 and Smad 3 participate in the pTreg differentiation process [99] [100] 

Tr1 

IL-10 is the major cytokine involved in Tr1 cells differentiation pathway [102] 

An essential growth factor for the development of Tr1 is IL-15 [103] [104] 

IL-27 are the major cytokines involved in the differentiation of Tr1 cells [105] [106] 

c-Maf which activates IL21 facilitates proliferation of Tr1 [105] [107] 

IL21, an autocrine growth factor drives the proliferation of Tr1 cells [107] 

ICOS stimulates the IL27-induced differentiation of Tr1 [105] 

AhR induced by IL27 shown to be involved in the differentiation of Tr1 [108] [109] 

Th3 
Th3 mediate their suppressive activity by the production of TGF-β. [110] 

Th3 exhibit a mutual relationship with Th17 cells and exert regulatory potentials [111] [112]. 

Tr35 Tr35 are involved in IL-35 production [113] 

https://doi.org/10.4236/abb.2018.99031


T. Rahman et al. 
 

 

DOI: 10.4236/abb.2018.99031 447 Advances in Bioscience and Biotechnology 
 

[50] [55]. tTreg constitute about 5% - 10% of mouse peripheral CD4 cells which 
is corresponding to 1% - 2% of human counterpart [1]. 

tTreg develop as a consequence of high-affinity interactions with MHC class 
II-peptide and their TCR repertoire is primarily self-reactive [56] [57]. They re-
quire CD28 co-stimulation for their development in thymus as mice lacking 
CD28 have an approximately 80% decrease in the frequency of tTreg [58] [59] 
[60]. IL-2, a member of γc cytokine family is important for thymic induction of 
tTreg as mice lacking IL-2Rβ (CD122) develop spontaneous autoimmune dis-
eases which can be blocked by administration of donor Treg [61] [62]. Signal 
transducer and activator of transcription 5 (STAT5) has been demonstrated to 
increase the in vivo frequency of tTreg and expression of STAT5 is regulated by 
IL-2 [63]. IL-15 is also essential for induction of Foxp3 expression in thymocytes 
[64]. Transcription factor c-Rel, a member of NF-κB family has been shown to 
be highly expressed by tTreg. c-Rel binds to the conserved non-coding sequence 
3 (CNS3) region of Foxp3 locus and in mice deficient in c-Rel, tTreg numbers 
are markedly reduced [65] [66]. TGF-β has been suggested to be absolutely en-
gaged in Foxp3 induction during tTreg development. However, its role has been 
controversial in tTreg development [67] [68].  

Medullary thymic epithelial cells (mTECs) are responsible for inducing selec-
tion of thymic tTreg, also bone marrow derived APCs can facilitate tTreg differ-
entiation [2]. Either mTECs or bone derived APCs alone may be sufficient for 
the generation of tTreg numbers and both of these subsets can present self-antigens 
in order to induce development of tTReg [69].  

2.2.2. Peripherally Derived Treg Cell 
pTreg develop extra-thymically when they are exposed to certain regulatory cy-
tokines which are released during inflammatory conditions, upon encountering 
cognate antigens and costimulation [70] [71]. The antigen-specific Treg reper-
toire is more abundant than tTreg population and in contrast to tTreg, they 
migrate towards the sites of inflammation [72]. pTreg play an indispensible 
role in establishing peripheral tolerance to commensal microbes in gut and 
non-pathogenic environmental antigens derived from food and they express 
predominantly in mucosa associated lymphoid tissues (MALT) including peyer’s 
patches and lamina propria of small and large intestines [73] [74]. Moreover, 
pTreg which present only in the placental mammals are involved in the estab-
lishment of maternal-foetal tolerance [75]. Their suppressive actions are mostly 
cell contact independent and depend on the availability of immunosuppressive 
cytokines [76] [77]. They are known to develop from CD4+Foxp3− effector T 
cells in the periphery and they apparently have a similar TCR repertoire to that 
of the effector T cells [78] [79]. In particular, pTreg can convert from 
CD4+Foxp3− to CD4+Foxp3, thereby expanding the range of Treg specificities to 
exogenous antigens [80]. Conversely, pTreg can revert to effector T cells, losing 
expression of Foxp3 under certain situations and thus pTreg are not irreversibly 
programmed [81].  
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TGF-β and its receptor signal pathway is essential for the generation of pTreg 
as diminishing TGF-β receptor signaling blocks the induction of Foxp3 expres-
sion and the resulting operational suppressive capability [82] [83] [84]. TGF-β 
downregulates the expression of growth factor independent 1, a transcriptional 
repressor that inhibits Treg differentiation [85]. TGF-β also antagonizes DNA 
methyltransferase 1 (Dnmt1), which inhibits the expression of Foxp3 [86]. 
CNS-1, a non-coding region of Foxp3 locus are a crucial regulatory element in 
the generation of pTreg [87]. CNS1, which possesses a TGFβ-NFAT response 
element are involved in pTreg differentiation in GALT [88]. 

IL-2 play a vital part in the differentiation of Foxp3+ pTreg as TGF-β fails to 
induce Foxp3+ pTreg from naïve CD4+CD25− cells in mice deficient in IL-2 [89] 
[90] [91]. Downstream STAT5-dependent IL2 signaling is also essential for the 
differentiation of pTreg [92] [93] [94].  

Retinoic acid (RA), a vitamin A metabolite plays a significant role in enhanc-
ing the generation of Foxp3 Treg cells in the GALT [95]. However, the molecu-
lar mechanism by which RA promotes TGFβ-mediated Foxp3 induction has 
controversies. RA has been demonstrated to enhance Foxp3 expression by 
promoting the expression of Smad 3, thereby amplifying Foxp3 transcription 
[96] [97]. However, another study has suggested that even though RA appears 
to increase Smad 3, it augments Treg cell translation independently of Smad 3 
[98].  

Smad 2 and Smad 3 participate in the pTreg differentiation process and they 
are activated through TGF-β signaling pathways by inducing Foxp3 [99] [100]. 
Smad 2 and 3 induces the expression of TGF-β induced transcription factor, 
TGF-β-inducible early gene 1 product (TIEG1), which induces Foxp3 and its 
transcription [96]. In addition, Smad 2 and Smad 3 are also appeared to stimu-
late differentiation of pTreg though Foxp3-independent pathway [101].  

Besides pTreg, there are other types of Treg including Tr1 cells (T regulatory 
type 1) and Th3 Treg [114] [115]. Tr1 population are disturbed in individuals 
with prolonged inflammatory conditions like colitis, arthritis and asthma. IL-10 
is the major cytokine involved in Tr1 cells differentiation pathway [102]. Once 
mature, they exert their suppressive activity through the production of large 
amounts of IL-10 [46]. Usually Tr1 cells do not express Foxp3 constitutively, 
however, when activated, they can induce Foxp3 expression [116]. There is ac-
cumulating evidence that Tr1 cells do not require Foxp3 expression in order to 
exert their suppressive potency, as Tr1 cells suppress conventional T cells inde-
pendent of Foxp3 expression [117] [118]. In addition, it is revealed that Tr1 cells 
may be differentiated from naive T cells in patients with IPEX disease [119]. An 
essential growth factor for the development of Tr1 is IL-15, which can mediate 
Tr1 cell differentiation without TCR triggering [103] [104].  

IL10 and IL27 are the major cytokines involved in the differentiation of Tr1 
cells [105] [106]. IL27 signaling results activation of transcription factors in-
cluding c-Maf, IL21, and the costimulatory receptor ICOS [105]. c-Maf is the key 
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factor, which activates IL21 production. IL21, an autocrine growth factor drives 
the proliferation of Tr1 cells [107]. ICOS stimulates the IL27-induced differen-
tiation of Tr1. Currently, the aryl hydrocarbon receptor (AhR), also induced by 
IL27, was shown to be involved in the differentiation of Tr1 [108]. c-Maf and 
AhR perform synergistically to facilitate proliferation of Tr1 [109]. In the case of 
Tr1, as IL-10 can also be produced by both Th1 (IFNγ+) and Th2 (IL-4+) effec-
tors, definition of this subset is relatively fluid [120]. 

Th3 cells were first recognized due to their role in immune tolerance after oral 
ingestion of antigens [110]. Th3 mediate their suppressive activity by the pro-
duction of TGF-β. Mice deficient in Th3 often develop spontaneous autoimmu-
nity and Th3 exhibit a mutual relationship with Th17 cells [111] [112]. Th17 
being proinflammatory are essential in autoimmune related disorders [121] 
[122]. No specific surface marker has been identified so far for Th3 cells, though 
Th3 is induced by Foxp3 expression. 

Apart from Foxp3-expressing Treg there are other functional regulatory cells, 
which are involved in IL-35 production (Tr35) [113]. While Treg are commonly 
found to be CD4+, CD8+ T cells might express Foxp3 and produce the same sup-
pressive cytokines [123]. 

2.2.3. Markers to Distinguish tTreg from pTreg 
The tTreg vary in functionality from pTreg, however, the major problem in ex-
ploring the relative function of these two subsets is the lack of markers to dis-
tinguish the two populations.  

Helios, a T cell restricted member of Ikaros family transcription factor has 
been demonstrated to be useful for distinguishing these two Treg populations 
[124] [125]. Helios is preferentially expressed by tTreg, whereas Treg generated 
in vitro and in vivo are negative for Helios expression [124]. However, others 
have described that pTreg can express Helios as when T cells were stimulated 
with irradiated splenocytes, more than half of the pTreg expressed Helios [126]. 
In addition, Helios is also expressed on Th2 and T follicular helper cells and is 
related to the differentiation of these cells [127]. It is reported that activated 
Foxp3 T cells also express helios and in fact a marker for Treg activation [128]. 
Also expression of Helios has been shown to be associated with T cell tolerance 
in both thymus and periphery [129]. Thus Helios does not appear to be a marker 
to distinguish pTreg from tTreg. 

Neuropilin-1 (Nrp1) expression, a neuronal receptor of the class 3 sema-
phorin subfamily and a co-receptor for vascular endothelial growth factor A, 
offers another biological marker to distinguish tTreg from pTreg [130] [131]. 
In contrast to low levels of Nrp1 expressed on pTreg, majority of tTreg express 
Nrp1 [130]. However, others have demonstrated that Treg generated extra-
thymically in the central nervous system during a spontaneous model of EAE 
were Nrp+ [125]. In addition, Nrp1 is not a marker for human Treg [132]. 
Thus Nrp1 appeared to be an imperfect marker to distinguish pTreg from 
tTreg. 
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Lap, a component of latent TGFβ and Garp (Lrrc32), a membrane anchoring 
molecule that binds to latent TGFβ, were found to be expressed on the surface of 
Treg [133]. While Lap and Garp expression selectively identifies tTreg that rep-
resent a stable subset with highly potent suppressive ability, pTreg fail to express 
surface Lap or Garp [134]. Recently transcription factor Krϋppel-like factor 2 
(KLF2) has been demonstrated for the generation of pTreg [135]. KLF2 is not 
required for the generation of tTreg and is only necessary for pTreg develop-
ment. In addition, it has been exhibited that drugs that block KLF2 proteolysis 
during T cell activation augment pTreg development.  

2.3. Mechanism of Suppression of Treg 

To date a number of mechanisms have been associated with the suppressive ac-
tion of Treg suppression. Treg execute their suppressive function rapidly when 
they are activated via the T cell receptor, either specifically by its natural class II 
ligand, or by foreign antigens that are cross-reactive to self-antigen receptors in 
the periphery [136].  

IL-10 and TGF-β are potent immune-suppressants that facilitate Treg to in-
hibit Th1 inflammatory responses. IL-10 has been illustrated as the key compo-
nents in the suppressive function of Treg (Figure 2) [137]. Secretion of IL-10 by 
Treg cells has been shown to be essential for the prevention of experimental  

 

 
Figure 2. Potential mechanisms used by Treg cells. Illustration of various Treg cell suppressive mechanisms 
based on three basic modes of action: A. Inhibitory cytokines consists of TGFβ, IL-35 and IL-10. B. Modulation 
of DC includes mechanisms that influences DC maturation and function such as LAG3, MHC-II-mediated sup-
pression of DC maturation, and CTLA4–CD80/CD86-mediated induction of IDO, which is an immunosuppres-
sive molecule made by DCs. C. Cytolysis consists of granzyme A and granzyme B dependent and perforin pore 
dependent killing mechanisms. The concept of the figure emerged from [168]. 
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autoimmune encephalomyelitis [138], colitis [139] [140], airway allergic re-
sponse in lung [141] and skin hypersensitivity [142].  

TGF-β, is a well-recognized inhibitory cytokine, however, the function of 
TGF-β in Treg mediated suppression has some controversies (Figure 2). Mice 
with a T-cell specific deletion of tgfb1 gene developed lethal immunopathology 
and could not inhibit inflammatory bowel disease in a transfer model [143]. 
TGF-β was found to be the major mechanism of suppression of prostate tumour 
infiltrating CD8 cells [144].  

Membrane-tethered TGF-β expressed by Treg cells has also been demon-
strated by Treg cell mediated suppression [145] [146]. However, another study 
has demonstrated conflicting findings that membrane-tethered TGF-β is dis-
pensable for Treg function [147].  

Another cytokine, IL-35, a member of IL-12 family has also been attributed to 
the in vitro and in vivo suppressive potency of Treg [148]. IL-35 consists of Ep-
stein-Barr virus induced gene 3 (Ebi3) and IL-12α/p35, both are highly ex-
pressed by Treg but not by naïve or activated T cells [113] [149]. Treg cells from 
Ebi3 and IL-12α-deficient mice have a reduced suppressive capability in vitro 
and fail to cure inflammatory bowel disease in vivo [148].  

There is evidence that Treg can indirectly suppress other cells through modu-
lation of DC function (Figure 2). Treg cells suppress the capacity of DCs to ac-
tivate T cells by down-regulating costimulatory molecules CD80 and CD86 [150] 
[151]. A handful of molecules expressed at high levels in Treg have been identi-
fied which facilitate the blockade of DC maturation and DC mediated activation 
of effector cells. Among them the most well-known is CTLA4. CTLA4 a member 
of CD28/B7 family and CTLA4 mediated immunosuppression has been demon-
strated in several settings including autoimmune diseases and different tumour 
types [152] [153]. Mice with a Treg cell specific deletion of CTLA-4 develop sys-
temic autoimmunity and CTLA4-deficient mice inhibit upregulation of CD80 
and CD86 even in the presence of strong DC maturation stimuli [152] [154] 
[155] [156]. Moreover, anti-CTLA4 inhibits the ability of Treg cells to suppress 
colitis [154]. 

Treg cells can induce the expression of indoleamine 2, 3-dioxygenase (IDO) in 
DCs in a CTLA4-dependent manner [157]. IDO is a potent immunosuppressive 
enzyme which induces catabolism of tryptophan in to pro-apoptotic metabolites, 
resulting in the suppression of effector cells [158]. Ligation of CTLA-4 to CD80 
and CD86 induce DCs by activating transcription factor Foxo3, which down-
regulate production of IL-6 and TNFα by DCs [159]. 

Other molecules expressed by Treg that can affect the function of DCs are: 
Lymphocyte activation gene-3 (LAG-3) [160] [161], immunoreceptor tyro-
sine-based activation motif (ITAM) [162] and Fibrinogen-like protein 2 (FGL2) 
[163]. Treg cells from LAG-3 deficient mice had a decreased suppressive activity 
and anti-LAG-3 blocked suppressive activity of Treg cells both in vitro and in 
vivo [160] [164].  

https://doi.org/10.4236/abb.2018.99031


T. Rahman et al. 
 

 

DOI: 10.4236/abb.2018.99031 452 Advances in Bioscience and Biotechnology 
 

Treg cells can suppress DC maturation by inhibiting down-regulation of 
MARCH1 and upregulation of CD83 [165]. MARCH1, a membrane bound E3 
ubiquitin ligase, was found to degrade CD86 and MHC-II on DC by directing 
them to the late endosomal or lysosomal compartment [166]. CD83 is accompa-
nied by DC maturation and it inhibits the action of MARCH1 [167]. Treg use 
IL-10 to influence MARCH1-CD83 pathway. 

There is growing evidence that Programmed death 1 (PD-1) pathway plays a 
role in Treg mediated suppression [169] [170]. PD-1 is expressed predominantly 
on exhausted CD8 cells and PD-L1, the ligand for PD-1is expressed on Treg and 
tumour cells [171]. In a BL/6 model, Treg from tumour draining lymph node 
suppress via PD-1/PD-L1 pathway. In samples of T cells taken from melanoma 
patients, PD-1 blockade was found to enhance effector T cell proliferation and 
inhibit the suppressive function of PD-L1 expressing Treg [172]. Treg have also 
been shown to mediate their suppressive activity through Fas-FasL interaction 
resulting in apoptosis of B cells [173].  

Treg are able to mediate immune suppression by triggering direct cytolysis of 
target cells [174] [175] [176]. Granzyme and perforin pathway are two suggested 
mechanisms for Treg mediated immune suppression (Figure 2). Treg cells from 
mice deficient in granzyme B had a reduced suppressive activity [177]. Also 
granzyme B deficient mice were able to clear tumour more effectively than wild 
type mice since Treg cells inhibit anti-tumour immunity in a granzyme B and 
perforin dependent manner [178].  

Another mechanism of suppression is the induction of metabolic disruption 
in target cells. Treg can be multiplied significantly by TCR stimulation in pres-
ence of high concentrations of IL-2 [179] [180]. As IL-2 is secreted by Th1 type 
cells, and elevated level of IL-2 acts as a negative-feedback mechanism thereby 
halts the effector T cell activity by the expanding Treg [181].  

Treg has been found to exert metabolic disruption in target cells by their ex-
pression of ectoenzymes CD39 and CD73. Treg from CD39 deficient mice have 
reduced suppressive functions both in vitro and in vivo [182]. CD39 and CD73 
convert proinflammatory nucleotides to anti-inflammatory adenosine and these 
ectoenzymes catalyse the generation of perinuclear adenosine from extracellular 
ATP or ADP [183]. Adenosine generated in this process then suppresses effector 
T cells via binding to adenosine A2A receptor.  

IL-17 and IFN-γ has been shown to modulate the suppressive capacity of Treg 
on Th2 immune responses [184] [185].  

IRF4 a transcription factor responsible for the differentiation of Th2 cells has 
been shown to play a role in the in Treg mediated suppression of Th2 responses. 
Mice wherein irf4 is depleted in Treg developed a lymphoproliferative disease 
that occurs due to a selective dysregulation of Th2 cells [186]. T-bet, a transcrip-
tion factor is indispensible for Th1 cell differentiation. It has been demonstrated 
that Treg mediated suppression of Th1 is regulated by Treg expression of T-bet 
[187]. Treg mediated suppression of Th17 responses is regulated by Treg expres-
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sion of STAT3. Selective ablation of STAT3 in Treg cells results selective uncon-
trolled Th17 dependent pathology of intestinal mucosa [41]. Other researchers 
have described a subset of Foxp3+Treg that express the Tfh cell master transcrip-
tional regulator, Bcl-6/Blimp-1 and accumulation at sites of B cell germinal centre 
responses where they function to control these reactions [188] [189] [190] [191].  

2.4. Depletion of Treg Using Mouse Model 

A number of different methods to deplete Treg depletion have been used to 
study their function and variable degrees of depletion have been seen. The two 
commonly used methods are: antibody depletion method and transgenic mouse 
model depletion. With the recognition of the IL-2 receptor CD25 on Treg, anti-
bodies specific to CD25 have been developed. About 65% - 70% of Treg popula-
tions are depleted following introduction of anti-CD25 antibody clone i.e., 
PC-61 [192]. Also, a population of CD25−Foxp3+ Treg cells cannot be depleted 
using PC61. Importantly, expression of CD25 is induced on activated conven-
tional CD4+T cells [18] [19] [20] [21]. 

To deal with the issue of in vivo function of Treg in immunopathology, mice 
with fully depleted Treg have been engineered. These mice permit selective abla-
tion of Foxp3+ Treg while without impairing CD25+ effector T cells. The genetic 
introduction of human diphtheria toxin receptor (DTR) targeted to a specific 
murine cell type has become a prevailing tool to selectively ablate Treg upon DT 
injection [193]. Rudensky and colleagues generated a knock-in mice called 
Foxp3DTR mice in which human DTR is introduced in to the 3́ untranslated re-
gion of Foxp3 which allow specific depletion of Treg by injecting DT. This 
model showed more than 97% depletion of Foxp3+ cells after DT administration 
[194]. However, these mice subjected to DT succumb to catastrophic autoim-
mune disease within 2 - 3 weeks, as a result of massive expansion of diverse ar-
ray of immune cells.  

Suffner et al generated a novel set of BAC (Bacterial Artificial Chromosome) 
transgenic mouse, called Foxp3.LuciDTR mouse, in which Treg express luciferase 
and the human DTR [195]. They developed several founder lines with different 
degrees of Treg depletion such as Foxp3.LuciDTR-3 and Foxp3.LuciDTR-4 and 
Foxp3.LuciDTR-5. Mice from lines Foxp3.LuciDTR-3, Foxp3.LuciDTR-4 and 
Foxp3.LuciDTR-5 exhibited ~75%, 90% and >95% depletion of Tregs, respectively, 
while Foxp3.LuciDTR-5 mice did suffer from wasting disease due to autoimmu-
nity. Lahl and Sparwasser [193] produced another BAC technology based trans-
genic mouse model known as DEpletion of REGulatory T cell (DEREG) mice, 
which express a DTR fused with GFP protein under the control of an additional 
Foxp3 promoter, allowing efficient depletion of Foxp3+ Treg by DT injection. De-
pletion in DEREG mice led to ablation of Foxp3+ Treg to 95% - 98% [196]. 

3. Concluding Remarks 

There are complex dynamic suppression processes controlling other cells by 
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Treg and that involve various inhibitory cytokines, DC function and cytolysis. 
These mechanisms are different depending upon Treg cell subtypes and the na-
ture of the pathogens. Also they can act together or independently, according to 
the requirements of the immune system and homeostasis maintenance, or dur-
ing the progression of various pathological processes. This gives two layers of 
reinforcement of Treg function: the suppressive effects of Treg and protective 
potential of Treg against different pathogens and they also alter the functional 
Treg pool in response to tissue and inflammatory cues. Together, these data 
suggest Treg mediated suppression might be a valuable component in different 
pathogens, which might provide novel therapeutic approaches for vaccination 
against them. Further investigations are required on Treg in different type of in-
fection models in order to extend the current understanding on the salient fea-
tures of these cells, their either beneficial or detrimental role during infection 
and their mechanisms participating to the immunity against various pathogens. 
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Abbreviations 

CTLA-4, Cytotoxic T lymphocyte antigen 4 
DEREG, Depletion of regulatory T cells 
DTR, Diphtheria toxin receptor 
DT, Diphtheria toxin 
EAE, Experimental autoimmune encephalomyelitis 
Ebi3, Epstein-Barr virus induced gene 3 
Foxp3, Forkhead box P3 protein 
Foxo, Forkhead box O transcription factor 
ICOS, Inducible T cell costimulatory 
IDO, Indoleamine 2, 3-dioxygenase 
IPEX, Immune dysregulation, polyendocrinopathy, enteropathy X-linked 
IRF, Interferon regulatory factor 
ITAM, Immunoreceptor tyrosine-based activation motif 
KLF2, Krϋppel-like factor 2 
LAG-3, Lymphocyte activation gene 3 
LAP, Latency associated peptide 
MARCH1, Membrane-associated E3 ubiquitin ligase RING-CH1 
mTECs, Medullary thymic epithelial cells 
NFAT, Nuclear factor of activated T cells 
Nrp1, Neuropilin-1 
nTreg cells, Naturally occurring regulatory T cells 
pTreg, Peripherally derived Treg cell 
PD-1, Programmed death 1 
PD-L, Programmed death 1 ligand 
RA, Retinoic acid 
STAT, Signal transducer and activator of transcription 
T-bet, T-box expressed in T cells 
TCR, T cell receptor 
Tfh cell, T follicular helper cell 
TGFβ, Transforming growth factor β 
TIEG1, TGF-β-inducible early gene 1 product 
TNF, Tumour necrosis factor 
TNFRSF18, Tumour necrosis factor receptor superfamily 18 
Tr1, T regulatory type 1 
Treg, CD4+Foxp3+ Regulatory T cell 
tTreg, Thymus derived Treg cell 
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